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ABSTRACT

There is a need to develop an algorithm that can identify and quantify isotopes in low−resolution

gamma−ray spectra. Trained gamma−ray spectroscopists typically rely on intuition when

identifying isotopes in spectra. Because they incorporate something similar to intuition,

pattern recognition algorithms such as neural networks are prime candidates for automated

isotope identification. Algorithms based on feature extraction such as peak finding or ROI

algorithms work well for well calibrated high resolution detectors. For low−resolution detec-

tors, it may be more beneficial to use algorithms that incorporate more abstract features of

the spectrum. To solve this, an artificial neural network (ANN) was trained to predict the

presence and relative activities of isotopes from a mixture of many isotopes. The ANN is

trained with simulated gamma-ray spectra, allowing easy expansion of the library of target

isotopes. This proposal outlines extensions to this work including investigating new datasets

and ANN structures.
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CHAPTER 1

INTRODUCTION

The main question addressed in this work is: Can artificial neural networks (ANNs) us-

ing simulated spectra as training data automate isotope identification and quantification?

Gamma−ray spectroscopists often use intuition when identifying isotopes in spectra. ANNs

mimic this abstract analysis, synthesizing features of a gamma−ray spectrum in non−intuitive

ways. Exploiting this intuition may overcome common hurdles encountered by other isotope

identification algorithms.

The proposed work will demonstrate the performance of ANNs for automated gamma−ray

spectroscopy in low−resolution spectra. The low−resolution detector of interest in this

work is a 2−inch by 2−inch NaI(Tl) cylindrical scintillation detector. This detector is

industry standard due to its ease of use, low cost, and acceptable resolution for gamma−ray

spectroscopy.

The algorithms performance will be displayed on two different datasets. The first dataset

will focus on identifying isotopes in ANSI N42−34−2006, the American national standard

performance criteria for hand−held instruments for the detection and identification of ra-

dionuclides [1]. The second dataset will be built to perform uranium enrichment calculations.

In addition to isotope identification, this work will explore the ability of ANNs to quantify

the count contribution from each isotope. The ANN’s ability to extract count contribution

information from gamma−ray spectra is important for nondestructive analysis (NDA). An

example of NDA is performing uranium enrichment calculations. Knowing the enrichment

of uranium is important in two scenarios. The first scenario is when uranium is identified at

a border crossing. Typically the spectrum would need to be given to a trained spectroscopist

to quantify the enrichment, but this process could be automated on the device first used to

identify it. The second case would be in treaty verification technologies. Low−resolution NaI
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gamma−ray detectors decrease the amount of possibly sensitive information while giving

enough information to produce accurate enrichment quantification. The fact that ANNs

can be taught to ignore certain patterns and only give information agreed upon by treaty

signatories also makes them a good tool for treaty verification. The ability of ANNs to

operate without knowing the shielding and background spectrum makes them better for zero

knowledge scenarios. NaI detectors also have a higher efficiency than the higher resolution

HPGe. This means that the counting times for NaI are smaller than would be required to

get the same number of counts using an HPGe.
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CHAPTER 2

LITERATURE REVIEW

2.1 Gamma−Ray Spectroscopy for Isotope Identification

Traditionally, isotope identification is conducted by a trained spectroscopist. Rawool−Sullivan

et al. identified a common workflow performed by a group of gamma−ray spectroscopists [2].

This workflow included discriminating background and source photopeaks, adjusting the cal-

ibration using background photopeaks and checking for shielding effects in the low−energy

photopeaks. Once photopeaks are identified, the spectroscopist would use their prior knowl-

edge of isotope emissions (or consult a database of these emissions) to match isotopes to the

spectrum. The researchers also noted that while spectroscopists used this book knowledge,

they often would use intuition developed from analyzing tens or hundreds of gamma−ray

spectrum. The researchers also noted the difficulty in incorporating this subjective analysis

into an automated algorithm.

There are many automated radioisotope identification methods available, but few perform

well given a low−resolution gamma−ray spectrum of a mixture of radioisotopes. Common

methods include library comparison algorithms, region of interest (ROI) algorithms, principle

component analysis (PCA), and template matching.

Library comparison algorithms attempt to match photopeak energies found in a gamma−ray

spectrum with those found in a library of known isotope decay energies. Drifts and uncer-

tainties in detector calibration can lead to misidentifying photopeaks, leading to incorrect

isotope identifications [3]. To be automated, this method needs an algorithm to extract pho-

topeak centroids from a spectrum. Photopeak extraction algorithms face difficulties when a

large number of photopeaks overlap in a spectrum, such as when a mixture of radio−isotopes

are measured with a low−resolution detector [4].
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ROI algorithms search for elevated counts compared to background in a region where

photopeaks are expected to be for different radioisotopes. ROI algorithms may also operate

poorly when photopeaks of different radioisotopes overlap [3]. For this reason, large iso-

tope libraries will preform poorly using this method. Similarly to the library comparison

algorithm, calibration drift may shift photopeaks into different neighboring ROIs, leading to

incorrect identification. The ROI method has been used to differentiate normally occurring

radioactive material (NORM) from special nuclear material (SNM) using plastic scintillators

[5].

PCA can also be applied to radioisotope identification. The goal of PCA is to reduce the

dimensionality of a dataset into uncorrelated variables [6]. Using a few of these principle

components, the data may be represented in a reduced space that contains most of the

information present in the original data. The transformed data can then be clustered based

on isotope identity. Clustering algorithms may include K−means or Mahalanobis distance [7,

8]. PCA has been applied to isotope identification using plastic scintillators [9] and anomaly

detection using both plastic scintillators and NaI detectors [10]. Despite the progress of PCA

in some isotope identification problems, there has not been significant progress in applying

PCA to separating mixtures of isotopes in gamma−ray spectra.

Template matching algorithms find an example in a database of gamma−ray spectra that

most closely matches a measured spectrum [3]. The database of spectra can contain mul-

tiple detector calibration settings, shielding materials, and source−to−detector distances.

Goodness of fit can be measured using a hypothesis test such as chi−squared test, euclidean

distance, or Mahalanobis distance. While a sufficient amount of example spectra can be

used to identify almost any measured spectrum, the drawback of this method is the time

necessary to compare a measured spectrum to the library and the computer memory neces-

sary to store said library. This method also may have difficulty when mixtures of isotopes

are considered, although work is being done to correct this [11].

These algorithms largely incorporate book knowledge. By further incorporating the intu-

ition identified by Rawool−Sullivan et al., these algorithms may be improved. A machine

learning approach to automated gamma−ray spectroscopy may be able to marry book knowl-

edge and a trained spectroscopists intuition.
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2.2 Artificial Neural Networks

Artificial neural networks were first created to mimic biologic neurons. Since their creation,

they have demonstrated promising results on a variety of different classification and regres-

sion tasks [12, ?, ?]. The following sections will give an overview of how ANNs learn and

operate.

2.2.1 Architecture and Training

ANNs work by mapping arbitrary input spaces, RN , to arbitrary output space, RK . An

example one hidden layer ANN mapping RN 7→ RK is shown in Figure 2.1. Each circle

represents a neuron, or node. The mathematical process governing each neuron in the ANN

is shown in Figure 2.2. In Figure 2.2, the signal from the previous layer is propagated to the

next by applying some function, typically sigmoidal, to the dot product of the signal from

the previous layer and the weight vector going into a given node, Bj in Figure 2.2. Given

a one−layer ANN with a finite number of hidden nodes, any function RN 7→ RK can be

described to arbitrary precision [?]. Additional hidden layers increase the representational

power of an ANN, reducing the number of nodes and computational power required to

represent a function. There is no direct method to compute the optimal number of hidden

layers or nodes for a given problem. These, along with other hyperparameters, need to be

optimized for a given dataset.

Artificial ANNs learn a function by changing the weights connecting the layers so that

some error function is minimized for a given dataset. One popular method to update the

weights is through the process of gradient descent through the backpropogation of errors [?].

The update equation for a single weight, wj, is shown in Equations 2.1 and 2.2. In these

equations, E is the given error function to be minimized (commonly mean squared error or

cross entropy) and η is the learning rate of the ANN.

∆wj = −η dE
dwj

(2.1)
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Figure 2.1: Example ANN with input layer A, hidden layer B, and output layer C.

Figure 2.2: Summary of the operation of a single neuron.
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wnew
j = wold

j + ∆wj (2.2)

2.2.2 Hyperparameters

In general, ANNs have a tendency to memorize their training set in a process called over-

training. An overtrained ANN will tend to incorrectly identify novel data. To prevent this,

a number of hyperparameters were used to prevent overfitting and optimize performance.

Unfortunately, there is currently no known method to know which hyperparameters have

an impact on model performance before training. Because of this, a number of popular

hyperparameters are typically added to a model and a random hyperparameter search is

used to identify those which are important. There is evidence that a random search in a

given hyperparameter range finds better hyperparameters quicker than a grid search in the

same range [?]. There is also a proof showing that given 60 points randomly sampled in

some space with a finite minimum, the minimum of those 60 random samples is within 5% of

the true minimum with 95% probability [?]. Training 60 ANNs is computationally feasible,

making this a good method to find a close−to−optimal ANN for a given dataset.

2.3 Automated Isotope Identification Using ANNs

There have been a number of published papers which apply ANNs to automated isotope

identification. ANNs have been applied to peak fitting [?], isotope identification [?, ?],

and activity estimation [?, ?]. Many of this work rely on ROI methods [?], feature ex-

traction [?], high−resolution gamma−ray spectra as the input to the ANN [?], small li-

braries of isotopes, and assume perfectly calibrated detectors. ANN training methods cre-

ated for high−resolution gamma−ray spectra may not perform well when trained using

low−resolution spectra given the large discrepancy in resolution. ANN training that relies

on ROI methods may not perform well when ROIs overlap significantly with large libraries

of isotopes.

It has been shown that an ANN may be trained to perform isotope identification and
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quantification using low−resolution NaI gamma−ray spectrum using a library of six isotopes

[?]. While promising, this study used a library too small to be of practical use. The American

National Standards Institutes (ANSI) has identified 31 gamma−ray emitting isotopes that

automated isotope identification algorithms should be able to identify [1].
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CHAPTER 3

ARTIFICIAL NEURAL NETWORK APPROACH TO
IDENTIFYING AND QUANTIFYING ISOTOPES IN

GAMMA−RAY SPECTRA

3.1 Introduction

The ANN presented here is trained to quantify the count contribution of each isotope from

a library. Because the ANN trains using simulated gamma−ray spectra, additional datasets

can be trivially created. The ANN structure, training details, and hyperparameter optimiza-

tion are described.

3.2 Artificial Neural Network Structure

The fully connected ANN explored in this work uses a rectified linear (relu) activation

function, seen in Equation 3.1, with a softmax output function, seen in Equation 3.2.

relu(x) = max(0, x). (3.1)

softmax(zj; z) =
exp(zj)∑K
k=1 exp(zk)

. (3.2)

The relu function was chosen for the node activations because previous work has shown

that it is easy to optimize and generally perform better than other non−linear functions [?,

pg. 189]. While the softmax function is traditionally used in classification ANNs, using

it here ensures the output from the ANN is normalized to unity. This allows the ANN to

output relative count contributions from each isotope. This method was shown to perform

well for quantifying isotopes in real and simulated spectra [?, ?]. By setting a detection

threshold based on the highest count contribution, this method can also be used as an
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identification algorithm. For example, Table 3.1 shows the top five isotope outputs from an

ANN that used the spectrum in Figure 3.1 as input. Using an arbitrary threshold of 15%,

any isotope with a contribution below 15% of 0.441 can be ignored. This leads to a correct

identification of 60Co, 137Cs, and background. The threshold used can be chosen to ensure

a desired performance metric (false alarm rate, precision, recall) on an appropriate dataset.

Table 3.1: Top five isotopes found by an ANN trained to quantify isotopes.

Isotope
Count

Contribution

60Co 0.441

137Cs 0.440

Background 0.068

99Mo 0.019

235U 0.017

Figure 3.1: Gamma−ray spectrum of a 0.288 µCi 60Co source and a 0.890 µCi 137Cs
source. Each source−to−detector distance was adjusted so their respective count rate on
the detector was equal.
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3.3 Dataset Construction

In order to train an ANN, a training set and training key must be provided. The training

set is a set of ANN input data and the training key is the correct ANN output for each

input. Because creating a training set of real gamma−ray spectra is infeasible, the training

set used in this work was simulated. The training set was created using a one−dimensional

Monte Carlo radiation detector simulation program called GADRAS [?]. The simulation

process began by simulating individual 1 mCi sources with no background. Each source was

simulated at a distance of 30cm from a 2 inch by 2 inch Ortec 905−3 NaI spectrometer for 10

hours, ensuring each spectrum had low statistical noise. These single isotope sources were

then sampled using the inverse transform sampling method [?]. This allows the creation

of arbitrary source combinations. The background isotopes were modeled using built−in

GADRAS background sources for 40K, uranium and daughters in soil, and thorium and

daughters in soil.

Because the calibration on NaI detectors shifts over time (due to voltage drift in the elec-

tronics and changes in crystal temperature), a method to change training spectra calibration

was included. To mimic gain shift, the channels in each spectrum were linearly rebinned by

some percent. The magnitude of each shift was uniformly chosen between a +/- 25% gain

drift. After rebinning, the resulting spectrum was reconstructed using third order spline

interpolation with the new bin positions.

Using this method, many training sets can be created depending on different algorithm

goals. The training set and isotope library can be modified for specific problems like unknown

source interdiction and uranium enrichment calculations. Methods of creating ANNs for

these problems will be described in later sections.

3.4 Training Details and Hyperparameter Optimization

An optimization algorithm is needed to train the model. Optimization is necessary to choose

good model parameters and hyperparameters. Model parameters are the weights connecting

each layer in an ANN. Optimizing the model parameters is also known as training or learn-
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ing. Hyperparameters are the variables that define the structure of the ANN (number of

layers, nodes in each layer, non−linear function on each node) as well as the variables that

control how the model learns (the learning rate, neuron dropout frequency, loss function).

Finding appropriate hyperparameters requires trying different hyperparameter combinations

and seeing which gives the lowest validation error on a dataset. This can be done using either

a manual or automated search.

The Adam optimizer was chosen as the training algorithm for this work due to its in-

corporation of parts of other successful optimization algorithms and its reported superior

performance over these algorithms [?]. Another benefit of the Adam optimizer is the intro-

duction of only one additional hyperparameter, the learning rate. Other optimizers require

tuning more than one additional hyperparameter. During training, the ANN minimized the

average cross entropy,

E = − 1

N

N∑
n=1

yn log(ŷn) + (1− yn) log(1− ŷn), (3.3)

between the correct labels, yn, and the network predictions, ŷn. This cost function was

chosen because it is traditionally used with ANNs whose output is the softmax function.

Raw data is typically preprocessed before being input to an ANN. For this work each

spectrum was preprocessed by scaling the counts in each bin between [0,1]. Scaling the

inputs improves numerical stability during training.

Hyperparameters are often necessary to properly train an ANN. The following hyperpa-

rameters are considered in this study are: the number of neurons in each layer, the number

of layers used, initial learning rate for the training algorithm, the L2 weight regularization

strength, and neuron dropout rate.

Adding L2 weight regularization allows the magnitude of the weights to increase only when

there is a comparable reduction in the unmodified error function.

Ẽ = E +
∑
i

λw2
i . (3.4)

In Equation 3.4, wi is the weight between each neuron in the ANN and λ is the regularization
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strength hyperparameter. A larger λ will force the ANN to prefer smaller weights connecting

the neurons. This reduces the models capacity, or its ability to represent complicated or

intricate functions. This is similar to putting a limit on the magnitude of the coefficients in

a high order polynomial when fitting data. If λ is too small, the model will have a greater

capacity. This will create a model that is more likely to overfit. If λ is too large, the ANN

will preferentially minimize the Ln error, failing to learn the desired task.

Another method to reduce model capacity is neuron dropout. Neuron dropout is the

process of temporarily removing a neuron from the ANN architecture during training [?].

The probability that a neuron is removed is called the neuron dropout rate, which is a

hyperparameter. By applying dropout throughout training, the ANN’s architecture changes

every iteration. This makes neuron dropout a cost efficient way to average many different

ANN architectures, improving performance.

3.5 Key Results

Two key results are described in the following section. The first result demonstrates the

ANNs ability to correctly identify isotopes in the ANSI N42−34−2006 library with an un-

known calibration. This demonstration also demonstrates how well the ANN operates when

spectroscopic features such as photopeaks are unclear. The second result demonstrates the

ANNs ability to identify if an isotope that is shielded by lead.

3.5.1 Single Isotope Identification

The isotope library chosen for this demonstration was 29 gamma-ray producing isotopes

from the ANSI N42.34−2006 standard, as well as 152Eu [1]. The reason for including will

be described in a later section. because it is available in our lab. Based on lab observations

using an Ortec 905−3 NaI spectrometer, the average background count rate was set at 85

counts per second (cps). Each spectrum in the training set had a maximum of 5 different

non−background isotopes included in the spectrum. Each isotope had a count rate which

was logarithmically distributed between 10 and 1000 cps. The exposure time was logarith-
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mically distributed between 10 and 2000 seconds. Each non−background isotope had an

equal probability of being included in each spectrum. The counts from background were

distributed uniformly between background thorium, background uranium, and background

40K. To mimic calibration shift, the channels in each spectrum were linearly rebinned. The

magnitude of each shift was uniformly chosen between a +/− 25% calibration drift. The

0% gain shift setting corresponds to a detector with a maximum bin energy of 3 MeV. A

calibration drift of +/− 25% is an extreme case of incorrect calibration.

To demonstrate the performance of the algorithm on spectra with single isotopes where

features were easily identifiable by eye versus spectra without obvious visible features, two

simulated validation datasets were considered. Both datasets consisted of spectra with a

single isotope simulated using the same process as the ANN training set with the rebinning

randomly chosen between +/−20%. The rebinning magnitude was reduced to avoid testing

the ANN near the edge of it’s training. A calibration drift of +/−20% is still an extreme

incorrect calibration. A confusion matrix was used to compare the performance of the ANN

on both datasets. For all the results, the count contribution cutoff was arbitrarily set at 15%

of the largest count contribution calculated by the ANN.

For spectra in the first validation dataset, both the source and background contributed 85

counts per second with an integration time of 60 seconds. Each isotope in the training library

was simulated one hundred times with this count distribution. Simulated 60Co spectra with

the extreme calibration settings are shown in Figure 3.2.
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Figure 3.2: Two simulated 60Co spectra. In each spectrum, the 60Co and background
contribute 5100 counts to the spectrum. The bottom spectrum’s gain was offset by −20%
while the top spectrum’s gain was offset by +20%.

The confusion matrix generated using an ANN is displayed in Figure 3.3. In this confusion

matrix, the largest count contributing isotope was used to identify the spectrum. The ANN

exhibited a low false positive rate with this simulated dataset. False positives occurred

mainly with sources that primarily emit only a few low-energy photons. This is especially

notable when 99mTc, which primarily emits a 141 keV gamma-ray, is misidentified as 57Co,

which emits a 122 keV gamma-ray. A −13% calibration shifted 99mTc spectrum looks almost

identical to a 57Co spectrum without a calibration shift. Incorrect identification occurred due

to the proximity of the photopeaks of these isotopes. Incorrect identification also occurred

due to a lack of other prominent spectral features such as the Compton continuum for low-

energy gamma-rays. This effect can also be seen in Figure 3.3 when 204Tl is misidentified as

201Tl. Both 204Tl and 201Tl primarily emit photons around 70 and 80 keV.
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Figure 3.3: The confusion matrix for a single isotope dataset. Both the source and
background contribute 5100 counts to the spectrum.

In the second validation dataset, the source and background were measured for 10 seconds

and the source count rate was reduced to half the strength of background. Example simulated

60Co spectra with the extreme calibration settings are shown in Figure 3.4. Note that

compared to figure 3.2, the photopeaks of 60Co are more difficult to identify by eye. The

lack of clear spectral features in these spectra may present extra difficulty to algorithms that

rely solely on feature extraction methods. Also, the lack of prominent background peaks

would make these spectra difficult to calibrate.
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Figure 3.4: Two simulated 60Co spectra. In each spectrum, the 60Co source contributes 425
counts and background contribute 850 counts. The red spectrum’s gain is offset by −20%,
while the blue spectrum’s gain is offset by +20%.

The confusion matrix for this dataset is shown in Figure 3.5. Note that the false posi-

tive rate increases, but often there was enough information in each spectrum to correctly

identify the isotope. This implies that the ANN trained in this way can be effective in

non-ideal measurement situations (low signal−to−noise spectrum, short measurement time,

incorrectly calibrated detector).
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Figure 3.5: The confusion matrix for a single isotope dataset. In each case, the source
contributes 425 counts and background contributes 850 counts to the spectrum.

3.5.2 Identifying Bare and Shielded 152Eu

An ANN was trained to identify bare and shielded isotopes. The ANN used a training

dataset composed of bare and shielded sources from the ANSI N42−34−2006 library.

The ANNs performance is displayed by identifying a bare and shielded 152Eu source.

The 152Eu isotope emits gamma-rays in a large range of energies. Because lower−energy

gamma−rays are attenuated more strongly than higher−energy gamma−rays, the shielded

152Eu spectrum, shown in Figure 3.6, is significantly distorted compared to an unshielded

152Eu spectrum, shown in Figure 3.7. The effect of shielding can be seen by observing that

the photopeaks below channel 100 observed in the bare source spectrum are not present in

the shielded spectrum. In addition to distorting the spectrum, the shielding also reduced

the number of counts in the spectrum, decreasing the signal−to−noise ratio.
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Figure 3.6: Spectrum of a Eu152 10µCi source shielded by 8mm of lead. The collection
time for this was 10s.

Figure 3.7: Spectrum of a Eu152 10 µCi source. The collection time for this was 10s.

Despite the distortion and lower signal−to−noise ratio in the shielded example, the ANN

was able to differentiate a bare and shielded 152Eu source. The average ANN output from 5

bare 152Eu spectra is shown in Table 3.2. Note that the ANN calculated that the vast ma-

jority of counts came from 152Eu and background. Table 3.3 shows the average ANN output

for 5 152Eu spectra shielded by 8mm of lead. While the top count contributor was shielded

152Eu, the ANN included a number of incorrect sources with high count contributions. The

extra identifications are likely due to the low signal−to−noise ratio in the shielded spectrum.
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Table 3.2: Average ANN output from five spectra. Each spectrum was collected like the
one in Figure 3.7. Only the top five isotopes are shown.

Isotope
Count

Contribution

152Eu 0.496

Background 40K 0.090

Background Uranium 0.072

Background Thorium 0.056

60Co 0.051

Table 3.3: Average ANN output from five spectra. Each spectrum was collected like the
one in Figure 3.6. Only the top five isotopes are shown.

Isotope
Count

Contribution

Shielded 152Eu 0.303

Shielded 238U 0.234

137Cs 0.182

131I 0.084

60Co 0.074
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CHAPTER 4

FUTURE WORK AND PROPOSED EXPERIMENTS

For the proposed work, there are a number of experiments that will explore applying ANNs

to gamma−ray spectroscopy. An outline of this work can be seen in Figure 4.1. Section

4.1 details two proposed simulated gamma−ray spectra datasets. Arguments are given for

why these datasets represent important problems in gamma−ray spectroscopy. In addition

to ANNs that use the full spectrum as input, ANNs that are trained to perform feature

extraction will also be considered. Section 4.2 describes how autoencoders can be trained

to extract key features from a gamma−ray spectrum. Section 4.3 describes the how the

random hyperparameter search will be performed using K−folds cross validation. Once an

appropriate ANN is found, a method called bagging (bootstrap aggregating) will be used

to construct an ensemble of ANNs. Bagging is described in Section 4.4. Finally, the ANN

performance on each datasets will be evaluated. Performance metrics are based on the ANN

error in testing datasets, described in section 4.1.

Figure 4.1: Workflow for the experiments proposed in this work.
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4.1 Proposed Datasets

The proposed datasets represent important problems in automated gamma-ray spectroscopy.

These include unknown source interdiction, uranium enrichment calculations, and isotope

mixture analysis.

4.1.1 Unknown Source Interdiction

One important problem in automated gamma−ray spectroscopy giving untrained operators

the ability to identify an unknown source. Performance requirements for this task are out-

lined in ANSI N42−34−2006 standard. For this reason, this standard will guide the require-

ments in this section. Issues addressed by the ANSI standard include unknown shielding,

unknown detector calibration, and unknown source combination. Methods to address these

issues by using an ANN are described below. A way to validate the results is also described.

Typically, a source will be shielded, producing a weaker signals and distorting the spec-

trum. To address this, the training dataset will be sampled from a library of bare and

shielded spectra. Because different materials have different shielding properties, a number

of shielding materials and thicknesses will be included in the library. The materials included

will be common shields, including aluminum, iron, and lead. The thicknesses will correspond

to the amount needed to attenuate 662 keV gamma-rays by 20%, 40%, 60%, and 80%. These

thicknesses can be seen in Table 4.1.

Table 4.1: Different amounts of aluminum, iron, and lead shield included in the training
library.

20% 40% 60% 80%

Aluminum 1.0 cm 2.3 cm 4.1 cm 7.2 cm

Iron 0.38 cm 0.87 cm 1.6 cm 2.8 cm

Lead 0.18 cm 0.42 cm 0.76 cm 1.3 cm

Because untrained operators would be using these algorithms, the detector calibration

cannot be trusted. To address this, in each training batch the channels in each spectrum
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will be rebinned. This rebinning will be based on the calibration real detectors in our lab

have at different photomultiplier tube (PMT) voltages. Typically these will be set at 750 V,

corresponding to an energy range between 40 keV - 3000 keV. This energy range includes

the gamma-rays required to identify isotopes in the ANSI library. The range of incorrect

calibration will include 700 V - 800 V.

The ANSI standard also includes the ability to identify isotope mixtures in their require-

ments. The ANSI standard is primarily interested in combinations of special nuclear material

(weapons grade plutonium (WGPu), high enriched uranium (HEU)) with medical isotopes

(e.g., 99mTc, 201Tl, or 67Ga). To address this, random mixtures of one, two, and three

isotopes will be included in the training dataset.

To fit the source interdiction scenario, count rate and source measurement time for spectra

in the simulated training set will be kept within a range. The count rate on the detector will

range from 10 counts per second (cps) to 104 cps. Below 10 cps the signal−to−background

ratio will be too low for an identification. Above 104 cps deadtime effects will distort the

spectrum. Sources above this count rate are easy to detect and would receive additional

scrutiny. Source measurement times will range from 10 s − 1 hr. This is a typical range of

measurements for source interdiction.

The performance of the ANN on this dataset will be reported in several ways. The ability

to detect isotopes behind shielding will be tested by observing how the ANN identifies various

laboratory isotopes behind shielding. Sources for this will include 60Co, 137Cs, 152Eu, and

133Ba. These sources are chosen because they represent isotopes with simple gamma−ray

spectra (60Co and 137Cs have two identifiable photopeaks) and more complicated spectra

(152Eu and 133Ba have multiple photopeaks). The amount of lead, iron, and aluminum

included in this experiment will depend on thickness of these materials available in our

laboratory. In addition to laboratory sources, real and simulated spectra of shielded HEU

and WGPu will be included in this analysis. The mean ANN outputs and their variances

will be presented for a number of spectra.

The ANNs ability to identify spectra with various calibrations will also use 60Co, 137Cs,

152Eu, and 133Ba. Spectra of individual sources will be measured using various calibrations.

The calibration will be changed by changing the PMT voltage from 700 V to 800 V in 10 V
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steps. The mean ANN outputs and variances will be presented for a number of spectra.

The ANNs ability to identify mixtures of less than three isotopes will be addressed. Mix-

tures of 60Co, 137Cs, 152Eu, and 133Ba will be recorded. The mean ANN outputs and their

variances will be reported. In addition to these, mixtures in required by the ANSI standard,

• 137Cs + depleted uranium (DU)

• 99mTc + HEU

• 201Tl + HEU

• 67Ga + HEU

• 131I + WGPu

• Naturally occurring radioactive material (NORM) + HEU

• NORM + WGPu

will be simulated and their mean ANN output and variance will be reported.

4.1.2 Uranium Enrichment Calculations

Measuring the enrichment of uranium is important for treaty verification purposes. These

measurements are performed in uranium enrichment facilities and to verify warhead dis-

armament. Due to treaty conditions limiting the amount of sensitive information released

to inspectors, information barriers are required. Information barriers can include removing

regions in gamma-ray spectra or giving no information about shielding between the source

and detector.

ANNs are a good candidate as an information barrier for three reasons. First, their output

can be constrained, only outputting the enrichment given a gamma-ray spectrum. Restrict-

ing the output ensures potentially sensitive details of the sample are not known. Second,

ANNs can be trained to use spectra with unknown background radiation and calibration

drift. Because the inspector will have a time constraint, it is assumed a separate background
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spectrum will not be taken. A background spectrum can be subtracted from a background

and source spectrum, making analysis easier. ANNs can be taught to operate in areas with

different background radiation. The other unknown, possible calibration drift, is typically

corrected manually. Because the inspector will not have access to the spectrum, manual

calibration adjustments cannot be performed. It has been shown that ANNs can be taught

to identify isotopes in detectors with different calibration. A few technical hurdles need to

be addressed when constructing an ANN to perform uranium enrichment. These hurdles

and methods to address them are described below.

Because uranium emits relatively low energy gamma−rays, it’s spectrum is especially

susceptible to corruption by shielding. To address this, a shielding library will be included

in the dataset simulation. This will be constructed using the same method described in

section 4.1.1 using the material thicknesses shown in Table 4.1.

Treaty verification inspectors typically have under an hour to collect data for an enrich-

ment measurement. For this reason source measurement times will range from 5 mins to 1

hr. Collection times shorter than 5 mins may produce ANNs with high variance outputs.

To demonstrate the ANNs performance versus collection time, a graph of the measurement

time versus ANN accuracy on a simulated verification dataset will be included. It is ex-

pected that collecting times less than 10 mins will result in an ANN accuracy too low to

be of practical use. For reference, Analytically chemical techniques can measure uranium

enrichment to 0.1−0.2% accuracy [?]. Comparing the areas of photopeaks in HPGe spectra,

an accuracy of about 1% is possible [?]. Also due to the time constraint, it is assumed that

background data cannot be collected. To address this, each training sample will include a

random combination of background isotopes. The background count rate will range from

10−120 cps.

Because trained inspectors are performing these measurements, large calibration drifts are

not included in the training data. Small calibration drifts of less than 5% will be included

to account for temperature changes and electronic drift.

The isotope library necessary for uranium enrichment consists of only six isotopes: 235U,

238U, 234U, 234Th, 231Th, and 234mPa. These are the main gamma−ray producing isotopes

in a sample of uranium. The training set will be simulated using combinations of all of
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these isotopes in pseudo−random combinations. Random sampling does not guarantee the

training space is evenly sampled and often produces clusters. The presence of clusters in the

training set may lead the ANN to learn a bias for certain combinations of isotopes. A way

to reduce the chances of clusters and more uniformly sample the input space is using Latin

hypercube sampling (LHS). LHS partitions each dimension of a space into N equal parts.

The space is then sampled using N points, ensuring that there is only one point along each

partition in each dimension. An example of this sampling method for a two-dimension space

is shown in Figure 4.2.

Figure 4.2: An example of LHS sampling. Seen here is a square sampled using five points.

To quantify how much LHS helps identification, datasets will be constructed using random

sampling and LHS. The number of samples in each dataset will be 1k, 5k, 10k, 50k, 100k.

ANNs will be trained using these datasets and their performance on a simulated validation

dataset will then be measured and compared. It is expected that at a certain number

of samples the ANN performance will reach an asymptote. It is also expected that the

LHS datasets will reach a higher−accuracy asymptote quicker than the randomly sampled

datasets.

To test the ability for ANNs to measure uranium enrichment, depleted, low−enriched,

medium−enriched, and high−enriched uranium spectra will be simulated. for each enrich-

ment level, 100 spectra will be simulated using collection times of 5, 10, 60, 300, 600, 1800,

and 3600 s. Each of these spectra will contain an unknown background and calibration

similar to the training set. Separate validation sets will be constructed for a small amount

of shielding (0.1 cm of lead) and a large amount of shielding Shielding (1 cm of lead).
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4.1.3 Additional Simulated Detector Models

Simulating additional NaI detectors using GADRAS may help the ANN generalize to differ-

ent detectors. To begin this process, two 2−inch by 2−inch NaI detectors will be modeled

using GADRAS and their properties will be changed. These changes will include changing

the calibration and changing the shape of the photopeaks. The calibration changes will

be based on laboratory NaI detectors. The shape of photopeaks will be changed based on

laboratory NaI detectors’ full−width−at−half−max (FWHM). Ten different models will be

included.

Initial hyperparameter searches will be based on datasets simulated using a single detector.

After an optimal ANN structure is found using the hyperparameter search, two new training

datasets will be constructed with additional detector models. The two datasets will be

constructed from five models and ten models. Two ANNs will be trained using both datasets.

The performance of the ANNs on a dataset constructed using five new detector models will

be reported. It is expected that the ANN trained using more detector models will have a

higher accuracy on the new testing dataset.

4.2 Autoencoders

An autoencoder is an unsupervised ANN whose goal is to learn a representation of the input.

This is accomplished by simultaneously training an encoding ANN and a decoding ANN. An

example of this can be seen in Figure 4.3. As seen in this figure, the encoding ANN reduces

an n−dimension input signal, X, to a m−dimension signal, z, where m < n. The decoding

ANN takes the encoded signal, z, and outputs a reproduction of the input signal, X ′.

Without an autoencoder, a single ANN has to learn multiple tasks to identify isotopes. An

ANN would have to simultaneously identify the detector calibration, background signal, and

possible source signal. By training an autoencoder to reconstruct a background−subtracted

and correctly calibrated spectrum, the task of isotope identification is simplified for the

ANN. This may result in more accurate identifications. To test this, for each dataset a

single autoencoder and three ANNs will be trained. The first will be trained without an

27



autoencoder. The second will be trained using the encoder as input. The third will be

trained using the full autoencoder as input. A random hyperparameter search will be used

to find an appropriately structured autoencoder. The testing and validation error for these

ANNs will be compared for each respective dataset.

In addition to using fully connected autoencoders, a 1−D convolutional autoencoder will

also be explored. Fully connected ANNs do not assume the input has local spatial structure,

while convolution ANNs do. Because gamma−ray spectra have local spatial structure in the

form of photopeaks and Compton continua, it may be better to use a convolutional ANN

over a fully connected ANN. To test this, the experiment described above will be repeated

using a 1−D convolutional autoencoder.

Figure 4.3: An example of an autoencoder [?].

4.3 K−folds Cross Validation

K−folds cross validation will be included in the hyperparameter search for each dataset.

Cross validation is the general method of determining how well a model will generalize to
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novel data. K−folds cross validation does this by splitting the available data into k subsets.

From these, k−1 subsets are used to train the ANN and the remaining subset is used as

the validation dataset. Typical values for k are either 5 or 10. This process is repeated,

using each subset once as the validation dataset. This process is illustrated in Figure 4.4 for

5−folds cross validation.

For each different hyperparameter combination, a new set of cross validation ANNs will be

trained. The average of the final validation dataset errors will be used to pick the optimum

ANN. Performing cross validation will more accurately demonstrate how well a given set of

hyperparameters will generalize to new data. For each dataset the error and hyperparam-

eter structure will be compared for ANNs trained with no cross validation, 5−folds cross

validation, and 10−folds cross validation.

Figure 4.4: An example of 5−folds cross validation. In each fold, the same dataset is
partitioned into training data, in blue, and validation data, in green. Each training dataset
is used to train a separate ANN. Each ANNs respective validation dataset is used to stop
the ANNs training.

4.4 Bagging

Each time the ANN trains, it produces slightly different identification results and perfor-

mance. Bagging, or the process of averaging the outputs of many ANNs, can reduce the

variance in the output [?]. In addition to this, bagging more accurately displays the true

performance of a given ANN structure.
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Analyzing the performance of bagging begins once the ANN structure is found from the

random hyperparameter search. Using this structure, ten models will be trained. Each model

will use the entire training dataset, ending training at the average iteration used for the cross

validation step. The accuracy and variance in the output as more models are averaged will

be reported. The accuracy and variance are expected to plateau with enough models being

averaged. If the accuracy or variance do not plateau after ten models, additional will be

created until the effect is observed.
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CHAPTER 5

CONCLUSION

Because of their flexibility and their ability to train using simulated data, ANNs are well

suited to solving different problems in gamma−ray spectroscopy. Because ANNs incorporate

fuzzy logic, they mimic the intuition a trained spectroscopist uses when identifying spectra.

This is in contrast to other identification algorithms that use rigid rules which may struggle to

identify spectra that are poorly calibrated, have insufficient counts to form obvious features,

or are in an unknown background.

To better understand what scenarios the ANN can operate in, two datasets will be in-

vestigated. The goal of the first dataset is to perform source interdiction using the ANSI

N42−34−2006 library. The second dataset corresponds to performing uranium enrichment

calculations for treaty verification purposes.

In addition to these datasets, a number of ANN experiments are suggested to improve

on past work. The first improvement is adding additional detector models to the training

set. The additional models should increase the generalization performance of the ANN. The

second improvement will focus on how autoencoders can improve performance by keeping

the calibration correction and background subtraction step separate from an ANN used

for identification. This will include investigating the use of a 1−D convolution ANN as an

autoencoder. To more accurately display the performance of a given ANN structure, k−folds

cross validation will be added to the hyperparameter search for each dataset. After training,

bagging will be added to the model. Bagging lowers the variance on the outputs of a given

ANN structure and more accurately displays its performance.
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