
Numerical Experiments for Verifying Demand

Driven Deployment Algorithms

Non-Optimizing Algorithm

Jin Whan Bae, Gwendolyn Chee, Kathryn Huff

August 14, 2018

1 Project Objective

The Demand-Driven Cycamore Archetype project (NEUP-FY16-10512) aims
to develop Cycamore’s demand-driven deployment capabilities. The de-
veloped algorithm will be in the form of a Cyclus Institution agent, and
will deploy Facilities to meet the front-end and back-end demands of the
fuel cycle.

2 Motivation

The current Cyclus fuel cycle simulation code relies on the user to define a
deployment scheme or set the supporting facilities capacities to infinity
to ensure that there’s no gap in the nuclear fuel cycle supply chain. These
user-defined assumptions are not an accurate reflection of the real world.

3 Method

The project objective is met by developing three types of predictive algo-
rithms: non-optimizing, deterministic-optimizing and stochastic-optimizing.
Each algorithm aims to improve on the previous to provide more accurate
prediction results.

1

The prediction algorithms are being developed by the team at University
of South Carolina. While the numerical experiments are being designed by
the team at University of Illinois at Urbana-Champaign.

This report will focus on the non-optimizing algorithm. It lists capability
requirements of the non-optimizing case of the new Cyclus institute for
demand-driven deployment of fuel cycle facilities. It also discusses the tests
to check correct implementation of the capabilities, using a sample fuel cycle
with well-defined facility parameters.

4 Archetype Requirements

Subsections 4.1 to 4.4 state the requirements that apply to all three predic-
tive algorithms. Expectations for the non-optimizing algorithm are different
than for the deterministic-optimizing and stochastic-optimizing. Therefore,
in subsections 4.5 to 4.6, the requirements unique to the non-optimizing
algorithm are specified.

4.1 User Configuration

The archetype should allow the user to define the following parameters:

1. A commodity whose demand drives deployment

2. Initial amount of that demand

3. Rate of growth or decline of that demand

4. The facilities in the simulation able to meet that demand

5. Algorithm type: non-optimizing, deterministic optimizing or stochas-
tic optimizing

4.2 Create a supply chain

The archetype should be able to access the user defined parameters for the
facilities in the simulation and evaluate if the commodities supplied by these
facilities produce an appropriate supply chain to meet the demand of the
commodity whose demand drives deployment. If not, the archetype should
inform the user by throwing an error.

2

4.3 High-level Functionality

If the user chooses a positive demand growth equation for power and the
facilities present in the simulation to include reactors and supporting fuel
facilities. The demand for power will trigger reactor deployment which will
cause an increase in the demand for fuel, which will in turn trigger fuel
facility deployment.

4.4 Growth or Decline Rate

The archetype should give the user options for different types of growth
or decline rate curves. Possible examples could be linear, exponential or
piece-wise.

4.5 Facility Deployment and Decommissioning

The non-optimizing algorithm’s deployment and decommissioning capabili-
ties should be based on previous demand and supply values. At each time
step, the algorithm should evaluate the demand for each commodity against
its corresponding supply. If there is a shortage or surplus, the algorithm
should deploy new facilities or decommission existing facilities. With an
exception to the situation where decommissioning of a facility due to sur-
plus of a commodity will result in the shortage of the commodity. This is
a reflection of reality, since it is acceptable to have some surplus in storage
as opposed to shortage of a commodity that could result in non-maximum
capacity of a nuclear reactor.

4.6 Dealing with volatility

A comprehensive fuel cycle simulator must have predictive capabilities which
can deploy fuel cycle support facilities intelligently even in the face of volatile
dynamics. In the situation where the commodity whose demand drives
deployment changes in a volatile manner, the archetype should be able to
recognize this and not deploy and decommission the same facility across
short time periods due to volatile changes in commodity demand.

5 Simulation parameter for Test Scenarios

Simple parameters are given to fuel cycle facilities for the numerical testing
of the algorithm. Only source and reactor facilities are used in the test
scenarios.

3

Table 1 provides basic parameters for each test scenario. Table 2 provides
the parameters for the source, reactors and sink in the test scenarios.

Table 1: Basic Test Parameters

Test Scenario Parameters Value Units

Duration 15 timesteps
Timestep 1 month
Start Month 1 month
Start Year 2000 year

Table 2: Source, Reactor and Sink Parameters

Source Parameters Value Units

Throughput 1 kg
Output Commodity fuel kg

Reactor Parameters Value Units

Cycle Time 1 timesteps
Refuel Time 0 timesteps
Lifetime 1 timesteps
Power Capacity 1 MWe
Assembly Size 1 kg
assemblies per core 1
assemblies per batch 1
Input Commodity fuel kg
Output Commodity power MW

Sink Parameters Value Units
Throughput 1 kg
Input Commodity spent uox kg

4

6 Numerical Tests for the Non-optimizing predic-
tion method

The non-optimizing prediction method is tested by comparing its output for
various scenarios against their analytical solutions . In this section, the tests
that must be met is described based on the parameters defined in table 1 and
2 and analytical solution of a defined simple scenario. Unit test examples
are included in Appendix B.

The tests are in forms of [alphabet]-[traj]-[num]. Alphabet refers
to the supply chain of the test scenario, traj the demand change in time,
and num for tests with the same alphabet and traj.

• A - source → End Demand Commodity

• B - source → reactor → End Demand Commodity

Note that for test C, the End Demand Commodity is power generated
from the reactor. The C-tests additionally check if the sink is deployed to
meet spent fuel disposal demand.

The prediction algorithm for the non-optimizing method has three user-
defined input parameters. The aim of the various test scenarios are to
check if the non-optimizing method archetype will deploy or decommission
facilities correctly when there is a variation in the combination of the three
input parameters. The input parameters are:

1. Initial demand value

2. Number of initial facilities (initial supply)

3. Growth rate of initial demand

The growth in demand is governed by the Equation 1.

Df (timestep) = Di(1 + g)(
timestep

12
) (1)

Where Df is demand of resource at specific time step, Di is initial demand
and g is growth rate.

Source and reactor facilities are used in the test scenarios. Test sce-
narios A1 to A4 and B1 to B2 only have a source facility and test scenarios
A5 to A7 have both source and reactor facilities. For each test scenario,
there is one table that states the test scenario’s input parameters and an-
other table that states the exact analytical solution. The analytical solution

5

table does not include deployment of the initial facility that is stated in the
first table.

Additionally, we created base tests for each A-type test scenario that
passes when the supply meets the demand within a given facility number
tolerance. In other words, when the supply exceeds the demand by the spec-
ified tolerance quantity, the test still passes. For this report, the tolerance
is set to one facility. For example in test A-1, the expected total number
facilities deployed is 1, and since the facility over-prediction tolerance is 1,
the acceptable range of total number of facilities (x) deployed in the entire
test scenario is 1 < x < 2. If the total number of facilities deployed is within
this range, the base case test will pass.

6.1 Test A-const-1

In test A-const-1, only a source facility is present in the test scenario. Table
3 shows the input parameters of the source facility in the test scenario. Table
4 shows the expected analytical solution based on the test scenario. Table
5 shows the accepted range of total number of facilities deployed over the
test scenario which will pass the base test, which factors in the facility over-
prediction tolerance of 1.

Table 3: Test A-const-1 Scenario Input Parameters

Source Parameter Value Units

Initial demand 1 kg
Initial facilities 0 #
Growth Rate 0

Table 4: Test A-const-1 Analytical Solution

Time Step
No. of Source

Facilities Deployed

1 1
2 to 15 0

Table 5: Test A-const-1 Base Test Acceptance

Acceptable total No. of Source
Facilities Deployed + tolerance

1 < x < 2

6

6.2 Test A-const-2

In test A-const-2, only a source facility is present in the test scenario. Table
6 shows the input parameters of the source facility in the test scenario. Table
7 shows the expected analytical solution based on the test scenario.Table 8
shows the accepted range of total number of facilities deployed over the test
scenario which will pass the base test, which factors in the facility over-
prediction tolerance of 1.

Table 6: Test A-const-2 Scenario Input Parameters

Source Parameter Value Units

Initial demand 2 kg
Initial facilities 1 #
Growth Rate 0

Table 7: Test A-const-2 Analytical Solution

Time Step
No. of Source

Facilities Deployed

1 1
2 to 15 0

Table 8: Test A-const-2 Base Test Acceptance

Acceptable total No. of Source
Facilities Deployed + tolerance

2 < x < 3

6.3 Test A-grow-1

In test A-grow-1, only a source facility is present in the test scenario. Table
9 shows the input parameters of the source facility in the test scenario. Table
10 shows the expected analytical solution based on the test scenario. Table
11 shows the accepted range of total number of facilities deployed over the
test scenario which will pass the base test, which factors in the facility over-
prediction tolerance of 1.

7

Table 9: Test A-grow-1 Scenario Input Parameters

Source Parameter Value Units

Initial demand 1 kg
Initial facilities 0 #
Growth Rate 1

Table 10: Test A-grow-1 Analytical Solution

Time Step
No. of Source

Facilities Deployed

1 2
2 to 12 0
13 1
14 to 15 0

Table 11: Test A-grow-1 Base Test Acceptance

Acceptable total No. of Source
Facilities Deployed + tolerance

3 < x < 4

6.4 Test A-grow-2

In test A-grow-2, only a source facility is present in the test scenario. Table
12 shows the input parameters of the source facility in the test scenario.
Table 13 shows the expected analytical solution based on the test scenario.
Table 14 shows the accepted range of total number of facilities deployed over
the test scenario which will pass the base test, which factors in the facility
over-prediction tolerance of 1.

Table 12: Test A-grow-2 Scenario Input Parameters

Source Parameter Value Units

Initial demand 1 kg
Initial facilities 1 #
Growth Rate 1

8

Table 13: Test A-grow-2 Analytical Solution

Time Step
No. of Source

Facilities Deployed

1 1
2 to 12 0
13 1
14 to 15 0

Table 14: Test A-grow-2 Base Test Acceptance

Acceptable total No. of Source
Facilities Deployed + tolerance

3 < x < 4

6.5 Test B-const-1

In test B-const-1, both a source and reactor facility is present in the test
scenario. Table 15 shows the input parameters of the source facility in the
test scenario. Table 16 shows the expected analytical solution based on the
test scenario. Table 17 shows the accepted range of total number of facilities
deployed over the test scenario which will pass the base test, which factors
in the facility over-prediction tolerance of 1.

Table 15: Test B-const-1 Scenario Input Parameters

Source Parameter Value Units

Initial demand 1 kg
Initial facilities 0 #
Growth Rate 0

Reactor Parameter Value Units

Initial demand 1 MW
Initial facilities 0 #
Growth Rate 0

9

Table 16: Test B-const-1 Analytical Solution

Time Step
No. of Source

Facilities Deployed
No. of Reactor

Facilities Deployed

1 1 1
2 to 15 0 0

Table 17: Test B-const-1 Base Test Acceptance

Acceptable total No. of Source
Facilities Deployed + tolerance

Acceptable total No. of Reactor
Facilities Deployed + tolerance

1 < x < 2 1 < x < 2

6.6 Test B-const-2

In test B-const-2, both a source and reactor facility is present in the test
scenario. Table 18 shows the input parameters of the source facility in the
test scenario. Table 19 shows the expected analytical solution based on the
test scenario. Table 20 shows the accepted range of total number of facilities
deployed over the test scenario which will pass the base test, which factors
in the facility over-prediction tolerance of 1.

Table 18: Test B-const-2 Scenario Input Parameters

Source Parameter Value Units

Initial demand 1 kg
Initial facilities 1 #
Growth Rate 0

Reactor Parameter Value Units

Initial demand 1 MW
Initial facilities 1 #
Growth Rate 0

Table 19: Test B-const-2 Analytical Solution

Time Step
No. of Source

Facilities Deployed
No. of Reactor

Facilities Deployed

1 1 1
2 to 15 0 0

10

Table 20: Test B-const-2 Base Test Acceptance

Acceptable total No. of Source
Facilities Deployed + tolerance

Acceptable total No. of Reactor
Facilities Deployed + tolerance

1 < x < 2 1 < x < 2

6.7 Test B-grow-1

In test B-grow-1, both a source and reactor facility is present in the test
scenario. Table 21 shows the input parameters of the source facility in the
test scenario. Table ?? shows the expected analytical solution based on the
test scenario. Table 23 shows the accepted range of total number of facilities
deployed over the test scenario which will pass the base test, which factors
in the facility over-prediction tolerance of 1.

Table 21: Test B-grow-1 Scenario Input Parameters

Source Parameter Value Units

Initial demand 1 kg
Initial facilities 0 #
Growth Rate 1

Reactor Parameter Value Units

Initial demand 1 MW
Initial facilities 0 #
Growth Rate 1

Table 22: Test B-grow-1 Analytical Solution

Time Step
No. of Source

Facilities Deployed
No. of Reactor

Facilities Deployed

1 2 2
2 to 12 0 0
13 1 1
14 to 15 0 0

Table 23: Test B-grow-1 Base Test Acceptance

Acceptable total No. of Source
Facilities Deployed + tolerance

Acceptable total No. of Reactor
Facilities Deployed + tolerance

3 < x < 4 3 < x < 4

11

6.8 Test A-const-3

In test A-const-3, only a source facility is present in the test scenario. Table
24 shows the input parameters of the source facility in the test scenario.
Table 25 shows the expected analytical solution based on the test scenario.

Table 24: Test A-const-3 Scenario Input Parameters

Source Parameter Value Units

Initial demand 0 kg
Initial facilities 1 #
Growth Rate 0

Table 25: Test A-const-3 Analytical Solution

Time Step
No. of Source

Facilities Deployed
No. of Source

Facilities Decomissioned

1 1 0
2 0 1
3 to 15 0 0

6.9 Test A-decl-1

In test A-decl-1, only a source facility is present in the test scenario. Table
26 shows the input parameters of the source facility in the test scenario.
Table 27 shows the expected analytical solution based on the test scenario.

Table 26: Test A-decl-1 Scenario Input Parameters

Source Parameter Value Units

Initial demand 1 kg
Initial facilities 1 #
Growth Rate -1

Table 27: Test A-decl-1 Analytical Solution

Time Step
No. of Source

Facilities Deployed
No. of Source

Facilities Decomissioned

1 to 12 1 0
13 0 1
14 to 15 0 0

12

7 Numerical Test Results

It was found that none of the exact tests and base case tests passed. The
failures are attributed to three reasons:

1. There is a test failure when there is no initial facility present. An
initial condition must be given for the algorithm to understand the
capacity of the facility it deploys.

2. There is a test failure when there is growth in the demand. The
algorithm failed to deploy facilities to meet the increase in demand.

3. There is a test failure when facilities are expected to be decommis-
sioned. There is yet to be an implementation on decommissioning
behavior.

Despite failures in these situations, the non-optimizing method proved to
have commissioning capabilities to meet demand. Because of the limitation
in the algorithm, it is hard to predict demand with precision in such a short
time. However, the same numerical experiments can be applied to the deter-
ministic optimizing algorithm, which holds more promise. The goal is that
the deterministic optimization method will be able to overcome the issues
faced by the non-optimizing method with reference to the requirement of an
initial condition, growth in demand. Also, the capability to decommission
facilities upon oversupply will be added.

Appendix C reflects the numerical experiment solution output by the
non-optimizing prediction algorithm for each test scenario defined in section
6.

13

8 References

References

14

Appendix A - parameter configuration

Appendix A shows the json file that contains the simulation parameters that
are common between all the test scenarios discussed in Section 6.

template = {

"simulation": {

"archetypes": {

"spec": [

{"lib": "agents", "name": "NullRegion"},

{"lib": "cycamore", "name": "Source"},

{"lib": "cycamore", "name": "Reactor"},

{"lib": "cycamore", "name": "Sink"},

{"lib": "d3ploy.no_inst", "name": "NOInst"}

]

},

"control": {"duration": "15", "startmonth": "1", "startyear": "2000"},

"recipe": [

{

"basis": "mass",

"name": "fresh_uox",

"nuclide": [{"comp": "0.711", "id": "U235"}, {"comp": "99.289", "id": "U238"}]

},

{

"basis": "mass",

"name": "spent_uox",

"nuclide": [{"comp": "50", "id": "Kr85"}, {"comp": "50", "id": "Cs137"}]

}

],

"facility": [{

"config": {"Source": {"outcommod": "fuel",

"outrecipe": "fresh_uox",

"throughput": "1",

"source_record_supply": "fuel"}},

"name": "source"

},

{

"config": {"Sink": {"in_commods": {"val":"spent_uox"},

"max_inv_size": 1,

"sink_record_demand": "fuel_cap"}},

15

"name": "sink"

},

{

"config": {

"Reactor":{

"assem_size":"1",

"cycle_time": "1",

"fuel_incommods": {"val": "fuel"},

"fuel_inrecipes": {"val": "fresh_uox"},

"fuel_outcommods": {"val": "spent_uox"},

"fuel_outrecipes": {"val": "spent_uox"},

"n_assem_batch": "1",

"n_assem_core": "1",

"power_cap": "1",

"refuel_time": "0",

"reactor_fuel_demand": "fuel_reactor"

}

},

"name": "reactor"

}]}}

16

Appendix B - Sample Test Code

Sample test code for test A-const-1

Appendix B shows the python file that contains the a segment of the sim-
ulation parameters that are unique to test A-const-1 and the code for test
A-const-1.

Test A_const_1

INIT_DEMAND = copy.deepcopy(TEMPLATE)

INIT_DEMAND["simulation"].update({"region": {

"config": {"NullRegion": "\n "},

"institution": {

"config": {

"NOInst": {

"calc_method": "arma",

"demand_commod": "POWER",

"demand_std_dev": "0.0",

"growth_rate": "0.0",

"initial_demand": "1",

"prototypes": {"val": "source"},

"steps": "1",

"supply_commod": "fuel"

}

},

"name": "source_inst"

},

"name": "SingleRegion"

}})

@pytest.mark.base

def test_a1_init_demand():

tests if NOInst deploys a source

given initial demand and no initial facilities

output_file = 'init_file.sqlite'

input_file = output_file.replace('.sqlite', '.json')

with open(input_file, 'w') as f:

json.dump(INIT_DEMAND, f)

s = subprocess.check_output(['cyclus', '-o', output_file, input_file],

universal_newlines=True, env=ENV)

check if ran successfully

17

assert("Cyclus run successful!" in s)

getting the sqlite file

cur = get_cursor(output_file)

check base solution

source_base = cur.execute(query).fetchone()

assert(1 <= source_base[0] <= (1 + tol))

@pytest.mark.exact

def test_a1_init_demand_exact():

output_file = 'init_file.sqlite'

cur = get_cursor(output_file)

check exact solution

source_exact = cur.execute(query + " AND EnterTime = 1").fetchone()

assert(source_exact[0] == 1)

18

Appendix C - Numerical Experiment Solution for
test scenarios

Test A-const-1

Table 28: Test A-const-1 Numerical Experiment Solution

Time Step
No. of Source

Facilities Deployed

1 to 15 0

Test A-const-2

Table 29: Test A-const-2 Numerical Experiment Solution

Time Step
No. of Source

Facilities Deployed

1 0
2 1
3 1
4 1
5 0
6 1
7 to 15 0

Test A-grow-1

Table 30: Test A-grow-1 Numerical Experiment Solution

Time Step
No. of Source

Facilities Deployed

1 to 15 0

Test A-grow-2

Table 31: Test A-grow-2 Numerical Experiment Solution

Time Step
No. of Source

Facilities Deployed

1 to 15 0

19

Test B-const-1

Table 32: Test B-const-1 Numerical Experiment Solution

Time Step
No. of Source

Facilities Deployed
No. of Reactor

Facilities Deployed

1 to 15 0 0

Test B-const-2

Table 33: Test B-const-2 Numerical Experiment Solution

Time Step
No. of Source

Facilities Deployed
No. of Reactor

Facilities Deployed

1 0 0
2 1 0
3 1 0
4 1 0
5 0 0
6 1 0
7 to 15 0 0

Test B-grow-1

Table 34: Test B-grow-1 Numerical Experiment Solution

Time Step
No. of Source

Facilities Deployed
No. of Reactor

Facilities Deployed

1 to 15 0 0

Test A-const-3

Table 35: Test A-const-3 Numerical Experiment Solution

Time Step
No. of Source

Facilities Deployed
No. of Source

Facilities Decomissioned

1 to 15 0 0

20

Test A-decl-1

Table 36: Test A-decl-1 Numerical Experiment Solution

Time Step
No. of Source

Facilities Deployed
No. of Source

Facilities Decomissioned

1 to 15 0 0

21

