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Abstract

The present United States’ nuclear fuel cycle faces challenges that hinder the ex-

pansion of nuclear energy technology. The U.S. Department of Energy identified

four nuclear fuel cycle options, which make nuclear energy technology more desir-

able. Successfully analyzing the transitions from the current fuel cycle to these

promising fuel cycles requires a nuclear fuel cycle simulator that can predictively

and automatically deploy fuel cycle facilities to meet user-defined power demand.

This work introduces and demonstrates demand-driven deployment capabilities

in Cyclus, a nuclear fuel cycle simulator. User-controlled capabilities such as

supply buffers, facility preferences, prediction algorithms, and installed capacity

deployment were introduced to give users tools to minimize power undersupply in

a transition scenario simulation. We demonstrate d3ploy’s capability to predict

future commodities’ supply and demand, and automatically deploy fuel cycle

facilities to meet the predicted demand. We use d3ploy to set up transition

scenarios for promising nuclear fuel cycle options.
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1. Introduction

Nuclear fuel cycle simulators are used to evaluate the impact of alternative

nuclear fuel cycles at both high and low resolution. These simulators track the

flow of materials through the nuclear fuel cycle, from enrichment to final disposal

of the fuel, while also accounting for decay and transmutation of isotopes. By5

evaluating performance metrics of different fuel cycles, we gain an understanding

of how each facility’s parameters and technology choices impact the system’s

performance. Therefore, these results can be used to guide research efforts,

advise future design choices, and provide decision-makers with a transparent tool

for evaluating Fuel Cycle Options (FCO) to inform big-picture policy decisions10

[1].

Many fuel cycle simulators automatically deploy reactor facilities to meet

a user-defined power demand. However, the user must define a deployment

scheme of supporting facilities to avoid gaps in the supply chain resulting in

idle reactor capacity. Current simulators require the user to set infinite capacity15

for supporting facilities but this inaccurately represents reality resulting in

misrepresented results. Manually determining a deployment scheme for a once-

through fuel cycle is straightforward, however, for complex fuel cycle scenarios,

it is not. To ease setting up realistic nuclear fuel cycle simulations, a nuclear fuel

cycle simulator must bring dynamic demand-responsive deployment decisions into20

the simulation logic [2]. Thus, a next-generation nuclear fuel cycle simulator must

predictively and automatically deploy fuel cycle facilities to meet a user-defined

power demand.

In Cyclus, an agent-based nuclear fuel cycle simulation framework [3], each

entity (i.e. Region, Institution, or Facility) in the fuel cycle is an agent.25

Region agents represent geographical or political areas that Institution and

Facility agents reside. Institution agents control the deployment and de-

commission of Facility agents and represent legal operating organizations such

ass utilities, governments, etc. [3]. Facility agents represent nuclear fuel cycle

facilities such as mines, conversion facilities, reactors, reprocessing facilities, etc.30
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Cycamore [4] provides basic Region, Institution, and Facility archetypes

compatible with Cyclus.

1.1. Context of Work

The impact of climate change on natural and human systems is increasingly

apparent. The production and use of energy contribute to two-thirds of the total35

Green House Gas (GHG) emissions [5]. Furthermore, as the human population

increases and previously under-developed nations urbanize rapidly, global energy

demand is forecasted to increase. Power generation technology choices will

heavily impact the effects of growing energy demand on climate change. Large

scale nuclear power plant deployment has significant potential to reduce GHG40

production due nuclear energy’s low carbon emissions [5].

However, large scale nuclear power deployment faces challenges of cost, safety,

and used nuclear fuel [6]. Nuclear power has high capital costs, an unresolved

long-term nuclear waste management strategy and perceived adverse safety,

environmental, and health effects [6]. The nuclear power industry must overcome45

these challenges to ensure continued global use and expansion of nuclear energy

technology.

The challenges described above are associated with the present once-through

fuel cycle in the United States (US), in which fabricated nuclear fuel is used once

and placed into storage to await disposal. An evaluation and screening study of50

a comprehensive set of nuclear fuel cycle options [7] was conducted to assess for

promising Evaluation Groups (EGs) with performance improvements compared

with the existing once-through fuel cycle (EG01) in the US across a wide range

of criteria. Fuel cycles that involved continuous recycling of co-extracted U/Pu

or U/TRU in fast spectrum critical reactors consistently scored high on overall55

performance. Table 1 describes these fuel cycles: EG23, EG24, EG29, and EG30.

The evaluation and screening study assumed the nuclear energy systems

were at equilibrium to understand the end-state benefits of each EG [8]. In the

current work, our goal is to model the transition from the initial EG01 state to

these promising future end-states without assuming equilibrium fuel cycles. To60
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Fuel Cycle Open or Closed Fuel Type Reactor Type

EG01

(current)
Open Enriched-U Thermal Critical

EG23 Closed
Recycled U/Pu

+ Natural-U
Fast Critical

EG24 Closed
Recycled U/TRU

+ Natural-U
Fast Critical

EG29 Closed
Recycled U/Pu

+ Natural-U
Fast Critical & Thermal Critical

EG30 Closed
Recycled U/TRU

+ Natural-U
Fast Critical & Thermal Critical

Table 1: Descriptions of the current and other high performing nuclear fuel cycle

evaluation groups described in the evaluation and screening study [7].

successfully analyze time-dependent transition scenarios, the nuclear fuel cycle

simulator tool must automate the transition scenario simulation setup. Therefore,

the Demand-Driven Cycamore Archetypes project (NEUP-FY16-10512) was

initiated to develop demand-driven deployment capabilities in Cyclus. This

capability, d3ploy, is a Cyclus Institution agent that deploys facilities to65

meet user-defined power demand.

1.2. Novelty

We utilized time series forecasting methods to effectively predict future

commodities’ supply and demand in d3ploy. Solar and wind power generation

commonly use these methods to make future predictions based on past time series70

data [9, 10, 11, 12]. Industrial supply chain management also use sophisticated

time series forecasting techniques to predict demand for quantities of goods in

the supply chain [13]. This is a novel approach that has never been applied to

nuclear fuel cycle simulators.

1.3. Objectives75

The main objectives of this paper are: (1) to describe the demand-driven

deployment capabilities in Cyclus, (2) to describe the prediction methods
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available in d3ploy, and (3) to demonstrate the use of d3ploy in setting up

EG01-23, EG01-24, EG01-29, and EG01-30 transition scenarios with various

power demand curves.80

2. Methodology

In Cyclus, developers have the option to design agents using C++ or Python.

The d3ploy Institution agent was implemented in Python to enable the use

of well-developed time series forecasting Python packages.

In a Cyclus simulation, at every time step, d3ploy predicts the supply85

and demand of each commodity for the next time step. Commodities refer

to materials in the nuclear fuel cycle such as reactor fuel. Upon undersupply

for any commodity, d3ploy deploys facilities to meet its predicted demand.

Therefore, if the simulation begins with user-defined power demand, d3ploy

deploys reactors to meet power demand, followed by enrichment facilities to90

meet fuel demand, and so on, to create the supply chain. Based on the demand

and supply trends of each commodity, d3ploy predicts their future demand

and supply, and deploys facilities accordingly to meet the future demand to

prevent demand from surpassing supply. Figure 1 shows the logical flow of

d3ploy at every time step. In subsequent subsections, we describe how to set up95

a transition scenario using d3ploy and the input parameters d3ploy accepts.

d3ploy aims to minimize the undersupply of power:

obj =min
tf

∑

t=1
∣Dt,p − St,p∣. (1)

where:

D = Demand

S = Supply

p = power

tf = Number of time steps

M = Number of commmodities
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Start time step (t).

Calculate Dp(t + 1) and

Sp(t + 1) for a commodity

U(t+1) = Sp(t+1)−Dp(t+1)

Deploy Facilities No Deployment

Has Dp(t + 1) and

Sp(t + 1) been calculated

for all commodities?

Proceed to

next time step.

U(t + 1) < buffer U(t + 1) ≥ buffer

yes

no

Figure 1: d3ploy logic flow at every time step in Cyclus [14].
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The sub-objectives are to minimize the number of time steps of undersupply or

under-capacity of any commodity:

obj =min
M

∑

i=1

tf

∑

t=1
∣Dt,i − St,i∣, (2)

and to minimize excessive oversupply of all commodities:

obj =min
M

∑

i=1

tf

∑

t=1
∣St,i −Dt,i∣. (3)

Minimizing excessive oversupply reflects reality in which utilities avoid undersup-

ply of power on the grid by ensuring power plants are never short of fuel while

avoiding expensive oversupply. Nuclear fuel cycle simulators often face power

undersupplies due to lack of viable fuel, despite having sufficient installed reactor100

capacity. Using d3ploy to automate the deployment of supporting facilities

prevents this.

2.1. Structure

In d3ploy, two distinct institutions control front-end and back-end fuel cycle

facilities: DemandDrivenDeploymentInst and SupplyDrivenDeploymentInst,105

respectively. The reason for this distinction is that front-end facilities meet

the demand for commodities they produce, whereas back-end facilities meet

supply for the commodities they demand. For example, when a reactor facility

demands fuel, DemandDrivenDeploymentInst deploys fuel fabrication facilities

to create fuel supply. For back-end facilities, the reactor generates spent fuel,110

and SupplyDrivenDeploymentInst deploys waste storage facilities to create

capacity to store the spent fuel. Figure 2 depicts a simple once-through fuel

cycle and the Institution type governing each facility’s deployment.

2.1.1. Deployment Driving Method

The user may deploy facilities based on the difference between predicted115

demand and predicted supply, or predicted demand and installed capacity.

Using installed capacity instead of predicted supply has two advantages. First,

to prevent over-deployment of facilities with an intermittent supply such as
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Source
Enrichment

Facility
Reactor

Cooling

Pool
Sink

Natl
U Fuel

Used
Fuel

Cooled
Used
Fuel

∎ Deployed by DemandDrivenDeploymentInst

∎ Deployed by SupplyDrivenDeploymentInst

Figure 2: Simple once-through fuel cycle depicting which facilities are deployed

by DemandDrivenDeploymentInst and SupplyDrivenDeploymentInst.

reactors that require refueling. If predicted supply is selected instead of installed

capacity, d3ploy will deploy surplus reactors during refueling downtimes to120

meet the temporary power undersupply. Second, to prevent infinite deployment

of a facility that demands a commodity no longer available in the simulation.

For example, a reprocessing plant that fabricates Sodium-Cooled Fast Reactor

(SFR) fuel might demand Pu after depletion of the existing Pu inventory and

decommissioning of the LWR reactors that produce it, resulting in infinite125

deployment of reprocessing facilities in a futile attempt to produce SFR fuel.

2.2. Input Variables

Table 2 lists and gives examples of the input variables d3ploy accepts. The

user must do the following: define the facilities in the simulation, their respective

capacities, the demand driving commodity, its demand equation, the deployment130

driving method, and prediction method. The user also has the option to define

supply/capacity buffers for individual commodities, facility preferences, and

facility fleet shares. The subsequent sections describes the buffers, facility

preferences, and prediction methods.

2.2.1. Supply/Capacity Buffer135

In DemandDrivenDeploymentInst, the user has the option to specify a supply

buffer for each commodity; d3ploy accounts for the buffer when calculating pre-

dicted demand and deploys facilities accordingly. In SupplyDrivenDeployment
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Input Parameter Examples

Required

Demand driving commodity Power

Demand equation P(t) = 10000, sin(t), 10000*t

Facilities it controls Fuel Fab, LWR reactor, Sink, etc.

Capacities of the facilities 3000 kg, 1000 MW, 50000 kg

Prediction method

Power: fast fourier transform

Fuel: moving average

Spent fuel: moving average

Deployment driven by Installed Capacity

Optional

Supply/Capacity Buffer type Absolute

Supply/Capacity Buffer size

Power: 3000 MW

Fuel: 0 kg

Spent fuel: 0 kg

Facility preferences
LWR reactor = 100-t

SFR reactor = t-99

Fleet share percentage
MOX LWR = 85%

SFR = 15%

Table 2: d3ploy’s required and optional input parameters with examples.

Inst, the user has the option to specify a capacity buffer for specific commodities;

d3ploy accounts for the buffer when calculating predicted supply and deploys140

facilities accordingly. The buffer is defined as a percentage (equation 4) or

absolute value (equation 5).

Spwb = Sp(1 + d) (4)

Spwb = Sp + b (5)

where:

Spwb = predicted supply/capacity with buffer

Sp = predicted supply/capacity

d = percentage value in decimal form

b = absolute value of the buffer
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For example, the user sets the power commodity’s absolute supply buffer to be

2000 MW and predicted demand is 10000 MW, d3ploy deploys reactor facilities

to meet the predicted demand and supply buffer, resulting in a power supply of:

Spwb = Sp + a

Spwb = 10000MW + 2000MW

= 12000MW

Using the buffer capability and installed capacity to drive facility deployment

in a transition scenario simulation will effectively minimize undersupply of a

commodity while avoiding excessive oversupply. This is demonstrated in Section145

3.1.

2.3. Facility Preference and Fleet Share

The user has the option to give time-dependent preference equations to

facilities’ that supply the same commodity. If there are two reactor types,

Light Water Reactors (LWRs) and Sodium-Cooled Fast Reactors (SFRs), in a150

simulation, the user can make use of time-dependent preferences to make the

simulation deploy LWRs at earlier times in the simulation, and deploy SFRs

at later times in the simulation when there is a power demand. In table 2, the

LWR has a preference of 100 − t, and the SFR has a preference of t − 99. t refers

to the month timestep. At time step 1, LWR preference becomes 99, while SFR155

preference becomes -98; therefore a LWR is deployed if there is a commodity

shortage. At time step 100, LWR preference becomes 0, while SFR preference

becomes 1; therefore a SFR is deployed if there is a commodity shortage. Thus,

the transition occurs at the 100th time step.

The user also has the option to specify percentage-share for facilities that160

provide the same commodity. For example, if there are two reactor types,

mixed oxide (MOX) LWRs and SFRs, in a simulation, the user can make use of

percentage-share specifications to determine the percentage of power supplied

by each reactor. When MOX LWR has a share of s% and SFR has a share of
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Are there facility preferences?

Are there fleet

share constraints?

Are there fleet

share constraints?

Deploy facilities to

meet fleet share %

Deploy facilities

to minimize total

no. of facilities

and minimize

oversupply.

Deploy facilities

in preference

order to meet

their fleet share %

Deploy facility

with highest

preference

yes no

yes no

yes no

Figure 3: Logical flow of how d3ploy selects which facility to deploy when there

are multiple facilities offering the same commodity.

(100− s)%, MOX LWR deployment constrains to s% of total power demand and165

SFR deployment constrains to (100 − s)% of total power demand.

The year the transition begins is selected by customizing facility preferences

to begin preference for advanced reactors at a certain year, and the sharing

capability determines the percentage share of each type of reactor to transition

to. Therefore, when d3ploy predicts an undersupply of a commodity it deploys170

facilities in order of preference, starting at the highest and moving down if

the facility percentage share is already met. If a facility type does not have

any preferences, d3ploy deploys available facilities to minimize the number of

deployed facilities and oversupply of the commodity.

Figure 3 shows the logical flow of how d3ploy selects which facility to deploy175

when there are multiple facilities offering the same commodity.
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2.4. Prediction Methods

d3ploy records supply and demand values at each time step for all commodi-

ties to provide time-series data for d3ploy’s time series forecasting methods to

predict future supply and demand for each commodity. The time series forecast-180

ing methods investigated include non-optimizing, deterministic-optimizing, and

stochastic-optimizing methods. Non-optimizing methods are techniques that

harness simple moving average and autoregression concepts which use historical

data to infer future supply and demand values. Deterministic-optimizing and

stochastic-optimizing methods are techniques that use an assortment of more185

sophisticated time series forecasting concepts to predict future supply and de-

mand values. Deterministic-optimizing methods give deterministic solutions,

while stochastic-optimizing methods give stochastic solutions.

Depending on the scenario in question, each forecasting method offers distinct

benefits and disadvantages. The various methods are compared for each type of190

simulation to determine the most effective prediction method for a given scenario.

The following sections describe the prediction methods.

2.4.1. Non-Optimizing Methods

Non-optimizing methods include: Moving Average (MA), Autoregressive

Moving Average (ARMA), and Autoregressive Heteroskedasticity (ARCH). The195

MA method calculates the average of a user-defined number of previous entries in

a commodity’s time series and returns it as the predicted value (equation 6).

Predicted V alue =
V1 + V2 + ... + Vn

n
(6)

where:

V = Time series value

n = length of timeseries

(7)
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The ARMA method combines moving average and autoregressive models (equa-

tion 8). The first term is a constant, second term is white noise, the third term

is the autoregressive model, and the fourth term is the moving average model.200

The ARMA method is more accurate than the MA method because of the inclusion

of the autoregressive term.

Xt = c + εt +
p

∑

i=1
ϕiXt−i +

q

∑

i=1
θiεt−i (8)

where:

c = constant

ϕ = parameters

εt = white noise

p = equation order

(9)

The ARCH method modifies the original moving average term (described in

equation 8). This modification makes the ARCH method better than the ARMA

method for volatile time-series data [15]. The StatsModels [16] Python package205

is used to implement ARMA and ARCH methods in d3ploy.

2.4.2. Deterministic-Optimizing Methods

Deterministic methods include Fast Fourier Transform (FFT), Polynomial

Fit (POLY), Exponential Smoothing (EXP-SMOOTHING), and Triple Exponential

Smoothing (HOLT-WINTERS). The FFT method computes the discrete Fourier210

transform of the time series to predict future demand and supply values (equation

10). This method is implemented in d3ploy using the SciPy [17] Python package.

Xk =

N−1
∑

n=0
xne

−i2πkn/N (10)
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where:

k = 0, ...,N − 1

N = No. of data points

The POLY method models the time series data with a user-defined nth degree

polynomial to determine future demand and supply values. This method was im-

plemented in d3ploy using the NumPy [18] Python package. The EXP-SMOOTHING215

and HOLT-WINTERS methods use a weighted average of time-series data with ex-

ponentially decaying weights for older time series values [19] to create a model to

determine future demand and supply values. The EXP-SMOOTHING method excels

in modeling univariate time series data without trend or seasonality, whereas

the HOLT-WINTERS method applies exponential smoothing three times, resulting220

in higher accuracy when modeling seasonal time series data. The StatsModels

[16] Python package was used to implement both of these methods in d3ploy.

2.5. Stochastic-Optimizing Methods

There is one stochastic-optimizing method: step-wise seasonal method

(SW-SEASONAL). The method was implemented in d3ploy by the auto Auto-225

Regressive Integrated Moving Averages (ARIMA) method in the pmdarima [20]

Python package. The ARIMA model is a generalization of the Autoregressive

Moving Average (ARMA) model to make the model fit the time series data

better.

3. Results230

To demonstrate d3ploy’s capability conduct transition scenario analysis

effectively and meet the objectives described in section 1.3, this section (1)

demonstrates d3ploy’s capability in simple transition scenarios, (2) compares

the use of different prediction methods in EG01-EG23, EG01-EG24, EG01-EG29,

and EG01-EG30 transition scenarios, and (3) demonstrates successful d3ploy235

setup of EG01-EG23, EG01-EG24, EG01-EG29, and EG01-EG30 transition

14



Input Parameters Simple Transition Scenario

Required

Demand driving commodity Power

Demand equation [MW] t < 40 = 1000, t ≥ 40 = 1000 + 250t

Available facilities Source, Reactor, Sink

Prediction method FFT

Deployment driving method Installed Capacity

Optional
Buffer type Absolute

Buffer size Power: 2000MW, Fuel: 1000kg

Table 3: d3ploy’s input parameters for the simple transition scenario with

linearly increasing power demand.

scenarios. The input files and scripts to reproduce the results and plots in this

paper are found in [21] and [22].

3.1. Demonstration of d3ploy’s capabilities

We conducted a simple transition scenario simulation with linearly increasing240

power demand to demonstrate d3ploy’s capabilities and inform input param-

eter choices when setting up complex many-facility transition scenarios. This

simulation only includes three facility types: source, reactor, and sink. The

simulation begins with ten reactor facilities (reactor1 to reactor10). These

reactors have staggered cycle lengths and lifetimes to prevent simultaneous refu-245

eling and setup gradual decommissioning. d3ploy deploys new reactor facilities

to fill power supply gap created when the initial reactor facilities decommision.

Table 3 shows the d3ploy input parameters for this simulation.

Figures 4, 5a, and 5b demonstrate d3ploy’s capability to deploy reactor and

supporting facilities to minimize undersupply when meeting linearly increasing250

power demand and subsequent secondary commodities demand. In Figure 4

there exists no time steps in which the supply of power falls under demand,

meeting the main objective of d3ploy. By using a combination of the FFT

method for predicting demand and a power supply buffer of 2000MW (the
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Figure 4: Power demand and supply, and reactor facility deployment plot for a

simple linearly increasing power demand transition scenario with three facility

types: source, reactor, and sink. Power demand is a user-defined equation

and power is supplied by the reactors. Power undersupply was avoided entirely.

capacity of 2 reactors), we minimized the number of undersupplied time steps255

for every commodity.

In figure 5a, a large-throughput source facility is initially deployed to meet

the large initial fuel demand for the commissioning of ten reactors. By having a

large-throughput source facility exist for the first few time steps, d3ploy does

not deploy supporting facilities that become redundant at later times in the260

simulation. This reflects reality in which reactor manufacturers accumulate an

appropriate amount of fuel inventory before starting up reactors. There is one

time step in which a power undersupply exists after the decommissioning of the

large initial facility; this is unavoidable as the prediction methods in d3ploy are

unable to foresee this sudden drop in demand.265
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(a) Fuel demand and supply, and source facility deployment plot. Fuel is demanded by

reactors and supplied by source facilities. There is only one time step with undersupply

of fuel.

(b) Spent fuel demand and supply, and sink facility deployment plot. Spent Fuel is

supplied by reactors and the capacity to store them is provided by sink facilities. There

are no time steps with under-capacity of sink space.

Figure 5: Simple linearly increasing power demand transition scenario with three

facility types: source, reactor, and sink.
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3.2. Comparison of Prediction Methods

EG01-EG23, EG01-EG24, EG01-EG29, and EG01-EG30 transition scenarios

are set up in Cyclus using d3ploy. EG01-23 and EG01-29 transition scenario

simulations have a constant power demand, while EG01-24 and EG01-30 have

a linearly increasing power demand. We identified the most effective d3ploy270

prediction method for each scenario by comparing the results of using each

prediction method in each scenario. Similar to the simple transition scenario,

these transition scenario simulations begin with an initial fleet of LWRs that

start progressively decommissioning at the 80-year mark, after which d3ploy

deploys SFRs and MOX LWRs to meet the power demand. Figure 6 shows275

the setup of facilities and mass flows for EG01-23 and EG01-29 in Cyclus. In

EG01-23 and EG01-29, recycled plutonium from LWR spent fuel produces SFR

fuel. EG01-24 and EG01-30 are similar to EG01-23 and EG01-29, respectively,

with the exception that all transuranic elements are recycled.

In Figure 7, each histogram represents the number of time steps with under-280

supply or under capacity for all commodities for each prediction method. Table

7 shows the total number of time steps with power undersupply for constant

power EG01-23 and EG01-29 transition scenarios and linearly increasing power

EG01-24 and EG01-30 transition scenarios for each prediction method. Figure 7

demonstrates that the POLY method perform the best for the EG01-23 transition285

scenario, with the smallest bars on the plot, indicating that they have the fewest

number of time steps with undersupply and under capacity of commodities. We

conducted a similar analysis for the constant power EG01-29 scenario, and as

seen in Table 7, the POLY prediction method also performed best for minimizing

undersupply of power.290

In Figure 8, each histogram represents the number of time steps with un-

dersupply or under capacity for all commodities for each prediction method.

Figure 8 demonstrates that the FFT method perform the best for the EG01-24

transition scenario. We conducted a similar analysis for the linearly increasing

power EG01-30 scenario, and as seen in Table 7, the FFT prediction method also295

performed best for minimizing undersupply of power.
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Source

Enrichment

LWR

LWR Storage

LWR Reprocessing

LWR Sink

LWR Mixer

FR

FR Storage

FR Reprocessing

FR Sink

FR Mixer

natural-U

enriched-U

waste

U/Pu

waste

U/Pu

natural-U natural-U

(a) EG01-EG23.

Source

Enrichment

LWR

LWR Storage

LWR Reprocessing

LWR Sink

FR Mixer

FR

FR Storage

FR Reprocessing

FR Sink

MOX Mixer

MOX

MOX Storage

MOX Reprocessing

MOX Sink

natural-U

enriched-U

waste

FR Fuel

waste

MOX Fuel

waste

natural-U

U/Pu U/Pu

U/Pu

U/Pu

(b) EG01-EG29.

Figure 6: Facility and mass flow of the transition scenarios EG01-EG23 and

EG01-EG29 in Cyclus.
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Figure 7: EG01-23 transition scenario with constant power demand. Each

subplot shows the total number of time steps in which there exists undersupply

and under capacity of commodities for each prediction method. The different

colors represent different commodities. The POLY method performs the best,

with the least number of time steps with undersupply and under capacity.
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Figure 8: EG01-24 transition scenario with linearly increasing power demand.

Each subplot shows the total number of time steps in which there exists un-

dersupply and under capacity of commodities for each prediction method. The

different colors represent different commodities. The FFT method performs the

best, with the least number of time steps with undersupply and under capacity.
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No. of Time Steps with Power Undersupply for Each Transition Scenario

Algorithm EG01-EG23 EG01-EG24 EG01-EG29 EG01-EG30

MA 26 36 15 24

ARMA 26 36 15 24

ARCH 26 36 15 21

POLY 6 65 4 9

EXP-SMOOTHING 27 37 16 25

HOLT-WINTERS 27 37 16 25

FFT 8 20 5 9

SW-SEASONAL 36 107 14 51

Table 4: Total number of time steps with undersupply of power for the EG01-

EG23, EG01-24, EG01-29, EG01-30 transition scenarios for different prediction

methods.

Figures 7, 8, and Table 7 show that the POLY method performs best for

constant power transition scenarios, and the FFT method performs best for

linearly increasing power transition scenarios. Undersupply and under-capacity

of commodities occur during two main time periods: initial demand for the300

commodity and during the transition period. To further d3ploy’s primary

objective of minimizing the power undersupply, sensitivity analysis of the power

supply buffer is conducted with the best-performing prediction method for each

transition scenario.

3.3. Sensitivity Analysis305

We conducted a sensitivity analysis of the power buffer size for the EG01-

EG23, EG01-24, EG01-29, and EG01-30 transition scenarios. Varying the

power buffer size does not impact the number of undersupply time steps for

the EG01-EG23 and EG01-EG29 constant power demand transition scenarios

with the POLY prediction method. In Table 7, there are 6 and 4 time steps in310

which there is power undersupply for the EG01-EG23 and EG01-29 transition

scenarios, respectively. As seen in figure 7, these undersupply time steps occur

at the beginning of the simulation and for one time step when the transition
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begins. We expected this since without time-series data at the beginning of the

simulation, d3ploy takes a few time steps to collect time-series data about power315

demand to predict and start deploying reactor and supporting fuel cycle facilities.

When the transition begins, power is undersupplied for one time step, following

this, d3ploy accounts for the undersupply by deploying facilities to meet power

demand. Therefore, we minimized the power undersupply for constant power

EG01-EG23 and EG01-EG29 transition scenarios with a 0MW power supply320

buffer.

We varied the power buffer size for the EG01-24 and EG01-30 linearly

increasing power demand transition scenarios. Figures 9a, 9b, and Table 5

show that increasing the buffer size increases the robustness of the supply

chain by minimizing power undersupply. These undersupply time steps occur325

at the beginning of the simulation and for one time step when the transition

begins. We expected this since without time-series data at the beginning of

the simulation, d3ploy takes a few time steps to collect time-series data about

power demand to predict and start deploying reactor and supporting fuel cycle

facilities. Therefore, a buffer of 6000MW and 8000MW minimizes the power330

undersupply for EG01-EG24 and EG01-EG30, respectively.

3.4. Best Performance Models

Table 6 shows the d3ploy input parameters for EG01-EG23, EG01-EG24,

EG01-EG29, and EG01-EG30 transition scenarios that minimize the undersupply

of power and undersupply and under-capacity of the other commodities in the335

simulation. The need for commodity supply buffers is a reflection of reality in

which a supply buffer is usually maintained to ensure continuity in the event of

an unexpected failure in the supply chain.

Figures 10 and 11 show time-dependent deployment of reactor and supporting

facilities for the EG01-23 constant power demand and EG01-30 linearly increasing340

power demand transition scenarios, respectively. d3ploy automatically deploys

reactor and supporting facilities to set up a supply chain to meet power demand

during a transition from LWRs to SFRs for EG01-23, and from LWRs to MOX
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(a) EG01-24: Power buffer size vs. cumulative undersupply

(b) EG01-30: Power buffer size vs. cumulative undersupply

Figure 9: The effect of sensitivity analysis of power buffer size on cumulative

undersupply of power for EG01-EG24 and EG01-EG30 transition scenarios with

linearly increasing power demand using the FFT prediction method.
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Buffer [MW] Undersupply EG01-24 EG01-30

0 Time steps [#] 20 9

Energy [GW ⋅mo] 315791 152517

2000 Undersupplied [#] 9 6

Energy [GW ⋅mo] 306520 147166

4000 Time steps [#] 8 6

Energy [GW ⋅mo] 303438 143166

6000 Time steps [#] 7 5

Cumulative [GW ] 303438 139083

8000 Time steps [#] 7 5

Energy [GW ⋅mo] 303438 135083

Table 5: The effect of sensitivity analysis of power buffer size on cumulative

undersupply of power for EG01-EG24 and EG01-EG30 transition scenarios with

linearly increasing power demand using the FFT prediction method.

LWRs and SFRs for EG01-30. EG01-24 and EG01-29 facility deployment plots

are similar to EG01-23 and EG01-30, respectively, therefore they are not shown.345
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Input Parameter
Simulation Description

EG01-23 EG01-24 EG01-29 EG01-30

Demand Driving Power Power Power Power

Commodity

Demand 60000 60000 60000 60000

Equation [MW] +250t/12 +250t/12

Prediction POLY FFT POLY FFT

Method

Deployment Installed Installed Installed Installed

Driving Method Capacity Capacity Capacity Capacity

Fleet Share MOX: 85% MOX: 85% MOX: 85% MOX :85%

Percentage SFR: 15% SFR: 15% SFR: 15% SFR: 15%

Buffer type Absolute

Power Buffer 0 6000 0 8000

Size [MW]

Table 6: d3ploy’s input parameters for EG01-EG23, EG01-EG24, EG01-EG29,

and EG01-EG30 transition scenarios that minimizes undersupply of power and

minimizes the undersupply and under-capacity of the other facilities.

No. of Time Steps with Undersupply

Transition Scenario EG01-EG23 EG01-EG24 EG01-EG29 EG01-EG30

Commodities

Natural Uranium 2 3 1 1

LWR Fuel 4 6 1 2

SFR Fuel 0 0 2 2

MOX LWR Fuel - - 2 2

Power 6 7 4 5

LWR Spent Fuel 1 1 1 1

SFR Spent Fuel 1 1 1 1

MOX LWR Spent Fuel - - 1 1

Table 7: Undersupply/capacity of key commodities for the best performing

EG01-EG23,24,29,30 transition scenarios.
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(a) EG01-23: Reactor Deployment

(b) EG01-23: Supporting Facility Deployment

Figure 10: Time dependent deployment of reactor and supporting facilities in

the EG01-23 constant power demand transition scenario. d3ploy automatically

deploys reactor and supporting facilities to setup a supply chain to meet constant

power demand of 60000 MW during a transition from LWRs to SFRs.
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(a) EG01-30: Reactor Deployment

(b) EG01-30: Supporting Facility Deployment

Figure 11: Time dependent deployment of reactor and supporting facilities

in the EG01-30 linearly increasing power demand transition scenario. d3ploy

automatically deploys reactor and supporting facilities to setup a supply chain

to meet linearly increasing power demand of 60000 + 250t/12 MW during a

transition from LWRs to MOX LWRs and SFRs.
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4. Conclusion

In this paper, we demonstrate that with careful selection of d3ploy parame-

ters, we can effectively automate the setup of constant and linearly increasing

power demand transition scenarios for EG01-23, EG01-24, EG01-29, and EG01-

30 with minimal power undersupply. Using d3ploy to set up transition scenarios350

is more efficient than the previous efforts that required a user to manually calcu-

late and use trial and error to set up the deployment scheme for the supporting

fuel cycle facilities. Transition scenario simulations set up this way are sensitive

to changes in the input parameters resulting in an arduous setup process since a

slight change in one input parameter would result in the need to recalculate the355

deployment scheme to ensure no undersupply of power. Therefore, by automating

this process, when the user varies input parameters in the simulation, d3ploy

automatically adjusts the deployment scheme to meet the new constraints.

5. Future Work

We simulate transition scenarios to predict the future; however, when im-360

plemented in the real world, the transition scenario tend to deviate from the

optimal scenario. Therefore, Nuclear Fuel Cycle (NFC) simulators must be used

to conduct sensitivity analysis studies to understand the subtleties of a transition

scenario better to reliably inform policy decisions. Previously it was difficult to

conduct sensitivity analysis with Cyclus as users have to manually calculate365

the deployment scheme for a single change in an input parameter. By using the

d3ploy capability, sensitivity analysis studies are more efficiently conducted to

determine how variation in different input parameters impact the progress and

final state of a transition scenario.
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