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CHAPTER 1

INTRODUCTION

The main question addressed in this work is: Can artificial neural networks (ANNs) using

simulated spectra as training data automate isotope identification and quantification. ANNs

can incorporate abstract features of a gamma-ray spectrum in non-intuitive ways. This may

give ANNs the ability to identify and quantify isotopes using large isotope libraries practical

for domestic nuclear security, operate using low-resolution NaI radiation detectors without

knowing the detector calibration or background spectrum.

This dissertation will demonstrate the performance of ANNs for tasks related to identifying

and quantifying isotopes in low-resolution gamma-ray spectra. The low-resolution detector

of interest in this work is a 2-inch by 2-inch NaI(Tl) cylindrical scintillation detector. This

detector is industry standard due to its ease of use, low cost, and acceptable resolution for

gamma-ray spectroscopy. Tasks that will be investigated will focus on identifying isotopes

in the ANSI N42-34-2006 required list [1]. This ANSI standard also requires isotope identifi-

cation algorithms to operate when the radioactive material is behind shielding. Accordingly,

the impact of shielding will also be incorporated into this work.

In addition to isotope identification, this work will explore the ability of ANNs to quantify

the count contribution from each isotope. The ANN’s ability to extract count contribution

information from gamma-ray spectra is important for nondestructive analysis (NDA). While

NDA is useful for. The second purpose is a possible use of neural networks in post-detonation

nuclear forensics. In post-detonation nuclear forensics, a large number of radioactive fission

products are created. Quantifying the amount of isotopes in post-detonation debris can

yield useful information about the device’s properties. Mixtures of laboratory sources will

be used as a surrogate for post-detonation debris and the ability for the ANN to accurately

calculate the mixture components will be established.
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Another case where knowing the isotope quantities in a mixture of isotopes is in uranium

enrichment calculations. Knowing the enrichment of uranium is important in two areas.

The first are is when uranium is identified at a border crossing. Typically the spectrum

would need to be given to a trained spectroscopist to quantify the enrichment, but this

process could be automated on the device first used to identify it. The second case would

be in treaty verification technologies. Low-resolution NaI gamma-ray detectors decrease

the amount of possibly sensitive information while giving enough information to produce

accurate enrichment quantification. The fact that ANNs can be taught to ignore certain

patterns and only give information agreed upon by treaty signatories also makes them a

good tool for treaty verification. The ability of ANNs to operate without knowing the

shielding and background spectrum makes them better for zero knowledge scenarios. NaI

detectors also have a higher e�ciency than the higher resolution HPGe. This means that

the counting times for NaI are smaller than would be required to get the same number of

counts using an HPGe.
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CHAPTER 2

LITERATURE REVIEW

2.1 Gamma-Ray Spectroscopy for Isotope Identification

There are a number of di�cult things associated with performing isotope identification. Tra-

ditionally, isotope identification is conducted by a trained spectroscopoist. Once a spectrum

of interest is identified, a spectroscopist will identify photopeaks [2].

There are many automated radioisotope identification methods available, but few perform

well given a low-resolution gamma-ray spectrum of a mixture of radioisotopes. Common

methods include library comparison algorithms, region of interest (ROI) algorithms, principle

component analysis (PCA), and template matching.

Library comparison algorithms attempt to match photopeak energies found in a gamma-

ray spectrum with those found in a library of known isotope decay energies. Drifts and

uncertainties in detector calibration can lead to misidentifying photopeaks, leading to in-

correct isotope identifications [3]. To be automated, this method needs an algorithm to

extract photopeak centroids from a spectrum. Photopeak extraction algorithms face di�-

culties when a large number of photopeaks overlap in a spectrum, such as when a mixture

of radio-isotopes are measured with a low-resolution detector [4].

ROI algorithms search for elevated counts compared to background in a region where

photopeaks are expected to be for di↵erent radioisotopes. ROI algorithms may also operate

poorly when photopeaks of di↵erent radioisotopes overlap [3]. For this reason, large iso-

tope libraries will preform poorly using this method. Similarly to the library comparison

algorithm, calibration drift may shift photopeaks into di↵erent neighboring ROIs, leading to

incorrect identification. The ROI method has been used to di↵erentiate normally occuring

radioactive material (NORM) from special nuclear material (SNM) using plastic scintillators
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[5].

PCA can also be applied to radioisotope identification. The goal of PCA is to reduce the

dimensionality of a dataset into uncorrelated variables [6]. Using a few of these principle

components, the data may be represented in a reduced space that contains most of the

information present in the original data. The transformed data can then be clustered based

on isotope identity. Clustering algorithms may include K-means or Mahalanobis distance [7,

8]. PCA has been applied to isotope identification using plastic scintillators [9] and anomaly

detection using both plastic scintillators and NaI detectors [10]. Despite the progress of PCA

in some isotope identification problems, there has not been significant progress in applying

PCA to separating mixtures of isotopes in gamma-ray spectra.

Template matching algorithms find an example in a database of gamma-ray spectra that

most closely matches a measured spectrum [3]. The database of spectra can contain multiple

detector calibration settings, shielding materials, and source-to-detector distances. Goodness

of fit can be measured using a hypothesis test such as chi-squared test, euclidean distance,

or Mahalanobis distance. While a su�cient amount of example spectra can be used to

identify almost any measured spectrum, the drawback of this method is the time necessary

to compare a measured spectrum to the library and the computer memory necessary to store

said library. This method also may have di�culty when mixtures of isotopes are considered,

although work is being done to correct this [11].

2.2 Artificial Neural Networks

Artificial neural networks were first created to mimic biologic neurons. Since their creation,

they have demonstrated promising results on a variety of di↵erent classification and regres-

sion tasks [12, 13, 14]. The following sections will give an overview of how ANNs learn and

operate.
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Figure 2.1: Example ANN with input layer A, hidden layer B, and output layer C.

2.2.1 Architecture and Training

ANNs work by mapping arbitrary input spaces, RN , to arbitrary output space, RK . An

example one hidden layer ANN mapping RN 7! RK is shown in Figure 2.1. Each circle

represents a neuron, or node. The mathematical process governing each neuron in the ANN

is shown in Figure 2.2. In Figure 2.2, the signal from the previous layer is propagated to the

next by applying some function, typically sigmoidal, to the dot product of the signal from the

previous layer and the weight vector going into a given node, B
j

in Figure 2.2. Given a one-

layer ANN with a finite number of hidden nodes, any function RN 7! RK can be described

to arbitrary precision [15]. Additional hidden layers increase the representational power of

an ANN, reducing the number of nodes and computational power required to represent a

function. There is no direct method to compute the number of hidden layers or nodes for a

given problem. These, along with other hyperparameters, need to be optimized for a given

dataset.

Artificial ANNs learn a function by changing the weights connecting the layers so that

some error function is minimized for a given dataset. One popular method to update the

weights is through the process of gradient descent through the backpropogation of errors

[16]. The update equation for a single weight, w
j

, is shown in Equations 2.1 and 2.2. In

these equations, Error is the given error function to be minimized (commonly mean squared

error or cross entropy) and ⌘ is the learning rate of the ANN.
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Figure 2.2: Summary of the operation of a single neuron.
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2.2.2 Hyperparameters

In general, ANNs have a tendency to memorize their training set in a process called over-

training. An overtrained ANN will tend to incorrectly identify novel data. To prevent this,

a number of hyperparameters were used to prevent overfitting and optimize performance.

Unfortunately, there is currently no known method to know which hyperparameters have

an impact on model performance before training. Because of this, a number of popular hy-

perparameters are typically added to a model and a random hyperparameter search is used

to identify those which are important. There is evidence that a random search in a given

hyperparameter range finds better hyperparameters quicker than a grid search in the same

range [17]. There is also a proof showing that given 60 points randomly sampled in some

space with a finite minimum, the minimum of those 60 random samples is within 5% of the

true minimum with 95% probability [18]. Training 60 ANNs is computationally feasible,

making this a good method to find a close-to-optimal ANN for a given dataset.
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2.3 Isotope Identification Using ANNs

There have been a number of published papers which apply ANNs to automated isotope

identification. ANNs have been applied to peak fitting [19], isotope identification [20, 21],

and activity estimation [20, 22]. Many of this work rely on ROI methods [23], feature

extraction [24], high-resolution gamma-ray spectra as the input to the ANN [25], small

libraries of isotopes, and assume perfectly calibrated detectors. ANN training methods

created for high-resolution gamma-ray spectra may not perform well when trained using

low-resolution spectra given the large discrepancy in resolution. ANN training that relies on

ROI methods may not perform well when ROIs overlap significantly with large libraries of

isotopes.

It has been shown that an ANN may be trained to perform isotope identification and

quantification using low-resolution NaI gamma-ray spectrum using a library of five isotopes

[26]. While promising, this study did not include complicated source mixture analysis. This

study also used a library too small to be of practical use. The American National Standards

Institutes (ANSI) has identified 31 gamma-ray emitting isotopes that automated isotope

identification algorithms should be able to identify [1].
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CHAPTER 3

ARTIFICIAL NEURAL NETWORK APPROACH TO
IDENTIFYING AND QUANTIFYING ISOTOPES IN

GAMMA-RAY SPECTRA

3.1 Introduction

The ANN presented here is trained to quantify the count contribution of each isotope from

a library. The ANN uses simulated gamma-ray spectra, this make simulating additional

datasets simple and quick. The ANN structure, training details, and hyperparameter opti-

mization are described.

3.2 Artificial Neural Network Structure

The fully connected ANN explored in this work use rectified linear (relu) activation function,

seen in Equation 3.1, with a softmax output function, seen in Equation 3.2.

relu(x) = max(0, x). (3.1)

softmax(z
j

) =
exp(z

j

)
P

K

k=1 exp(zk)
. (3.2)

The relu function was chosen for the node activations because they are easy to optimize

and generally perform better than other non-linear functions [27, pg. 189]. While the

softmax function is traditionally used in classification ANNs, using it here ensures the

output from the ANN is normalized to unity. This allows the ANN to output relative count

contributions from each isotope. This method was shown to perform well for quantifying

isotopes in real and simulated spectra [28, 29]. By setting a detection threshold based on the

highest count contribution, this method can also be used as an identification algorithm. For
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example, Table 3.1 shows the top five isotope outputs from an ANN that used the spectrum

in Figure 3.1 as input. Using a threshold of 15%, any isotope with a contribution below 15%

of 0.441 can be ignored. This leads to a correct identification of 60Co, 137Cs, and background.

Table 3.1: Top five isotopes found by an ANN trained to quantify isotopes.

Isotope
Count

Contribution

60Co 0.441

137Cs 0.440

Background 0.068

99Mo 0.019

235U 0.017

Figure 3.1: Gamma-ray spectrum of a 0.288 µCi 60Co source measured from a distance of
7.5 cm from the detector face and a 0.890 µCi 137Cs source. The count rate on the detector
face is

3.3 Dataset Construction

In order to train an ANN, a training set and training key must be provided. The training

set is a set of ANN input data and the training key is the correct ANN output for each

input. Because creating a training set of real gamma-ray spectra is infeasible, the training

set used in this work was simulated. The training set was created using a one-dimension

Monte Carlo radiation detector simulation program called GADRAS [30]. The simulation
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process began by simulating individual 1 mCi sources with no background. Each source was

simulated at a distance of 30cm from a 2 inch by 2 inch Ortec 905-3 NaI spectrometer for 10

hours, ensuring each spectrum had low statistical noise. These single isotope sources were

then sampled using the inverse transform sampling method [31]. This allows the creation

of arbitrary source combinations. The background isotopes were modeled using built-in

GADRAS background sources for 40K, uranium and daughters in soil, and thorium and

daughters in soil.

Because the calibration on NaI detectors shifts over time (due to voltage drift in the elec-

tronics and changes in crystal temperature), a method to change training spectra calibration

was included. To mimic gain shift, the channels in each spectrum were linearly rebinned by

some percent. After rebinning, the resulting spectrum was reconstructed using third order

spline interpolation with the new bin positions.

Using this method, many training sets can be created depending on di↵erent algorithm

goals. The training set and isotope library can be modified for specific problems like unknown

source interdiction, uranium enrichment calculations, and post-detonation nuclear forensic

debris analysis. Methods of creating ANNs for these problems will be described in later

sections.

3.4 Training Details and Hyperparameter Optimization

Once the ANN hyperparameters are decided on, an optimization algorithm is needed to

train the model. The ADAM optimizer [32] was chosen as the training algorithm for this

work due to its incorporation of parts of other successful optimization algorithms and its re-

ported superior performance over these algorithms. Another benefit of the ADAM optimizer

is introduction of only one additional hyperparameter, the learning rate. Other optimizers

require tuning more than one additional hyperparameter. The cost function the ANN mini-

mized during training was the average cross entropy between the correct labels, y
n

, and the

network predictions, ŷ
n

, seen in Equation 3.3. This cost function was chosen because it is

traditionally used with ANNs whose output is the softmax function.
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log(ŷ
n
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n

) log(1� ŷ

n

). (3.3)

Raw data is typically preprocessed before being input to an ANN. For this work each

spectrum was preprocessed by scaling the counts in each bin between [0,1]. Scaling the

inputs improves numerical stability during training.

As previously discussed, hyperparameters are often necessary to properly train an ANN.

The following hyperparameters are considered in this study are: the number of neurons in

each layer, the number of layers used, initial learning rate for the training algorithm, the L2

weight regularization strength, and neuron dropout rate.

Adding L2 weight regularization allows the magnitude of the weights to increase only when

there is a comparable reduction in the unmodified error function.

Ẽ = E +
X

i

�w

2
i

. (3.4)

In Equation 3.4, w
i

is the weight between each neuron in the ANN and � is the regularization

strength hyperparameter. A larger � will force the ANN to prefer smaller weights connecting

the neurons. If � is too small, the model is more likely to overfit. If � is too large, the ANN

will preferentially minimize the L

n

error, failing to learn the desired task.

Another method to reduce model capacity is neuron dropout. Neuron dropout is the

process of temporarily removing a neuron from the ANN architecture during training [33].

The probability that a neuron is removed is called the neuron dropout rate, which is a

hyperparameter. By applying dropout throughout training, the ANN’s architecture changes

every iteration. The makes neuron dropout a cost e�cient way to average many di↵erent

ANN architectures, improving performance.
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3.5 Key Results

Figure 3.2: Mean square error vs training iteration for three di↵erent ANN inputs.

Figure 3.3: Table showing the average mean square error from 1000 simulated enriched
uranium spectra.
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CHAPTER 4

FUTURE WORK AND PROPOSED EXPERIMENTS

There are a number of experiments that would build on the work that has been done. These

experiments are described in this section.

4.1 Proposed Datasets

4.1.1 Unknown Source Interdiction

One important problem in automated gamma-ray spectroscopy giving untrained operators

the ability to identify unknown hidden sources using hand-held devices. There are many

issues with this problem, but they can be addressed by properly constructing a training set

for an ANN.

Typically these sources produce weak signals due to being purposely shielded. Because

lower-energy gamma-rays are preferentially attenuated over higher-energy gamma-rays, shield-

ing also changes the shape of a gamma-ray spectrum.

In addition to the previous hurdles, because untrained operators would be using these

algorithms, the detector calibration cannot be completely trusted.

To address the problems described above, the training dataset will be constructed of

simulated spectra of

While the possible threat source is unknown, the isotopes in the ANSI N42-34-2006 have

been identified as Source strengths will range from µCi to a Ci and source-to-detector dis-

tance will range from 10cm to 1 meter. Sources below a µCi do not produce su�cient counts

to be detected. Sources above a Ci are

The performance of the ANN on this dataset will be reported using a ROC curve for a
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simulated spectra dataset as well as a measured spectra dataset. The simulated spectra

dataset will be composed of lab isotopes behind various shielding materials.

4.1.2 Post-Detonation Nuclear Forensic Debris Analysis

Immediately after a nuclear detonation, first responders may be collecting a large number

of gamma-ray spectra using handheld low-resolution detectors. These detectors may have

an unknown or poor calibration and each spectrum may be measured for a short amount of

time. Despite these drawbacks, the data is still valuable because it can be used to determine

isotopics of the debris generated by the explosion [34]. Due to the complicated gamma-ray

spectrum produced by a large number of radioactive fission products, many photopeaks and

spectral features will overlap in a spectrum. This feature overlap increases the di�culty of

and slows photopeak analysis, especially for low-resolution spectrometers.

4.1.3 Uranium Enrichment Calculations

For treaty verification purposes, quickly measuring the enrichment of uranium is important.

It can be argued that HPGe detectors are better suited for this task due to their higher-

resolution over NaI.

To test the ability for ANNs to measure uranium enrichment,

4.2 Autoencoders

An autoencoder is an unsupervised ANN whose goal is to learn an encoding of the input.

This is accomplished by simultaneously training an encoding ANN and a decoding ANN. The

encoding ANN reduces an n�dimension signal to a m�dimension signal, where m < n. The

decoding ANN takes the m�dimension signal and attempts to reproduce the n�dimension

input or one similar.

In previous work, a single ANN had to learn multiple tasks to identify isotopes. An

ANN would have to simultaneously identify the detector calibration, background signal, and
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possible source signal. By training an autoencoder to reconstruct a background subtracted

and correctly calibrated spectrum, the task of isotope identification is simplified for the

ANN. This may result in more accurate identifications. To test this, a single autoencoder

and three ANNs will be trained. The first will be trained without an autoencoder. The

second will be trained using the encoder as input. The third will be trained using the full

autoencoder as input. A manual search or a random hyperparameter search will be used

to find an appropriately structured autoencoder. The testing and validation error for these

ANNs will be compared for each dataset described previously.

In addition to using fully connected autoencoders, a 1-D convolutional autoencoder will

also be explored. Fully connected ANNs do not assume the input has local spatial structure,

while convolution ANNs do. Because gamma-ray spectra have local spatial structure in the

form of photopeaks and Compton continua, it may be better to use a convolutional ANN

over a fully connected ANN.

4.3 Additional Simulated Detector Models

Simulating addition NaI detectors using GADRAS may help the ANN generalize to di↵erent

detectors. To begin this process, two 2-inch by 2-inch NaI detectors will be modeled using

GADRAS and their properties will be changed (for example: crystal dimension, calibration,

scattering environment). The number of di↵erent detectors modeled will be increased and the

generalization performance of the ANN will be evaluated. The generalization performance

can be calculated by checking the ANNs performance on spectra produced by a detector

whose properties the ANN has not seen during training.

4.4 Mixture Validation Dataset

A real dataset of real spectra are needed to confirm the models performance. Mixtures of

laboratory isotopes can be made. Mixtures will vary by signal-to-background ratio by varying

source-to-detector distance and integration time. Isotopes available are: 60Co, 137Cs, 133Ba,

152Eu, 22Na and others.
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4.5 Bagging

Each time the ANN trains, it produces slightly di↵erent identification results and perfor-

mance. Bagging (bootstrap aggregating), or the process of averaging the outputs of many

ANNs, can reduce the variance in the output [35]. In addition to this, bagging more ac-

curately displays the true performance of a given ANN structure. The number of ANNs

included in the bagging process will be explored.

4.6 K-folds cross validation

K-folds cross validation will be incorporated into the model. Cross validation is the general

method of determining how well a model will generalize to novel data. K-folds cross valida-

tion does this by splitting the available data into k subsets. From these, k-1 subsets are used

to train the ANN and the remaining subset is used as the validation dataset. This process

is repeated, using each subset once as the validation dataset. Typical values for k are either

5 or 10. Cross validation more accurately analyze how well a give ANN structure and set

of hyperparameters will perform. K-folds cross validation will be added to hyperparameter

optimization. The error and hyperparameter structure will be compared for ANNs trained

with no cross validation, 5-folds cross validation, and 10-folds cross validation.

4.7 Latin Hypercube Sampling for Training Set Construction

Currently, the training set is constructed using random combinations of isotopes with random

count rates. Because random sampling does not guarantee the training space is well sampled

and often produces clusters, this may not be a good method to construct the training dataset.

This may lead the ANN to learn a bias for random clusters in the training set. A way to

reduce the chances of clusters and more uniformly sample the input space is using Latin

hypercube sampling (LHS). LHS partitions each dimension of a space into N equal parts.

The space is then sampled using N points, ensuring that there is only one point along each

partition in each dimension.
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To quantify how much LHS helps identification for a given data space, ANNs will be

trained with an increasing number of samples. The ANNs performance on a real dataset

will then be measured and compared. It is expected that at a certain number of samples the

ANN performance will reach an asymptote. The number of samples may change for each

data space (no shielding, shielding, uranium enrichment) depending on the complexity of

the problem.

4.8 Model Confidence Using the Dropout Uncertainty Method

We can exploit the dropout method used to regularized the ANN to get a confidence measure

given a spectrum [36]. Once the ANN is trained, an unknown sample is presented to the

model and the solution is recorded. Dropout is then used on the model using the same

dropout probability that was used to train the model. The same unknown sample is then

passed through the ANN and the answer recorded. This process of dropout and recording

the resulting output is repeated. The variance of the outputs from this process can be used

to determine the ANNs confidence in a given pattern.

A few results are predicted using the ANN confidence. It is also expected that high signal-

to-background measurements and isotope mixtures of a few components will have a high

model confidence. It is expected that low signal-to-background measurements and mixtures

of many components will have a low model confidence. Additionally, the model confidence

with an isotope not included in the training set should be very low. This confidence measure

may be used to reduce the false alarm rate when performing isotope identification.

4.8.1 New Training Stopping Condition

ANNs need a condition to end training. This condition is typically when a certain allowable

error in a validation dataset is reached or when the training error does not appreciably

decrease over time. Previously in this work, the stopping condition has been based on the

cost function the ANN is trying to decrease, the cross entropy. It may be better to stop

training when a more useful metric. An example of this metric is when the maximum error
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in the training set reaches a certain threshold. Another metric is to stop training when the

ANNs mean squared error for a validation set stops decreasing.
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CHAPTER 5

CONCLUSION

Previous work has shown that ANNs are capable of solving problems in gamma-ray spec-

troscopy. Investigating more advanced ANN methods and proposed datasets may improve

on previously reported performance.
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