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1. Introduction

For many fuel cycle simulators, reactor facilities are automatically deployed

to meet a user-defined power demand. However, it is up to the user to define

a deployment scheme of supporting facilities to ensure that there is no gap in

the supply chain that results in idle reactor capacity. Some users choose to set5

supporting facilities to have an infinite capacity to avoid this issue, but this is an

inaccurate representation of reality. It is straightforward to manually determine

a deployment scheme for a once-through fuel cycle, however, it is difficult to

effectively implement for complex closed fuel cycle scenarios. To ease setting

up of realistic Nuclear Fuel Cycle (NFC) simulations, a Nuclear Fuel Cycle10

Simulator (NFCSim) should bring demand responsive deployment decisions into

the dynamics of the simulation logic [1]. Thus, a next generation NFCSim should

predictively and automatically deploy fuel cycle facilities to meet a user defined

power demand.

Cyclus is an agent-based nuclear fuel cycle simulation framework [2]. In15

Cyclus, each entity (i.e. Region, Institution, or Facility) in the fuel
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Fuel Cycle Open or Closed Fuel Type Reactor Type

EG01

(current)
Open Enriched-U Thermal critical reactors

EG23 Closed
Recycle of U/Pu

with natural-U fuel
Fast critical reactors

EG24 Closed
Recycle of U/TRU

with natural-U fuel
Fast critical reactors

EG29 Closed
Recycle of U/Pu

with natural-U fuel

Fast critical reactors and

thermal critical reactors

EG30 Closed
Recycle of U/TRU

with natural-U fuel

Fast critical reactors and

thermal critical reactors

Table 1: Descriptions of the current and other high performing nuclear fuel cycle evaluation

groups described in the evaluation and screening study [4].

cycle is an agent. Region agents represent geographical or political areas that

institution and facility agents can be grouped into. Institution agents control

the deployment and decommission of facility agents and represent legal operating

organizations such as a utility, government, etc. [2]. Facility agents represent20

nuclear fuel cycle facilities. Cycamore [3] provides facility agents to represent

process physics of various components in the nuclear fuel cycle (e.g. mine, fuel

enrichment facility, reactor).

1.1. Context of Work

An evaluation and screening study of a comprehensive set of nuclear Fuel25

Cycle Options (FCO) [4] was conducted to assess for performance improvements

compared to the existing once-through fuel cycle (EG01) in the United States

(US) across a wide range of criteria. Fuel cycles that involved continuous recycling

of co-extracted U/Pu or U/TRU in fast spectrum critical reactors consistently

scored high on overall performance. Table 1 provides a description of these fuel30

cycles: EG23, EG24, EG29, and EG30.

The evaluation and screening study assumed that the nuclear energy system

was at an equilibrium to understand the end-state benefits of each Evaluation

Group (EG). Based on the results from the study, the next step is to understand
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and evaluate the transition from the initial EG01 state to these promising35

future end-states [5]. To successfully conduct analysis of the time-dependent

transition analyses, it is necessary to develop NFCSim tools to automate setting

up of transition scenarios. Therefore, the Demand-Driven Cycamore Archetypes

project (NEUP-FY16-10512) was initiated to develop demand-driven deployment

capabilities in Cyclus. This capability, d3ploy, is a Cyclus Institution agent40

that deploys facilities to meet the front-end and back-end fuel cycle demands

based on a user-defined commodity demand.

1.2. Novelty

We utilized time series forecasting methods to effectively predict future supply

and demand of commodities in d3ploy. These methods are commonly used in45

other fields to make future predictions based on past time series data. This is a

novel approach that has never been applied to NFCSims.

1.3. Objectives

The main objectives of this paper are: (1) to describe the demand driven

deployment capabilities of Cyclus, (2) to describe the prediction methods50

available in d3ploy, (3) to demonstrate the use of d3ploy in setting up EG01-23,

EG01-24, EG01-29, and EG01-30 transition scenarios with various power demand

curves.

2. Methodology

In Cyclus, developers have the option to design agents using C++ or Python.55

The d3ploy Institution agent was implemented in Python to enable the use

of well developed time series forecasting Python packages.

In a Cyclus NFC simulation, at every time step d3ploy predicts supply and

demand of each commodity for the next time step. If undersupply is predicted for

any commodity, d3ploy deploys facilities to meet its predicted demand. Figure60

1 shows the logic flow of d3ploy at every time step.
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Start of time step (t).

Calculate

Dp(t + 1) and Sp(t +

1) for a commodity

U(t+1) = Sp(t+1)−Dp(t+1)

Deployment of facility No Deployment

Is this done for

all commodities?

Proceed to

next time step.

U(t + 1) < buffer U(t + 1) ≥ buffer

yes

no

Figure 1: d3ploy logic flow at every time step in Cyclus [6].

4



d3ploy’s main objective is to minimize undersupply of power. The sub-

objectives are : (1) to minimize the number of time steps of undersupply or

under capacity of any commodity, (2) to minimize excessive oversupply of all

commodities. This is a reflection of reality in which it is important to never have65

an undersupply of power on the grid by ensuring power plants are never short of

fuel, while not having excessive oversupply resulting in a burden to store unused

supplies. NFCSims often face power undersupplies at certain time steps due to

lack of viable fuel, despite having sufficient installed reactor capacity. Therefore,

using d3ploy to automatically deploy supporting facilities will prevent this from70

occurring.

2.1. Structure

In d3ploy, two different institutions control front-end and back-end fuel cycle

facilities: DemandDrivenDeploymentInst and SupplyDrivenDeploymentInst,

respectively. This distinction was made because front-end facilities are de-75

ployed to meet demand for commodities they produce, whereas, back-end

facilities are deployed to meet supply for the commodities they provide ca-

pacity for. For example, for front-end facilities, a reactor facility demands

fuel and DemandDrivenDeploymentInst triggers deployment of fuel fabrica-

tion facilities to create supply, and thus, meeting demand for fuel to prevent80

undersupply. For back-end facilities, the reactor generates spent fuel and

SupplyDrivenDeploymentInst triggers deployment of waste storage facilities

to create capacity meeting the supply of spent fuel to prevent under capacity.

2.2. Input Variables

Table 2 lists and gives examples of the input variables d3ploy accepts.85

Essentially, the user must do the following: define the facilities controlled by

d3ploy and their respective capacities, the driving commodity and its demand

equation, the deployment driving method, and the preferred prediction method.

The user also has the option to define supply/capacity buffers for individual

commodities, facility preferences, and facility constraints. The subsequent90
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Input Parameter Examples

Required

Demand driving commodity Power, Fuel, Plutonium, etc.

Demand equation P(t) = 10000, sin(t), 10000*t

Facilities it controls Fuel Fab, LWR reactor, SFR reactor,

Waste repository, etc.

Capacities of the facilities 3000 kg, 1000 MW, 50000 kg

Prediction method

Power: fast fourier transform

Fuel: moving average

Spent fuel: moving average

Deployment driven by Installed Capacity/Supply

Optional

Supply/Capacity Buffer type Absolute

Supply/Capacity Buffer size

Power: 3000 MW

Fuel: 0 kg

Spent fuel: 0 kg

Facility preferences
LWR reactor = 100-t

SFR reactor = t-100

Facility constraint SFR reactor constraint = 5000kg of

Pu

Table 2: d3ploy’s required and optional input parameters with examples.

sections provide an in-depth description of the deployment driving methods,

buffers, facility preferences, and prediction methods.

2.2.1. Deployment Driving Method

The user has the choice of deploying facilities based on the difference between

either predicted demand and supply, or predicted demand and installed capacity.95

There are two advantages of using installed capacity over predicted supply.

First, to prevent over-deployment of facilities with an intermittent supply; one

example would be reactor facilities that have periodic downtimes for refueling.

If predicted supply was selected instead of installed capacity, d3ploy would

deploy surplus reactors during refueling downtimes to meet the temporary power100

undersupply. Second, to prevent infinite deployment of a facility that uses a

commodity no longer available in the simulation. For example, in a transition

scenario from Light Water Reactors (LWRs) to Sodium-Cooled Fast Reactors
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(SFRs), the reprocessing plant that fabricates SFR fuel might demand Pu after

the existing inventory is depleted and all Pu-generating LWRs have already105

been decommissioned. This will result in d3ploy deploying infinite reprocessing

facilities in a futile attempt to produce SFR fuel, given the lack of Pu. This can

also be avoided by using d3ploy’s facility constraint capability (section 2.3) to

withhold SFR deployment until a sizable inventory of Pu is accumulated in the

simulation.110

2.2.2. Supply/Capacity Buffer

In DemandDrivenDeploymentInst, the user has the option to provide a supply

buffer for each commodity; d3ploy will account for the buffer when calculating

predicted demand and deploy facilities accordingly. In SupplyDrivenDeployment

Inst, the user has the option to provide a capacity buffer for specific commodities;115

d3ploy will account for the buffer when calculating predicted supply and deploy

facilities accordingly. For example, the user could set the power commodity’s

supply buffer to be 2000 MW. If predicted demand is 10000 MW, d3ploy will

deploy reactor facilities to meet the predicted demand and supply buffer, resulting

in a power supply of 12000 MW. The buffer can be defined as a percentage120

(equation 1) or absolute value (equation 2).

Spwb = Sp ∗ (1 + d) (1)

Spwb = Sp + a (2)

where Spwb is predicted supply/capacity with buffer, Sp is the predicted sup-

ply/capacity without buffer, d is the percentage value in decimal form, and a is

the absolute value of the buffer.

Using a combination of this buffer capability alongside the installed capacity125

deployment driving method in a transition scenario simulation effectively mini-

mizes undersupply of a commodity while avoiding excessive oversupply. This is

demonstrated in section 3.1.

7



2.3. Facility Preference and Constraint

The user can elect to specify time-dependent preference equations for each130

facility; if more than one facility can supply the same commodity, d3ploy

uses these equations to determine which facility to deploy during a commodity

shortage. In table 2, the LWR reactor has a preference of 100 − t and the SFR

reactor has a preference of t− 100. Thus, the simulation will have a preference

to deploy LWRs before time step 100 and SFRs afterwards.135

The user also has the option to provide each facility with a commodity

constraint. In table 2, the SFR has a commodity constraint of 5000kg of Pu.

This constrains SFR deployment to the size of the Pu inventory in the simulation.

SFRs are deployed only after the 5000kg minimum Pu inventory is satisfied.

In many scenarios, advanced reactors are forced to idle after depleting the140

initial Pu inventory. In these situations, the facility preferences and constraint

capabilities are beneficial to the user. An ideal transition year is selected using

the facility preferences, however the transition will only begin when there is

sufficient Pu inventory (set by facility constraint) to avoid shortages.

Therefore, when d3ploy predicts an undersupply of a commodity, it deploys145

facilities in order of preference, starting at the highest and moving down if the

facility in question does not meet its constraint criteria. If the facilities do not

have preferences or constraints, d3ploy will deploy the available facilities to

minimize the number of deployed facilities while minimizing oversupply of the

commodity.150

2.4. Prediction Methods

d3ploy records supply and demand values at each time step for all com-

modities. This provides time series data for d3ploy’s time series forecasting

methods to predict future supply and demand for each commodity. Three main

method types were investigated: non-optimizing, deterministic-optimizing, and155

stochastic-optimizing time series forecasting methods. Non-optimizing methods

are techniques that harness simple moving average and autoregression concepts
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that use historical data to infer future supply and demand values. Deterministic-

optimizing and stochastic-optimizing methods are techniques that use an as-

sortment of more complex time series forecasting concepts to predict future160

supply and demand values. Deterministic-optimizing methods give deterministic

solutions, while stochastic-optimizing methods give stochastic solutions.

Depending on the scenario in question, each forecasting method offers its

own distinct benefits and disadvantages. The various methods are compared

for each type of simulation to determine the most effective prediction method165

for a given scenario. The prediction methods will be described in the following

sections.

2.4.1. Non-Optimizing Methods

Non-optimizing methods include: Moving Average (MA) , Autoregressive

Moving Average (ARMA), and Autoregressive Heteroskedasticity (ARCH). The MA170

method calculates the average of a user-defined number of previous entries in a

commodity’s time series and returns it as the predicted value (equation 3).

Predicted V alue =
V1 + V2 + ...+ Vn

n
(3)

The ARMA method combines moving average and autoregressive models (equa-

tion 4). The first term is a constant, second term is white noise, third term is

the autoregressive model, and the fourth term is the moving average model. The175

ARMA method is more accurate than the MA method because of the inclusion of

the autoregressive term.

Xt = c+ εt +

p∑
i=1

ϕiXt−i +

q∑
i=1

θiεt−i (4)

The ARCH method modifies the original moving average term (described in

equation 4). This modification makes the ARCH method better than the ARMA

method for volatile time series data [7]. The StatsModels [8] Python package is180

used to implement ARMA and ARCH methods in d3ploy.
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2.4.2. Deterministic-Optimizing Methods

Deterministic methods include: Fast Fourier Transform (FFT), Polynomial

Fit (poly), Exponential Smoothing (exp-smoothing) , and Triple Exponential

Smoothing (holt-winters). The FFT method computes the discrete Fourier185

transform of the time series to predict future demand and supply values (equation

5). This method is implemented in d3ploy using the SciPy [9] Python package.

Xk =

N−1∑
n=0

xne
−i2πkn/N (5)

The poly method models the time series data with a nth degree (user-

defined) polynomial to determine future demand and supply values. This

method was implemented in d3ploy using the NumPy [10] Python package.190

The exp-smoothing and holt-winters methods use a weighted average of time

series data with weights decaying exponentially for older time series values

[11] to create a model to determine future demand and supply values. The

exp-smoothing method excels in modeling univariate time series data without

trend or seasonality, whereas the holt-winters method applies exponential195

smoothing three times resulting in higher accuracy when modeling seasonal time

series data. The StatsModels [8] Python package was used to implement both of

these methods in d3ploy.

2.5. Stochastic-Optimizing Methods

There is one stochastic-optimizing method: step-wise seasonal method. The200

method was implemented in d3ploy by the auto Auto-Regressive Integrated

Moving Averages (ARIMA) method in the pmdarima [12] Python package. The

ARIMA model is a generalization of the Autoregressive Moving Average (ARMA)

model to make the model fit the time series data better. It replaces the time

series values with the difference between consecutive values.205
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Input Parameters Simple Transition Scenario: Linearly Increasing Power

Required

Demand driving commodity Power

Demand equation [MW] t < 40 = 1000, t ≥ 40 = 250t

Available facilities Source, Reactor, Sink

Prediction method FFT

Deployment driving method Installed Capacity

Optional
Buffer type Absolute

Buffer size Power: 2000MW, Fuel: 1000kg

Table 3: d3ploy’s input parameters for the simple transition scenarios.

3. Results

To demonstrate d3ploy’s capability to effectively conduct transition scenario

analysis and meet the objectives described in section 1.3, this section will (1)

demonstrate d3ploy’s capability in simple transition scenarios, (2) compare

the prediction methods for different transition scenarios, and (3) demonstrate210

using d3ploy to setup successful EG01-EG23, EG01-EG24, EG01-EG29, and

EG01-EG30 transition scenarios. The input files and scripts to produce the

results and plots in this paper can be reproduced using [13], and [14].

3.1. Demonstration of d3ploy’s capabilities

We conducted a simple linearly increasing power demand simulation to demon-215

strate d3ploy’s capabilities for simulating transition scenarios and to inform

decisions about input parameters when setting up larger transition scenarios

with many facilities. This simulation is a simple transition scenario that only

includes three facility types: source, reactor, and sink. The simulation ini-

tially has ten initial reactor facilities (reactor1 to reactor10). These reactors220

have staggered cycle lengths and lifetimes to prevent simultaneous refueling and

setup gradual decommissioning. d3ploy is configured to deploy new reactor

facilities to meet the loss of power supply created by the decommissioning of the

initial reactor facilities. Table 3 shows the d3ploy input parameters for this

simulation.225

Figures 2a, 2b and 2c demonstrate d3ploy’s capability to deploy reactor
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and supporting facilities to meet the linearly increasing power demand and

subsequently demanded secondary commodities with minimal undersupply. Fig-

ure 2a demonstrates that the main objective of d3ploy was met as there are

no time steps in which the supply of power falls under demand. By using a230

combination of the FFT method for predicting demand and setting the supply

buffer to 2000MW (the capacity of 2 reactors), the user minimizes the number

of undersupplied time steps for every commodity.

In figure 2b, a source facility with a large fuel throughput is initially deployed

to meet the large initial fuel demand for the commissioning of ten reactors. By235

having an initial facility with a large throughput exist for the first few time

steps, d3ploy is prevented from deploying supporting facilities that end up being

redundant at the later times in the simulation. This is a reflection of reality

in which reactor manufacturers will accumulate an appropriate amount of fuel

inventory before starting up reactors. There is one time step in which a power240

undersupply exists after the decommissioning of the large initial facility; this

is unavoidable as the prediction methods in d3ploy are unable to forsee this

sudden drop in demand.

3.2. Comparison of Prediction Methods

EG01-EG23, EG01-EG24, EG01-EG29, and EG01-EG30 transition scenarios245

are setup in Cyclus using d3ploy. To determine the most effective d3ploy

prediction methods, a comparison of each prediction method for each transition

scenario is conducted for both constant and linearly increasing power demand

curves. Similar to the simple transition scenario, these transition scenario simu-

lations begin with an initial fleet of LWRs that are progressively decommissioned250

starting at the 80 year mark, after which d3ploy deploys SFRs and mixed oxide

(MOX) LWRs to meet the power demand. Figure 3 shows the setup of facilities

and mass flows for EG01-23 and EG01-29 in Cyclus. In EG01-23 and EG01-29,

only plutonium is recycled from LWR spent fuel to produce Fast Reactor (FR)

fuel. EG01-24 and EG01-30 are similar to EG01-23 and EG01-29 respectively,255

with the exception that all transuranic elements are recycled.
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(a) The power demand is a user-defined equation and power is supplied

by the reactors. There are no time steps with undersupply of power.

(b) Fuel is demanded by reactors and supplied by

source facilities. There is only one time step with

undersupply of fuel.

(c) Spent Fuel is supplied by reactors and the capac-

ity is provided by sink facilities. There are no time

steps with under capacity of sink space.

Figure 2: Transition Scenario: Linearly increasing power demand.
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Source

Enrichment

LWR

LWR Storage

LWR Reprocessing

LWR Sink

LWR Mixer

FR

FR Storage

FR Reprocessing

FR Sink

FR Mixer

natural-U

enriched-U

waste

U/Pu

waste

U/Pu

natural-U natural-U

(a) EG01-EG23.

Source

Enrichment

LWR

LWR Storage

LWR Reprocessing

LWR Sink

FR Mixer

FR

FR Storage

FR Reprocessing

FR Sink

MOX Mixer

MOX

MOX Storage

MOX Reprocessing

MOX Sink

natural-U

enriched-U

waste

FR Fuel

waste

MOX Fuel

waste

natural-U

U/Pu U/Pu

U/Pu

U/Pu

(b) EG01-EG29.

Figure 3: Diagrams with facilities and mass flow of the scenarios EG01-EG23 and EG01-EG29.
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In Figure 4, crosses represent the time steps in which there is undersupply

or under capacity of each commodity for a constant power EG01-23 scenario

for varying prediction methods. The size of the crosses are proportional to the

undersupply value, therefore, larger crosses correspond to larger undersupply.260

Table 7 shows the number of time steps with power undersupply for constant

power EG01-EG23 and EG01-29, linearly increasing power EG01-24 and EG01-

30 transition scenarios. Figure 4 demonstrates that the poly and fft methods

perform the best, since they have the least number of points on the plot, indicating

that they have the fewest number of time steps with undersupply and under265

capacity of commodities. Table 7 shows that the poly method performs slightly

better at minimizing undersupply of power than fft. A similar analysis was

done for a constant power EG01-29 scenario, and as seen in Table 7 the poly

prediction method also performed best for minimizing undersupply of power.

In Figure 5, crosses represent the time steps in which there is undersupply270

or under capacity of each commodity for a linearly increasing power EG01-24

scenario for varying prediction methods. As with Figure 4, the size of the crosses

are proportional to the undersupply value. Figure 5 demonstrates that the fft

method performs the best at minimizing undersupply of all commodities. A

similar analysis was performed for a constant power EG01-30 scenario, and as275

seen in Table 7 the fft also performed best for minimizing undersupply of power.

From Figures 4, 5, and Table 7, we can see that the poly method performs

best for constant power transition scenarios and the fft method performs best for

linearly increasing power transition scenarios. Undersupply and under capacity

of commodities occur during two main time periods: initial demand for the280

commodity and during the transition period. To further d3ploy’s main objective

of minimizing the power undersupply, sensitivity analysis of the power supply

buffer for each transition scenario is conducted with best performing prediction

method to find a buffer size that will minimize power undersupply.
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(a) Time dependent undersupply of commodities in simulation

(b) Time dependent under capacity of commodities in simulation

Figure 4: EG01-23 Transition Scenario with Constant Power Demand: Each cross represent

a time step in which there is undersupply or under capacity of each commodity for varying

prediction methods. The size of each cross is proportional on the size of the undersupply.
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(a) Time dependent undersupply of commodities in simulation

(b) Time dependent under capacity of commodities in simulation

Figure 5: EG01-24 Transition Scenario with Linearly Increasing Power Demand: Each cross

represent a time step in which there is undersupply or under capacity of each commodity

for varying prediction methods. The size of each cross is proportional on the size of the

undersupply.
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Power Undersupplied Time Steps

Algorithm EG01-EG23

Constant

Power

EG01-EG24

Linearly

Increasing

Power

EG01-EG29

Constant

Power

EG01-EG30

Linearly

Increasing

Power

MA 26 36 15 24

ARMA 26 36 15 24

ARCH 26 36 15 21

POLY 6 65 4 9

EXP SMOOTHING 27 37 16 25

HOLT-WINTERS 27 37 16 25

FFT 8 20 5 9

SW SEASONAL 36 107 14 51

Table 4: Undersupply and oversupply of power with the different algorithms used to drive

EG01-EG23,24,29,30.

3.3. Sensitivity Analysis285

Sensitivity analysis of the power buffer size was conducted for EG01-EG23,

EG01-24, EG01-29, and EG01-30 transition scenarios. Varying the power buffer

size does not impact the number of undersupply time steps for EG01-EG23

and EG01-EG29 constant power demand transition scenario with the poly

prediction method. There are 6 and 4 time steps (table 7) in which there is290

power undersupply for EG01-EG23 and EG01-29 transition scenarios respectively.

As seen from figure 4, these undersupply time steps occur at the beginning of the

simulation and for one time step when the transition begins. This is expected

since without time series data at the beginning of the simulation, d3ploy takes

a few time steps to collect time series data about power demand to predict and295

start deploying reactor and supporting fuel cycle facilities. When the transition

begins, power is under supplied for one time step, ; following this, d3ploy

accounts for the undersupply by deploying facilities to meet power demand.

Therefore, the power undersupply is minimized for constant power EG01-EG23

and EG01-EG29 transition scenarios with a 0MW power supply buffer.300

For EG01-EG24 and EG01-30 linearly increasing power demand transition
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scenarios, power buffer size is varied. Figures 6a, 6c and Table 5 show that with an

increasing buffer size, the number of power undersupply time steps decreases. For

EG01-24, it plateaus at 6000MW, and for EG01-30, the cumulative undersupply

is smallest for a buffer size of 8000MW. As seen from Figures 6b and 6d, these305

undersupply time steps occur at the beginning of the simulation and for one

time step when the transition begins. This is expected since without time series

data at the beginning of the simulation, d3ploy takes a few time steps to collect

time series data about power demand to predict and start deploying reactor and

supporting fuel cycle facilities. Therefore, a buffer of 6000MW and 8000MW310

minimizes the power undersupply for EG01-Eg24 and EG01-EG30 respectively.

Buffer [MW] Undersupply EG01-24 EG01-30

0 Time steps [#] 20 9

Energy [GW ·mo] 315791 152517

2000 Undersupplied [#] 9 6

Energy [GW ·mo] 306520 147166

4000 Time steps [#] 8 6

Energy [GW ·mo] 303438 143166

6000 Time steps [#] 7 5

Cumulative [GW ] 303438 139083

8000 Time steps [#] 7 5

Energy [GW ·mo] 303438 135083

Table 5: Dependency of the undersupply of Power on the buffer size for EG01-EG24 and

EG01-EG30 transition scenarios with linearly increasing power demand using the fft prediction

method.

3.4. Best Performance Models

Table 6 shows d3ploy input parameters for EG01-EG23, EG01-EG24, EG01-

EG29, and EG01-EG30 transition scenarios that minimize undersupply of power

and minimize the undersupply and under capacity of the other commodities in315

the simulation. The need for buffers for commodities is a reflection of reality in

which a supply buffer is usually maintained to ensure continuity in the event of

an unexpected failure in the supply chain.
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(a) EG01-24: Power buffer size vs. cumulative undersupply

(b) EG01-24: Time-dependent undersupply of power for varying power

buffer sizes

(c) EG01-30: Power buffer size vs. cumulative undersupply

(d) EG01-30: Time-dependent undersupply of power for varying power

buffer sizes

Figure 6: Sensitivity Analysis of Power buffer size on cumulative undersupply of Power for

EG01-EG24 and EG01-EG30 transition scenarios with linearly increasing power demand using

the fft prediction method.
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Input Parameter
Simulation Description

EG01-23 EG01-24 EG01-29 EG01-30

Required

Demand driving commodity Power

Demand equation [MW] 60000 60000 + 250t/12 60000 60000 + 250t/12

Prediction method poly fft poly fft

Deployment Driving Method Installed Capacity

Optional
Buffer type Absolute

Power Buffer size [MW] 0 6000 0 8000

Table 6: d3ploy’s input parameters for EG01-EG23, EG01-EG24, EG01-EG29, and EG01-

EG30 transition scenarios that minimizes undersupply of power and minimizes the undersupply

and under capacity of the other facilities.

Figure 7 and 8 show time dependent deployment of reactor and supporting

facilities for the EG01-23 constant power demand and EG01-30 linearly increasing320

power demand transition scenarios, respectively. d3ploy automatically deploys

reactor and supporting facilities to setup a supply chain to meet power demand

during a transition from LWRs to SFRs for EG01-23, and from LWRs to MOX

LWRs and SFRs for EG01-30. EG01-24 and EG01-29 facility deployment plots

are very similar to EG01-23 and EG01-30, respectively, therefore they are not325

shown.
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(a) EG01-23: Reactor Deployment

(b) EG01-23: Supporting Facility Deployment

Figure 7: Time dependent deployment of reactor and supporting facilities in the EG01-

23 constant power demand transition scenario. d3ploy automatically deploys reactor and

supporting facilities to setup a supply chain to meet constant power demand of 60000 MW

during a transition from LWRs to SFRs.
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(a) EG01-30: Reactor Deployment

(b) EG01-30: Supporting Facility Deployment

Figure 8: Time dependent deployment of reactor and supporting facilities in the EG01-30

linearly increasing power demand transition scenario. d3ploy automatically deploys reactor and

supporting facilities to setup a supply chain to meet constant power demand of 60000+250t/12

MW during a transition from LWRs to MOX LWRs and SFRs.
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Undersupplied Time Steps

Transition Scenario EG01-

EG23

EG01-

EG24

EG01-

EG29

EG01-

EG30

Power Demand Constant Linearly

Increasing

Constant Linearly

Increasing

Prediction Method poly fft poly fft

Power Supply Buffer [MW] 0 6000 0 8000

Commodities

Natural Uranium 2 3 1 1

LWR Fuel 4 6 1 2

SFR Fuel 0 0 2 2

MOX LWR Fuel - - 2 2

Power 6 7 4 5

LWR Spent Fuel 1 1 1 1

SFR Spent Fuel 1 1 1 1

MOX LWR Spent Fuel - - 1 1

Table 7: Undersupply/capacity of commodities for the best performing EG01-EG23,24,29,30

transition scenarios.

4. Conclusion

In this paper, we demonstrate that by carefully selecting d3ploy parameters,

we are able to effectively automate the setup of constant and linearly increasing

power demand transition scenarios for EG01-23, EG01-24, EG01-29, and EG01-30330

with minimal power undersupply. Using d3ploy to set up transition scenarios is

more efficient than the previous efforts that required a user to manually calculate

and use trial and error to set up the deployment scheme for the supporting fuel

cycle facilities. Transition scenario simulations set up this way are sensitive to

changes in the input parameters resulting in an arduous setup process, since335

a slight change in one of the input parameters would result in the need to

recalculate the deployment scheme to ensure that there is no undersupply of

power. Therefore, by automating this process, the user can vary input parameters

in the simulation and d3ploy will automatically adjust the deployment scheme

to meet the new constraints.340
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5. Future Work

To enable NFCSims to produce insightful and flexible results to inform policy

decisions, it is necessary to quantify and include all the subtleties of each segment

of the NFC through system analysis and sensitivity studies [15]. We simulate

transition scenarios to predict the future, however when implemented in the real345

world, it will deviate from the optimal scenario. Previously it was difficult to

conduct this analysis with Cyclus as the user would have to manually calculate

the deployment scheme for every change in input parameter. Therefore, using the

d3ploy capability, sensitivity analysis studies can be more easily conducted to

determine how variation in different input parameters will impact the progression350

and final state of a transition scenario.
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