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1 Introduction

Nuclear Fuel Cycle (NFC) simulation scenarios are constrained objective
functions. The objectives are systemic demands such as ”1% power growth”,
while an example of a constraint is the availability of new nuclear technol-
ogy. To aid in the setup of nuclear fuel cycle simulations, NFC simulators
should bring demand responsive deployment decisions into the dynamics of
the simulation logic [1]. While automated power production deployment is
common in most fuel cycle simulators, automated deployment of supportive
fuel cycle facilities is non-existent.

Instead, the user must detail the deployment timeline of all supporting
facilities or have infinite capacity support facilities. Thus, a next genera-
tion NFC simulator should predictively and automatically deploy fuel cycle
facilities to meet user defined power demand.

Cyclus is an agent-based nuclear fuel cycle simulation framework [2].
Each entity (i.e. Region, Institution, or Facility) in the fuel cycle is modeled
as an agent. Institution agents are responsible for deploying and decommis-
sioning facility agents and can represent a legal operating organization such
as a utility, government, etc [2].

The Demand-Driven Cycamore Archetypes project (NEUP-FY16-10512)
aims to develop Cyclus’s demand-driven deployment capabilities. This ca-
pability is developed in the form of a Cyclus Institution agent that de-
ploys facilities to meet the front-end and back-end fuel cycle demands based
on a user-defined commodity demand. Its goal is to meet supply for any
commodity while minimizing undersupply. This demand-driven deployment
capability is referred to as d3ploy.

In this paper, we will explain the capabilities of d3ploy and demonstrate
how d3ploy is used to meet the primary objective of minimizing undersupply
of all commodities in a simulation. The goal is to study a basic transition
scenarios with constant, linearly increasing and sinusoidal power demand.
Such a study provides recommendations and insights to inform decisions
about parameter inputs when setting up larger transition scenarios that
include many facilities. The last cases analyzed are such transition scenarios.

2 D3ploy capabilities

2.1 Core Capability of d3ploy

At each time step, d3ploy predicts demand and supply of each commodity
for the next time step. Then, d3ploy deploys facilities to meet predicted
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demand. D3ploy’s primary objective is to minimize the number of time
steps of undersupply of any commodity.

When there is a predicted undersupply of a commodity, d3ploy looks
at what facilities it has that provides that commodity and will deploy the
fewest number of facilities to meet the predicted demand. This logic is
available in solver.py.

2.2 Basic User-Defined Input Variables

The user is able to input specific variables to customize their simulation.
Descriptions of each input variable can be found in the README of the
d3ploy github repository.

Essentially, the user must define the facilities for the institution to control
and their corresponding capacities. The user must also define the driving
commodity, its demand equation and what calculation method the institu-
tion predicts demand and supply with.

Users also have the option to give a time dependent equation that gov-
erns preference for that facility compared to other facilities that provide the
same commodity. The user also has an option to constrain deployment of a
facility until there is a accumulation of the inventory of a specific commod-
ity. The user can also define an initial list of facilities that are present in
the institution at the beginning of the simulation.

2.3 Prediction Algorithms

Three interchangeable algorithm types govern demand and supply predic-
tions: non-optimizing (NO), deterministic optimizing (DO), and stochastic
optimizing (SO).

There are three methods implemented for the non-optimizing model:
Moving Average (MA), autoregressive moving average (ARMA), and autore-
gressive conditional heteroskedasticity (ARCH). There are four methods im-
plemented for the deterministic optimizing model: Polynomial fit regression
(POLY), simple exponential smoothing (EXP SMOOTHING), triple expo-
nential smoothing (HOLT WINTERS) and fast fourier transform (FFT).
There is one method implemented for stochastic optimizing model: stepwise
seasonal (SW SEASONAL).

The user can choose which prediction algorithm governs each specific
d3ploy commodity. The effectiveness of a prediction algorithm depends
on the type of power demand in a scenario and the type of commodity.
For example, the triple exponential smoothing method is most effective for
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predicting demand and supply for the power commodity in a scenario with a
sinusoidal power demand as opposed to a linearly increasing power demand.
Likewise, the fast fourier transform method is more effective than triple
exponential smoothing for the non-power commodities in the same scenario.

2.4 Difference between Demand and Supply Driven Institu-
tions

Within d3ploy, there are two institutions: DemandDrivenDeploymentInst

and SupplyDrivenDeploymentInst. The prior is used for the front-end of
the fuel cycle and the latter is used for the back-end. Front-end facilities
are those that exist before the reactor in a nuclear fuel cycle, such as a fuel
fabrication facility. Back-end facilities go after the reactor in a nuclear fuel
cycle; one example would be a reprocessing facility. The reason for this sep-
aration is to let facilities have the choice to demand for supply or demand
for capacity. For example, in the front-end facilities, the reactor has a de-
mand for fuel that triggers the deployment of fuel fabrication facilities. Such
facilities will create a supply to meet the demand. Whereas, for the back
end facilities, the reactor generates spent fuel, there is a demand for a waste
repository facility to accept the spent fuel. This triggers the deployment of
a waste repository that will create a capacity to receive the available supply
of spent fuel.

2.5 Installed Capacity

The user can choose between two distinct methods for deploying facilities:
based on the difference between predicted demand and predicted supply,
or the difference between predicted demand and installed capacity. There
are two main reasons for wanting to use installed capacity over predicted
supply. The first is for facilities that provide intermittent supply, such as
a reactor facility that has a designated refueling time. During time steps
where a reactor is refueling, the user might not want d3ploy to deploy more
facilities to make up for the lack of supply caused by this one time step gap
in supply. The second is for situations where the input commodity for a
facility has run out in a simulation, and the facility that produces the input
commodity is no longer commissionable. Therefore, with the demand for
the output commodity of that facility, d3ploy would deploy that facility in
an attempt to meet the demand, however due to the lack of available input
commodity the facility would be unable to supply its output commodity.
For example, in a transition scenario to fast reactors that require plutonium
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from Light Water Reactor (LWR)’s spent nuclear fuel (SNF), if the fast
reactors’ demand for plutonium exceeds the inventory provided by LWRs
prior to decommissioning, d3ploy will deploy mixer facilities in an effort to
produce fast reactor fuel despite the lack of plutonium with which to make
the fuel. This is an example of a poorly set up transition scenario.

2.6 Supply/Capacity Buffer

In DemandDrivenDeploymentInst, the user can choose to provide a buffer
for the predicted supply; doing so will cause d3ploy to ensure that predicted
supply meets the predicted demand plus the additional buffer.

Similarly, in SupplyDrivenDeploymentInst, the user can choose to pro-
vide a buffer for the predicted capacity so that d3ploy will ensure predicted
capacity meets the predicted supply with the additional buffer. These buffers
can be defined as either a percentage value or an absolute value.

3 Demonstration of d3ploy capabilities

To demonstrate d3ploy’s capabilities we run simulations with constant, lin-
early increasing, and sinusoidal power demand. A balance between the vari-
ous system parameters must be met for each type of simulation to minimize
the undersupply and under capacity for the various commodities.

These simulations were basic transition scenarios that only included
three types of facilities: source, reactor and sink. All of the simulations
began with ten reactor facilities, reactor1 to reactor10. These reactors
had staggered cycle lengths and lifetimes so that they did not perform refu-
elings or undergo decommissioning simultaneously. D3ploy deploys reactor
facilities of the new reactor type to correct the power undersupply that
occurred when the ten initial reactor facilities began to decommission.

All the simulations deployed facilities based on the relationship between
predicted demand and installed capacity, a capability discussed in the pre-
vious section. Table 1 shows the simulation parameters that are consistent
across all the discussed scenarios. Table 2 displays the number of time steps
where there was an undersupply for each commodity.

The reason for setting up these basic transition scenarios is to demon-
strate d3ploy’s capabilities for use in simulating transition scenarios and
also to inform decisions about parameter inputs when setting up larger de-
mand transition scenarios that include many facilities.
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Table 1: Transition Scenario Parameters for the constant, linear increasing,
and sinusoidal power demand simulations.

Parameters Description

Facilities Present Source (Capacity:
3000kg), Reactor (Ca-
pacity: 1000MW), Sink

(Capacity: 50000kg)

New Reactor Parameters Cycle time: 18, Refuel
time: 1

Driving Commodity Power

Table 2: Undersupply results for each commodity in each scenario.

Transition Scenario Commodity
No. of time steps
with undersupply

Constant Power
Fuel 1
Power 0
Spent Fuel 0

Linearly Increasing Power
Fuel 1
Power 0
Spent Fuel 0

Sinusoidal Power
Fuel 1
Power 1
Spent Fuel 0

3.1 Transition Scenario: Constant Demand

This section shows a constant power transition scenario. Table 3 displays
the simulation parameters. The input file used to generate this simulation
can be found in:
/d3ploy/input/constant transition.xml
and the file used to run the simulation and generate the plots can be found
in:
/d3ploy/tests/performance tests/algorithm performance tests transitions.py

Figures 1a, 1b and 1c demonstrate the capability of d3ploy to deploy re-
actors and supporting facilities to meet the user determined power demand
and subsequently demanded secondary commodities with the minimal num-
ber of time steps that result in an undersupply.

Table 2 shows the number of time steps where there was an undersupply
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Table 3: Constant Power Demand Transition Scenario’s Parameters.

Parameters Description

Overall Demand Equation 10000 MW

Power Commodity
Prediction Method Fast Fourier Transform
Supply Buffer 3000 MW

Fuel Commodity
Prediction Method Moving Average
Supply Buffer 0 kg

Spent Fuel Commodity
Prediction Method Moving Average
Capacity Buffer 0 kg

for each commodity in this scenario. In figure 1a, there are no time steps
where the supply of power falls under demand.

The use of the fast fourier transform method for predicting the demand
and setting the supply buffer to 3000MW (the capacity of 3 reactors) mini-
mized the number of undersupply time steps.

It is important to perform a small sensitivity analysis of the size of buffer
used for each commodity to ensure that there is no undersupply based on
the nuances of any given facility type: refueling in a reactor, etc..

In figure 1b, a facility with a large throughput of fuel is initially deployed
to meet the large initial fuel demand from the startup of ten reactors. This
is a reflection of reality, wherein reactor operators will accumulate an ap-
propriate amount of fuel inventory before bringing reactors online. There
is one time step where there is an undersupply following the decommission-
ing of the large initial fuel production facility. This is unavoidable, as the
prediction methods harnessed by d3ploy are unable to foresee this sudden
drop in demand.

For simulations such as this, where a facility requires a large initial
amount of some commodity, the user should add an initial facility with
a large production capacity that exists for only the first few time steps
in the simulation; this prevents d3ploy from deploying a large number of
supporting facilities that end up being redundant later in the simulation.
Alternatively, this could be circumvented by introducing decommissioning
capability into d3ploy.

3.2 Transition Scenario: Linearly Increasing Demand

This section presents a transition scenario with a linearly increasing power
demand. Table 4 displays the simulation parameters used in this transition
scenario.
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(a) Power demand and supply plot.

(b) Fuel demand and supply plot. (c) Spent Fuel demand and supply
plot.

Figure 1: Transition Scenario: Constant Power Demand of 10000MW.
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Table 4: Linearly Increasing Power Demand Transition Scenario’s Parame-
ters.

Parameters Description

Overall Demand Equation Time<40: 10000 MW,
Time>40: 250*t MW

Power Commodity
Prediction Method Fast Fourier Transform
Supply Buffer 2000 MW

Fuel Commodity
Prediction Method Moving Average
Supply Buffer 1000 kg

Spent Fuel Commodity
Prediction Method Fast Fourier Transform
Capacity Buffer 0 kg

Figures 2a, 2b and 2c demonstrate the capability of d3ploy to deploy
reactors and supporting facilities to meet the user determined power demand
and subsequently required secondary commodities for a linearly increasing
power demand.

This scenario made use of the fast fourier transform method for predict-
ing power demand, similar to what the constant power demand transition
scenario used. The power supply buffer in this case was an absolute value
of 2000MW.

The input file used to generate this simulation can be found in:
/d3ploy/input/growing transition.xml
and the file used to run the simulation and generate the plots can be found
in:
/d3ploy/tests/performance tests/algorithm performance tests transitions.py

3.3 Transition Scenario: Sinusoidal Demand

This section shows a transition scenario with sinusoidal power demand. A
sinusoidal power demand is a more accurate reflection of the real world
where consumption is higher in the winter and summer and lower in the
spring and fall. Table 5 displays the simulation parameters used in this
transition scenario. The power demand had an amplitude of 1000MW.

Figures 3a, 3b and 3c demonstrate the capability of d3ploy to deploy
reactors and supporting facilities to meet the user determined power demand
and subsequently required secondary commodities for a sinusoidal power
demand.

For a sinusoidal power demand, the use of the triple exponential method
(Holt-Winters) for predicting demand is more effective than the fast fourier
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(a) Power demand and supply plot.

(b) Fuel demand and supply plot. (c) Spent Fuel demand and supply
plot.

Figure 2: Transition Scenario: Linearly Increasing Power Demand.
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transform method previously used in the constant and linearly increasing
power demand transition scenarios. This is because the triple exponential
smoothing method excels in forecasting data points for repetitive seasonal
series of data.

Table 5: Sinusoidal Power Demand Transition Scenario’s Parameters.

Parameters Description

Overall Demand Equation 1000sin(π∗t3 ) + 10000

Power Commodity
Prediction Method Triple Exponential

Smoothing
Supply Buffer 2000 MW

Fuel Commodity
Prediction Method Moving Average
Supply Buffer 1000 kg

Spent Fuel Commodity
Prediction Method Fast Fourier Transform
Capacity Buffer 0 kg

The input file used to generate this simulation can be found in:
/d3ploy/input/sine transition.xml
and the file used to run the simulation and generate the plots can be found
in:
/d3ploy/tests/performance tests/algorithm performance tests transitions.py
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(a) Power demand and supply plot.

(b) Fuel demand and supply plot. (c) Spent Fuel demand and supply
plot.

Figure 3: Transition Scenario: Sinusoidal Power Demand.
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4 Transition Scenarios

The objective of this section was to carry out various simulations to vali-
date D3ploy’s current capabilities for simulating complex cycles. The Idaho
National Laboratory Nuclear Fuel Cycle Evaluation and Screening Report
[3] established several fuel cycle scenarios. As part of the project NEUP-
FY16-10512, the simulations focused on the cases EG01, EG23, EG24. The
scenarios started at EG01 – representing the current U.S. fuel cycle – and
transitioned to advanced fuel cycles. The simulations utilized d3ploy’s NO,
DO, and SO algorithms.

All the analyzed scenarios started at EG01. In EG01 all reactors were
LWRs running a once-through cycle burning enriched-U. In EG23 fast re-
actors (FRs) produced all the power, relying on the continuous recycle of
U/Pu supplemented by the addition of new natural-U to the cycle. EG24
was similar to EG23, but its cycle utilized continuous recycling of U/TRU
with the addition of new natural-U.

The present work focused on two transition scenarios: EG01-EG23 and
EG01-EG24, as shown in Figure 4. The simulations started with a fleet
of LWRs. After 80 years, the simulation progressively decommissioned the
LWRs while transitioning to FRs. By the end of the cycle, all power was
produced by FRs. Initial fueling of the FRs relied on reprocessed Pu from
the LWR fleet. Following the transition, the FRs were able to produce their
own Pu to sustain the cycle.

The following section presents the results for EG01-EG23 and EG01-
EG24. The power demand was set at a constant 60 GW at all times. The
transition scenarios used the capability of deploying facilities based on the
difference between predicted demand and predicted supply, using a power
supply buffer of 2000 MW.

This section also includes a sensitivity analysis of the buffer size. A
separate sensitivity analysis shows the dependency of the undersupply on
the number of previous time steps used to calculate the predicted demand
and supply.

4.1 EG01-EG23

Figure 5 shows the power demand and supply obtained using different pre-
diction methods. Following it, Table 6 displays a comparison of the different
algorithms. Table 6 displays the Cumulative Undersupply and the Cumula-
tive Oversupply magnitudes. These values represent the summation of the
difference between the power supplied and the power demanded for all the

12



Source

Enrichment

LWR

LWR Storage

LWR Reprocessing

LWR Sink

LWR Mixer

FR

FR Storage

FR Reprocessing

FR Sink

FR Mixer

natural-U

enriched-U

waste

U/Pu

waste

U/Pu

natural-U natural-U

(a) EG01-EG23.
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(b) EG01-EG24.

Figure 4: Diagrams with facilities and mass flow of the scenarios EG01-EG23
and EG01-EG24.
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time steps in the simulation. This magnitude could best be thought of as
energy. For undersupply conditions, the magnitude represents lack of energy
provided during the time steps where the supply did not meet the demand.
Likewise, the oversupply would be the magnitude of excess energy produced.

Table 6: Undersupply and oversupply of Power for the different algorithms
used to calculate EG01-EG23.

Power

Algorithm
No. of time steps
of undersupply

Cumulative
Undersupply[GW]

Cumulative
Oversupply[GW]

MA 20 20.0 920.5

ARMA 18 7.7 1036.5

ARCH 0 0 1320.1

POLY 1 0.3 1783.5

EXP SMOOTHING 20 11.0 1473.5

HOLT-WINTERS 20 11.0 1473.5

FFT 2 60.3 1751.9

SW SEASONAL 20 18.6 1119.9

Table 7: No. of time steps with undersupply and under capacity of various
commodities for the different algorithms used to calculate EG01-EG23.

Undersupply Undercapcity

Algorithm Sourceout Enrichmentout FR fuel LWR PU FR PU

MA 0 0 0 1 1

ARMA 0 0 0 1 1

ARCH 0 0 0 1 1

POLY 0 0 0 1 1

EXP SMOOTHING 0 0 0 1 1

HOLT WINTERS 0 0 0 1 1

FFT 0 1 0 1 1

SW SEASONAL 0 0 0 1 1

Table 7 presents the no. of time steps with undersupply of natural-
U (sourceout), enriched-U (enrichmentout), and FR fuel. The table also
displays the no. of time steps where the capacity of the LWR Mixer to
process LWR Pu and the capacity of the FR Mixer to process FR Pu are
not enough (undercapacity). In this table it is possible to note that there is
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one time step of delay between the supply of Pu and the deployment of the
respective mixer facility.

One of the methods that performs the better is ARCH. For this scenario
and said method, Figure 6 presents some of the different supply and demand
time series plots for various commodities.

Figure 6a presents the number of Source facilities deployed, and the
resultant demand and supply of natural-U. For this case, the capacity of
natural-U supply is higher than the demand. It is easy to note that the
demand in the beginning of the simulation is higher than in the end. The
LWRs use enriched-U produced by the enrichment of natural-U, while the
FRs require a smaller quantity of U for their fuel. Figure 6b displays the
number of LWR Mixers deployed, and the supply and the capacity of LWR
Pu (Pu produced by the LWRs). Logically, the supply of Pu decreases as the
LWRs are decommissioned. Figure 6c shows the FR Mixers, and the supply
and capacity of FR Pu. The supply of Pu increases as d3ploy deploys new
FRs.

4.2 EG01-EG24

Figure 7 shows the power demand and supply obtained using different pre-
diction methods. Following it, Tables 8 and 9 display a comparison of the
different algorithms.

Table 8: Undersupply and oversupply of Power for the different algorithms
used to calculate EG01-EG24.

Power

Algorithm
No. of time steps
of undersupply

Cumulative
Undersupply[GW]

Cumulative
Oversupply[GW]

MA 20 20.0 920.5

ARMA 18 7.7 1036.5

ARCH 0 0 1320.1

POLY 1 0.3 1783.5

EXP SMOOTHING 20 11.0 1473.5

HOLT-WINTERS 20 11.0 1473.5

FFT 2 60.3 1751.9

SW SEASONAL 20 18.6 1119.9
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(a) NO algorithms.

(b) DO algorithms.

(c) SO algorithms.

Figure 5: Plot of the power demand and supply of EG01-EG23 for a constant
power demand of 60GW for different prediction algorithms.
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(a) Production of natural-U by the source.

(b) Pu produced by the LWRs and
exchanged to the LWR Mixer.

(c) Pu produced by the FRs and ex-
changed to the FR Mixer.

Figure 6: Plot for different commodities EG01-EG23.
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(a) NO algorithms.

(b) DO algorithms.

(c) SO algorithms.

Figure 7: Plot of the power demand and supply of EG01-EG24 for a constant
power demand of 60GW for different prediction algorithms.
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Table 9: No. of time steps with undersupply and under capacity of various
commodities for the different algorithms used to calculate EG01-EG24.

Undersupply Undercapcity

Algorithm Sourceout Enrichmentout FR fuel LWR PU FR PU

MA 0 0 0 1 1

ARMA 0 0 0 1 1

ARCH 0 0 0 1 1

POLY 0 0 0 1 1

EXP SMOOTHING 0 0 0 1 1

HOLT WINTERS 0 0 0 1 1

FFT 0 1 0 1 1

SW SEASONAL 0 0 0 1 1

4.3 Buffer Size

This section focuses on the analysis of undersupply dependency on buffer
size in the EG01-EG23 transition scenario. Table 10 shows the number of
time steps that contain undersupply and the cumulative undersupply for
different buffer sizes for various prediction methods. Figure 8 displays the
cumulative undersupply as a function of buffer size.

Table 10: Dependency of the undersupply of Power on the buffer size.

Buffer
[MW]

Algorithm MA ARMA POLY EXP SMOOTHING FFT

0
No. of time steps
of undersupply

20 60 75 30 28

Cumulative [GW] 60.0 87.3 52.9 68.3 93.3

2000
No. of time steps
of undersupply

20 18 1 20 2

Cumulative [GW] 20.0 7.7 0.3 11.0 60.3

4000
No. of time steps
of undersupply

0 0 0 0 1

Cumulative [GW] 0 0 0 0 60.
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Figure 8: Plot of the dependency of the undersupply of Power on the buffer
size.

4.4 Number of Forward Steps

This section focuses on the dependency on the number of forward steps
calculated at each time step by the prediction methods in scenario EG01-
EG23; the buffer size was fixed at 2000 MW. Table 11 shows number of time
steps containing undersupply and the cumulative undersupply for different
forward steps for some of the prediction methods. Figure 9 displays the
cumulative undersupply as a function of the no. of forward steps.

Figure 9: Plot of the dependency of the undersupply of Power on the no. of
forward steps.
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Table 11: Dependency of the undersupply of Power on the no. of forward
steps.

No. of
forward
steps

Algorithm MA ARMA POLY EXP SMOOTHING FFT

1
No. of time steps
of undersupply

18 20 2 20 1

Cumulative [GW] 7.6 11.0 60.3 20.0 0.3

3
No. of time steps
of undersupply

1 20 2 0 1

Cumulative [GW] 0.3 11.0 60.3 0 0.3

5
No. of time steps
of undersupply

4 20 20 0 1

Cumulative [GW] 1.3 11.0 60.3 0 0.3

5 Conclusion and Next Steps

This paper describes the capabilities of d3ploy and demonstrates the use of
d3ploy for simple transition scenarios with constant, linearly increasing, and
sinusoidal power demand. The demonstration goes further with the more
complex transition scenarios EG01-EG23 and EG01-EG24. This paper also
provides insights on parameter inputs to ease the setup of larger transition
scenarios that may include numerous facilities.

Future work includes setup of similar power demand transition scenarios
for extended nuclear fuel cycles incorporating multiple reactor designs that
consequently use different types of fuel. Such cases are currently under
study. [3] established the transition scenarios EG01-EG29 and EG01-EG30.
These scenarios are more complex than the cases presented in this report
and the distribution of fuel between different reactor technologies play a
main role in the transition. Additionally, as seen during the demonstration
of d3ploy capabilities, a Decommissioning capability is highly useful for the
setup of several NFCs and is currently under development.
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