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l “{e\mk < Simulator (W should bring/demand responsive deployment decisions into
%\( thedynamies-of the simulation logic, [1]. Thus, a next generation NFCSim should

ios
predictively and automatically de}ygymfuel cycle facilities to meet a user defined

'R/‘Q /2 W\L(Syw power demand.

NFLé (ot + v anagentbased nuclear fuel eycle sitmulation framework 2. 11
Q oL CycCLUS, Kach entity (i.e. Region, Institution, or Facility) in the fuel
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Fuel Cycle | Open or Closed Fuel Type Reactor Type
EGO01
Open Enriched-U Thermal critical reactors
(current)
Recycle of U/P. L
EG23 Closed Fast critical reactors
with natural-U fudl
Recycle of U/TR o
EG24 Closed Fast critical reactors
with natural-U fuel
Recycle of U/Pu Fast critical reactors and
EG29 Closed
with natural-U fue thermal critical reactors
Recycle of U/TRU Past critical reactors and O a'é‘ Q"A‘."ﬁ
EG30 Closed ge fances
with natural-U fuel  thermal critical reactors ) "k
Wi prepos\Revs,
Table 1: Descriptions of the current and other high performing nuclear fuel cycle evaluation (f_", i"’: a(; on 7

groups described in the evaluation and screening study [4].
oA

cycle is an agent. Region agents represent geographi
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political areas that be ‘h dened.
Vinstitutior and (faCT@agents can be grouped into. [Institution agents control
the deployment and m of [@H§ agents and represent legal operating
Grganizationsisuchasianitilitygovernmentmete] [2]. Facility agents represent

nuclear fuel cycle facilitie\?‘\CYCAMORE 3] es facility o represent

process physics of various components in the nuclear fuel cycle (e.g.m)ue, fuel Cu\(,a.m

enrichment facility, reactor). e W&S oJso Prm/f&lé
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An evaluation and screening study of a comprehensive set of nuclear Fuel 4o Dsge‘a?

1.1. Context of Work

performance improvements \«_ Onrase
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e The evaluation and screening study assumed (that the nuclear_energy system
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compared to the existing once-through fuel cycle 701) in the United States ‘b a ssess ;W'.U X

(US) across a wide range of criteria. Fuel cycles that involved continuous recycling o
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cycles: EG23, EG24, EG29, and EG30.
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and evaluate the transition from the initial EG01 state to these promising

future end-states [5]. To successfully conduct analysis of the time-dependent

project (NEUP-FY16-10512) was initiated to develop demand-driven deployment

capabilities in CycLus. This capability, d3ploy, is a CYCLUS Institution agent

that deploys facilities to meet the front-end and back-end fuel|cycle demands

1.2. Nowelty

We utilized time series forecasting methods to effectively predict future supply
— conmod i

and demand of commedities in d3ploy. [NicSeHNEtHOASIETEICOMMOnIyIISed in
—

other fields to make future predictions based on past time series data. This is a

\\\ novel approach that has never been applied to NFCSims.
E)
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1.3. Objectives

The main objectives of this paper are: (1) to describe the demand driven
deployment capabilities of CycLUS, (2) to describe the prediction methods
available in d3ploy, (3) to demonstrate the use of d3ploy in setting up EG01-23,
EGO01-24, EG01-29, and EG01-30 transition scenarios with various power demand

curves.

2. Methodology

In Cycrus, developers have the option to design agents using C++ or Python.

The d3ploy Institution agent was implemented in Python to enable the use
of/well developed time series forecasting Python packages.

In a Cycrus NFC simulation, at every time step d3ploy predicts supply and
demand of each commodity for the next time step. If undersupply is predicted for
any commodity, d3ploy deploys facilities to meet its predicted demand. Figure
1 shows the lo[gic ?o:v;f d3ploy at every time step.
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d3ploy’smain—objective—is to minimize undersupply of power. iThe sub- V! VLZ

(1) to minimize the number of time steps of undersupply or

objectives are |

under capacity of any commodity, (2) to minimize excessive oversupjjly of all
. . vetlects o ~ utilities ove

commodities. This isa-refleetion—of reality in which

undersupply of power on the grid by ensuring power plants are never short of

o o\J\tlr\ expensve
. 6\\\ \ fuel, while ngﬁ—hav-m;exggsswe oversupply
'Wyﬂv \C 6 supptiest NFCSims often face power undersupplies -at-certaintime-steps due to
( lack of viable fuel, despite having sufficient installed reactor capacity. Therefore-

7 using d3ploy to automatically deploy supporting facilities will prevent this from

occurring.

2.1. Structure o
A 1<Hned

In d3ploy, two differemnt institutions control front-end and back-end fuel cycle
facilities: DemandDrivenDeploymentInst and SupplyDrivenDeploymentInst, d‘kof’&/\;%
75 respectively. This distinction was made because front-end facilities are—de-

ployed—te- meet demand for commodities they produce, whereas, back-end

Aervand
facilities aredeployed—te-meet supply for the commodities theyﬁfeﬂd&e&-' dN dIV-J
e n
pacity~for. For example, = ies, a reactor facility demands \,\'{,\' g
( 1
fuel, and DemandDrivenDeploymentInst tri fuel fabrica- Ly oW

\£-

w tion facilities to create supply, and- thusy meeting demand for fuel to prevent
undersupply. For back-end facilities, the reactor generates spent fuel and
SupplyDrivenDeploymentInst triggers deployment of waste storage facilities

,\ \{\W% to create capacity meeting the supply of spent fuel to prevent(under capacity.
) .
%\\“ a 2.2. Input Variables Qﬁ‘ﬁﬁaﬂ W\!’\-L“-‘ %{/O\UEPA

@‘P 8 Table 2 lists and gives examples of the input variables d3ploy accepts.

Cf,&/ Essentially, the user must do the following: define the facilities controlled by (L \L‘s s 6\3(“01

s

3( d3ploy and their respective capacities, the driving commodity and its demand
equation, the deployment driving method, and the preferred prediction method.
Y ‘\, ﬂ.l
(.
0,“\&_ L\yﬂr 0 ((‘K'\ The user also has the option to define supply/capacity buffers for individual §553V<:ﬂﬁ
J?IJL v (L(’ o commodities, facility preferences, and facility constraints. The subsequent
\
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Input Parameter Examples

(MWriving commodity Power, Fuel, Plutonium, etc.
v

Demand equation P(t) = 10000, sin(t), 10000*t
Required Facilitie@ntrols dDLE nhg? Fuel Fab, LWR reactor, SFR reactor,

Waste repository, etc.

Capacities of the facilities 3000 kg, 1000 MW, 50000 kg

Power: fast fourier transform
Prediction method Fuel: moving average

Spent fuel: moving average

Deployment driven by Installed Capacity/Supply
Supply/Capacity Buffer type Absolute
Power: 3000 MW
Optional . .
Supply/Capacity Buffer size Fuel: 0 kg

Spent fuel: 0 kg
LWR reactor = 100-t
SFR reactor = t-100

Facility preferences

Facility constraint SFR reactor constraint = 5000kg of
Pu

Table 2: d3ploy’s required and optional input parameters with examples.

dest i be \n—d—u‘?u’\
sections p-rovﬁi—%n—m—dep%h—desempimn__of_the deployment driving methods,

buffers, facility preferences, and prediction methods.

2.2.1. Deployment Driving Method I-f'ﬁ’l >
m
The user has—trahggrome-of deploying fagilities based on the difference between
os either predicted demand and supply, @ predlcted demand and installed capacity. \/\ L\l}’ﬁa
on

There-are—two—advantages of using 1n5talled capacity 6ver predicted supply
U;CU LFirst, to prevent over-deployment of facilities with an inte K

nittent supply; one
example would be reactor facilities that have periodic downtimes for refueling. a\ oV
If predicted supply was selected instead of installed capacity, d3ploy would o

wo  deploy surplus reactors during refueling downtimes to meet the temporary power

commodity no longer available in the simulation. For example, in a transition

scenario from Light Water Reactors (LWRs) to Sodium-Cooled Fast Reactors
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(SFRs), the reprocessing plant that fabricates SFR fuel might demand Pu after
the existing inventory is depleted and all Pu-generating LWRs have already
been decommissioned. This will result in d3ploy deploying infinite reprocessing
facilities in a futile attempt to produce SFR fuel, given the lack of Pu. This can
also beawgided by using d3ploy’s facility constraint capability (section 2.3) to

R deployment until a sizable inventory of Pu is accumulated in the

2.2.2. Supply/Capacity Buffer

In DemandDrivenDeploymentInst, the user has the option to provide a supply
buffer for each commodity; d3ploy will account for the buffer when calculating
predicted demand and deploy facilities accordingly. In SupplyDrivenDeployment
Inst, the user has the option to provide a capacity buffer for specific commodities;
d3ploy will account for the buffer when calculating predicted supply and deploy

facilities accordi‘ngf For example, the user could set the power commodity’s
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supply buffer to be 2000 MW. If predicted demand is 10000 MW, d3ploy will
deploy reactor facilities to meet the predicted demand and supply buffer, resulting

in a power supply of 12000 MW. The buffer can be defined as a percentage

(equation 1) or absolute value (equation 2). A,
0o (0( |<k
A5

Wi
M Spws = +d) 67‘{ (1)

Spws = Sp + a (2)

where Sy is predicted supply/capacity with buffer, S, is the predicted sup-
ply/capacity without buffer, d is the percentage value in decimal form, and a is
the absolute value of the buffer.

Using a combination of this buffer capability alongside the installed capacity
deployment driving method in a transition scenario simulation effectively mini-
mizes undersupply of a commodity while avoiding excessive oversupply. This is

demonstrated in section 3.1.



2.83. Facility Pyéference and Constraint

130 The usger can elect to specify time-dependent preference equations for each

facility/ if more than one facility can supply the same commodity, d3ploy “I'Lus W’l( \L’e ‘

call
Mse equations to determine which facility to deploy during a commodity an“v\s
A W

shortage. In table 2, the LWR reactor has a preference of 100 — ¢ and the SFR 0 ,w"\‘l bﬁ

W 077300
W l! PV reactor has a preference of ¢ — 100. Thus, the simulation will have a preference ‘0 IQ , (A’O’V\
\A) 135 to deploy LWRs before time step 100 and SFRs afterwards. l
M The user also has the option to provide each facility with a commodity Q
" +eu./ n Units ‘Q)
l

constraint. In table 2, the SFR has a commodity constraint of 5000kg of Pu.

This constrains

eployment to the size of the Pu inventory in the simulation.

SFRs are deployed only after the 5000kg minimum Pu inventory is satisfied.
In many scenarios, advanced reactors are forced t@WL\ % d o'VVl
initial Pu inventory. In these situations, the facility preferences and constraint
capabilities are beneficial to the user. An ideal transition year is selected using

[/
the facility preferences, however the transition will only begin when there is Wv\ ool

W sufficient Pu inventory (set by facility constraint) to avoid shortages. " kfﬁ‘/\
o)
\{\// r Therefore, when d3ploy predicts an undersupply of a commodity, it deploys ‘e (JW
\,D\l\ . . . ] \N,N\M
M \\(\ facilities in order of preference, starting at the highest and moving/down Q -
]
\/‘LV\) facility in question does not meet its constraint criteria. If| M

have preferences or constraints, d3ploy will deploy the available facilities to

minimize the number of deployed facilities ywhile minimiziig oversupply of the

A
m\\;&*"*'”m»@ oW’ " e

d3ploy records supply and demand values at each time step for all com-

150 commodity.

2.4. Prediction Methods

7
IV\ W"S Scanant> modities. This provides time series data for d3ploy’s time series forecasting

yn L)"S "&w methods to predict future supply and demand for each commodity. Three main
T(A.LW'QA U.,“Ab‘ v 155, method types were investigated: non-optimizing, deterministic-optimizing, and
Be move stochastic-optimizing time series forecasting methods. Non-optimizing methods

‘fe.
F: are techniques that harness simple moving average and autoregression concepts

T
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that use historical data to infer future supply and demand values. Deterministic-
optimizing and stochastic-optimizing methods are techniques that use an as-
sortment of more complex time series forecasting concepts to predict future
supply and demand values. Deterministic-optimizing methods give deterministic
solutions, while stochastic-optimizing methods give stochastic solutions.
Depending on the scenario in question, each forecasting method offers its
own distinct benefits and disadvantages. The various methods are compared
for each type of simulation to determine the most effective prediction method
for a given scenario. The prediction methods will be described in the following

sections.

2.4.1. Non-Optimizing Methods
Non-optimizing methods include: Moving Average (MA) , Autoregressive
Moving Average (ARMA), and Autoregressive Heteroskedasticity (ARCH). The MA
method calculates the average of a user-defined number of previous entries in a
commodity’s time series and returns it as the predicted value (equation 3).
+Ww+..+V,

Predicted Value = p (3)

The ARMA method combines moving average and autoregressive models (equa-
tion 4). The first term is a constant, second term is white noise, third term is
the autoregressive model, and the fourth term is the moving average model. The
ARMA method is more accurate than the MA method because of the inclusion of

the autoregressive term.

P q
Xi=cte+ Y oiXiit Y e (4)

i=1 i=1

The ARCH method modifies the original moving average term (described in

equation 4). This modification makes the ARCH method better than the ARMA

method for volatile time series data [7]. The StatsModels [8] Python package is
used to implement ARMA and ARCH methods in d3ploy.

L
e
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2.4.2. Deterministic-Optimizing Methods
Deterministic methods include: Fast Fourier Transform (FFT), Polynomial
Fit (poly), Exponential Smoothing (exp-smoothing) ,/And Triple Exponential
Smoothing (holt-winters). The FFT method computes the discrete Fourier
transform of the time series to predict future demand and supply values (equation
5). This method is implemented in d3ploy using the SciPy [9] Python package.

v W

X, = Z Tpe 2mkn/N ﬂﬂ r (5)

n=0

The poly method models the time series data wit egree %user—
deﬁnedZ polynomial to determine future demand and supply values. This
method was implemented in d3ploy using the NumPy [10] Python package.
The exp-smoothing and holt-winters methods use a weighted average of time
series data with weights decaying exponentially for older time series values
[11] to create a model to determine future demand and supply values. The
exp-smoothing method excels in modeling univariate time series data without
trend or seasonality, whereas the holt-winters method applies exponential
smoothing three times resulting in higher accuracy when modeling seasonal time
series data. The StatsModels [8] Python package was used to implement both of
these methods in d3ploy.

2.5. Stochastic-Optimizing Methods

There is one stochastic-optimizing method: step-wise seasonal method. The
method was implemented in d3ploy by the auto Auto-Regressive Integrated
Moving Averages (ARIMA) method in the pmdarima [12] Python package. The
ARIMA model is a generalization of the Autoregressive Moving Average (ARMA)
model to make the model fit the time series data better. It replaces the time

series values with the difference between consecutive values.

10
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Input Parameters Simple Transition Scenario: [Linearly Increasing Power

Demand driving commodity | Power

Demand equation [MW] t < 40 =1000,¢ > 40 = 250t
Required | Available facilities Source, Reactor, Sink
Prediction method FFT

Deployment driving method | Installed Capacity

Buffer type Absolute

Optional
Buffer size Power: 2000MW, Fuel: 1000kg

—

Table 3: d3ploy’s input parameters for the simple transition scenarios.

3. Results

To demonstrate d3ploy’s capability to effectively conduct transition scenario
analysis and meet the objectives described in section 1.3, this section will (1)
demonstrate d3ploy’s capability in simple transition scenarios, (2) compare
the prediction methods for different transition scenarios, and (3) demonstrate
using d3ploy to setup successful EGOUIEG23—EGoHHIG24TFEGOTEG29—and
FEGoHEG30-transitierscemartos= The input files and scripts to produce the
results and plots in this paper can be reproduced using [13], and [14].

3.1. Demonstration of d3ploy’s capabilities

We conducted a simple linearly increasing power demand simulation to demon-
strate d3ploy’s capabilities for simulating transition scenarios and to inform
decisions about input parameters when setting up larger transition scenarios
with many facilities. This simulation is a simple transition scenario that only
includes three facility types: source, reactor, and sink. The simulation i
fialyEsItemiitial reactor facilities (reactorl to reactor10). These reactors
have staggered cycle lengths and lifetimes to prevent simultaneous refueling and
setup gradua_l decommissioning. d3ploy is—comfigured—todeploy new reactor
facilities to;&rge% the less-ef-power supply c?gated by-ﬂi&deeo%mﬁg—e{ the
initial reactor facilitieslL Table 3 shows the d3ploy input parameters for this
simulation. Aecovission

Figures 2a, 2b and 2c demonstrate d3ploy’s capability to deploy reactor

11
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and supporting facilities to pzeet44% linearly increasing power demand and
subsequentip-dégraiidéd secondary commodities-with minimal undersupply Fig-
ure 2a demonstrates that the main objective of d3ploy was met as there are
no time steps in which the supply of power falls under demand. By using a
combination of the FFT method for predicting demand and setting the supply
buffer to 2000MW (the capacity of 2 reactors), the user minimizes the number
of undersupplied time steps for every commodity.

In figure 2b, a source facility with a large fuel throughput is initially deployed
to meet the large initial fuel demand for the commissioning of ten reactors. By
having an initial facility with a large throughput exist for the first few time
steps, d3ploy is prevented from deploying supporting facilities that end up being
redundant at the later times in the simulation. This is a reflection of reality
in which reactor manufacturers will accumulate an appropriate amount of fuel
inventory before starting up reactors. There is one time step in which a power
undersupply exists after the decommissioning of the large initial facility; this
is unavoidable as the prediction methods in d3ploy are unable to forsee this

sudden drop in demand.

3.2. Comparison of Prediction Methods

EGO01-EG23, EG01-EG24, EG01-EG29, and EG01-EG30 transition scenarios
are setup in CYCLUS using d3ploy. To determine the most effective d3ploy
prediction methods, a comparison of each prediction method for each transition
scenario is conducted for both constant and linearly increasing power demand
curves. Similar to the simple transition scenario, these transition scenario simu-
lations begin with an initial fleet of LWRs that are progressively decommissioned
starting at the 80 year mark, after which d3ploy deploys SFRs and mixed oxide
(MOX) LWRs to meet the power demand. Figure 3 shows the setup of facilities
and mass flows for EG01-23 and EG01-29 in CycLus. In EG01-23 and EG01-29,
only plutonium is recycled from LWR spent fuel to produce Fast Reactor (FR)
fuel. EG01-24 and EG01-30 are similar to EG01-23 and EG01-29 respectively,

with the exception that all transuranic elements are recycled.

12
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Supply, Demand and Facilities for Growing Transition, Commaodity

: Power

Facilities
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o o ©
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(a) The power demand is a user-defined equation and power is supplied

by the reactors. There are no time steps with undersupply of power.

Supply, Demand and Facilities Growing Transition, Commodity: Fuel
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(b) Fuel is demanded by reactors and supplied by

source facilities.

There is only one time step with

undersupply of fuel.

Supply, Demand and Facilities for Growing Transition, Commodity: Spent Fuel
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(c) Spent Fuel is supplied by reactors and the capac-

ity is provided by sink facilities. There are no time

S

Figure 2: Transition Scenario: Linearly increasing power demand.
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s with under capacity of sink space.
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Figure 3: Diagrams with facilities and mass flow of the scenarios EG01-EG23 and EG01-EG29.
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In Figure 4, crosses represent the time steps in which there is undersupply
or under capacity of each commodity for a constant power EG01-23 scenario
for varying prediction methods. The size of the crosses are proportional to the
undersupply value, therefore, larger crosses correspond to larger undersupply.
Table 7 shows the number of time steps with power undersupply for constant
power EG01-EG23 and EG01-29, linearly increasing power EG01-24 and EGO1-
30 transition scenarios. Figure 4 demonstrates that the poly and fft methods
perform the best, since they have the least number of points on the plot, indicating
that they have the fewest number of time steps with undersupply and under
capacity of commodities. Table 7 shows that the poly method performs slightly
better at minimizing undersupply of power than fft. A similar analysis was
done for a constant power EG01-29 scenario, and as seen in Table 7 the poly
prediction method also performed best for minimizing undersupply of power.

In Figure 5, crosses represent the time steps in which there is undersupply
or under capacity of each commodity for a linearly increasing power EG01-24
scenario for varying prediction methods. As with Figure 4, the size of the crosses
are proportional to the undersupply value. Figure 5 demonstrates that the fft
method performs the best at minimizing undersupply of all commodities. A
similar analysis was performed for a constant power EGO01-30 scenario, and as
seen in Table 7 the £t also performed best for minimizing undersupply of power.

From Figures 4, 5, and Table 7, we can see that the poly method performs
best for constant power transition scenarios and the £fft method performs best for
linearly increasing power transition scenarios. Undersupply and under capacity
of commodities occur during two main time periods: initial demand for the
commodity and during the transition period. To further d3ploy’s main objective
of minimizing the power undersupply, sensitivity analysis of the power supply
buffer for each transition scenario is conducted with best performing prediction

method to find a buffer size that will minimize power undersupply.

15
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EG1-23: Time stepL with an undersupply of each commodity for different prediction methods
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EG1-23: Time steps with an undercapacity of each commodity for different prediction methods
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Figure 4: EG01-23 Transition Scenario with Constant Power Demand: Each cross represent

a time step in which there is undersupply or under capacity of each commodity for varying

prediction methods. The size of each cross is proportional on the size of the undersupply.
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EG1-24: Time steps with an undersupply of each commodity for different prediction methods

X% X KX e X X . Transition Period
X% % XXX xR XX .
ek —| X ma
SR EEEEEEE . X arma
vower J X % kX k%% K%x X arch
0 X poly
@ X exp_smoothing
% X holt_winters
E FR Fuel oo it
1S % sw_seasonal
o
o
LWR Fuel 1
3
£
Natural POK § §
Uranium o 20 40 60 80 oo 300 1000 1100 1200 1300 1400
Time Steps (Months)
(a) Time dependent undersupply of commodities in simulation
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Figure 5: EG01-24 Transition Scenario with Linearly Increasing Power Demand: Each cross
represent a time step in which there is undersupply or under capacity of each commodity
for varying prediction methods. The size of each cross is proportional on the size of the

undersupply.
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290

295

300

\Wu ! c, ns
Power Undersupplied Time Steps )

Algorithm EGO01-EG23 EGO01-EG24 EG01-EG29 EG01-EG30 :
S Constant Linearly Constant Linearly
) Power Increasing Power Increasing
g\ Power Power
MA & 26 36 15 24
ARMA 26 36 15 24
ARCH \\ 26 36 15 21
POLY jydd L & 6 65 4 9
P,SMOOTm\ 27 37 16 25
HOLT-WINTERS k 27 37 16 25
k 8 20 5 9
) 36 107 14 51

Table 4: Undersupply and oversupply of power with the different algorithms used to drive
EG01-EG23,24,29,30.

3.8. Sensitivity Analysis

Sensitivity analysis of the power buffer size was conducted for EG01-EG23,
EGO01-24, EG01-29, and EG01-30 transition scenarios. Varying the power buffer
size does not impact the number of undersupply time steps for EG01-EG23
and EG01-EG29 constant power demand transition scenario with the poly
prediction method. There are 6 and 4 time steps (table 7) in which there is
power undersupply for EG01-EG23 and EG01-29 transition scenarios respectively.
As seen from figure 4, these undersupply time steps occur at the beginning of the
simulation and for one time step when the transition begins. This is expected
since without time series data at the beginning of the simulation, d3ploy takes
a few time steps to collect time series data about power demand to predict and
start deploying reactor and supporting fuel cycle facilities. When the transition
begins, power is under supplied for one time step, ; following this, d3ploy
accounts for the undersupply by deploying facilities to meet power demand.
Therefore, the power undersupply is minimized for constant power EG01-EG23
and EG01-EG29 transition scenarios with a OMW power supply buffer.

For EG01-EG24 and EGO01-30 linearly increasing power demand transition
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305

310

315

scenarios, power buffer size is varied. Figures 6a, 6¢ and Table 5 show that with an
increasing buffer size, the number of power undersupply time steps decreases. For
EGO01-24, it plateaus at 6000MW, and for EG01-30, the cumulative undersupply
is smallest for a buffer size of 8000MW. As seen from Figures 6b and 6d, these
undersupply time steps occur at the beginning of the simulation and for one
time step when the transition begins. This is expected since without time series
data at the beginning of the simulation, d3ploy takes a few time steps to collect
time series data about power demand to predict and start deploying reactor and
supporting fuel cycle facilities. Therefore, a buffer of 6000MW and 8000MW
minimizes the power undersupply for EG01-Eg24 and EG01-EG30 respectively.

Buffer[[MW] Undersupply EGO01-24 EGO01-30
0 Time steps [#] 20 9
Energy [GW - mo] 315791 152517
2000 Undersupplied [#] 9 6
Energy [GW - mo] 306520 147166
4000 Time steps [#] 8 6
Energy [GW - mo] 303438 143166
6000 Time steps [#] 7 5
Cumulative [GW] 303438 139083
8000 Time steps [#] 7 5
Energy [GW - mo] 303438 135083

Table 5: Dependency of the undersupply of Power on the buffer size for EG01-EG24 and
EGO01-EG30 transition scenarios with linearly increasing power demand using the fft prediction

method.

3.4. Best Performance Models

Table 6 shows d3ploy input parameters for EG01-EG23, EG01-EG24, EGO01-
EG29, and EG01-EG30 transition scenarios that minimize undersupply of power
and minimize the undersupply and under capacity of the other commodities in
the simulation. The need for buffers for commodities is a reflection of reality in
which a supply buffer is usually maintained to ensure continuity in the event of

an unexpected failure in the supply chain.
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EGO01-EG24 and EG01-EG30 transition scenarios with linearly increasing power demand using

the fft prediction method.
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325

Input Parameter

Simulation Description

EGO01-23 | EG01-24 EGO01-29 | EG01-30

Demand driving commodity Power

Demand equation [MW] 60000 60000 + 250t/12 | 60000 60000 + 250¢/12
Required

Prediction method poly fft poly fft

Deployment Driving Method Installed Capacity

Buffer type Absolute
Optional

Power Buffer size [MW] 0 6000 0 8000

Table 6: d3ploy’s input parameters for EG01-EG23, EG01-EG24, EG01-EG29, and EGO01-

EG30 transition scenarios that minimizes undersupply of power and minimizes the undersupply

and under capacity of the other facilities.

Figure 7 and 8 show time dependent deployment of reactor and supporting
facilities for the EG01-23 constant power demand and EGO01-30 linearly increasing
power demand transition scenarios, respectively. d3ploy automatically deploys
reactor and supporting facilities to setup a supply chain to meet power demand
during a transition from LWRs to SFRs for EG01-23, and from LWRs to MOX
LWRs and SFRs for EG01-30. EG01-24 and EGO01-29 facility deployment plots
are very similar to EG01-23 and EGO01-30, respectively, therefore they are not

shown.
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(a) EG01-23: Reactor Deployment
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(b) EG01-23: Supporting Facility Deployment

Figure 7: Time dependent deployment of reactor and supporting facilities in the EG01-
23 constant power demand transition scenario. d3ploy automatically deploys reactor and
supporting facilities to setup a supply chain to meet constant power demand of 60000 MW
during a transition from LWRs to SFRs.
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(b) EG01-30: Supporting Facility Deployment

Figure 8: Time dependent deployment of reactor and supporting facilities in the EG01-30
linearly increasing power demand transition scenario. d3ploy automatically deploys reactor and
supporting facilities to setup a supply chain to meet constant power demand of 60000 4 250t/12
MW during a transition from LWRs to MOX LWRs and SFRs.
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340

e\se.

/ Undersupplied Time Steps

Transition Scenario EGO1- EGO1- EGO1- EGO1-

EG23 EG24 EG29 EG30

r Demand Constant Linearly Constant Linearly
Increasing Increasing

Prediction Method poly fft poly fft

0 8000

0 6000

Power Supply Buffer [MW]

Commodities
Natural Uranium
LWR Fuel

SFR Fuel

MOX LWR Fuel
Power

LWR Spent Fuel

SFR Spent Fuel

MOX LWR Spent Fuel

Table 7: Undersupply/capacity of commodities for the best performing EG01-EG23,24,29,30

transition scenarios.

4. Conclusion

In this paper, we demonstrate that by carefully selecting d3ploy parameters,
we are able to effectively automate the setup of constant and linearly increasing
power demand transition scenarios for EG01-23, EG01-24, EG01-29, and EG01-30
with minimal power undersupply. Using d3ploy to set up transition scenarios is
more efficient than the previous efforts that required a user to manually calculate
and use trial and error to set up the deployment scheme for the supporting fuel
cycle facilities. Transition scenario simulations set up this way are sensitive to
changes in the input parameters resulting in an arduous setup process, since
a slight change in one of the input parameters would result in the need to
recalculate the deployment scheme to ensure that there is no undersupply of
power. Therefore, by automating this process, the user can vary input parameters
in the simulation and d3ploy will automatically adjust the deployment scheme

to meet the new constraints.
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5. Future Work

To enable NFCSims to produce insightful and flexible results to inform policy
decisions, it is necessary to quantify and include all the subtleties of each segment
of the NFC through system analysis and sensitivity studies [15]. We simulate
transition scenarios to predict the future, however when implemented in the real
World ill deviate from the optimal scenario. Previously it was difficult to
conduct this analysis with CyYCLUS as the user would have to manually calculate
the deployment scheme for every change in input parameter. Therefore, using the
d3ploy capability, sensitivity analysis studies can be more easily conducted to
determine how variation in different input parameters will impact the progression

and final state of a transition scenario.
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