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1 Introduction

For many fuel cycle simulators, it is currently up to the user to define a
deployment scheme of supporting facilities to ensure that there is no gap in
the supply chain. To ease setting up nuclear fuel cycle simulations, Nuclear
Fuel Cycle (NFC) simulators should bring demand responsive deployment
decisions into the dynamics of the simulation logic [1]. Thus, a next genera-
tion NFC simulator should predictively and automatically deploy fuel cycle
facilities to meet a user defined power demand.

Cyclus is an agent-based nuclear fuel cycle simulation framework [2].
In Cyclus, each entity (i.e. Region, Institution, or Facility) in the fuel
cycle is an agent. Region agents represent geographical or political areas
that institution and facility agents can be grouped into. Institution agents
control the deployment and decommission of facility agents and represents
legal operating organizations such as a utility, government, etc. [2]. Facility
agents represent nuclear fuel cycle facilities. Cycamore [?] provides agents
to represent process physics of various components in the nuclear fuel cycle
(e.g. mine, fuel enrichment facility, reactor).

The Demand-Driven Cycamore Archetypes project (NEUP-FY16-10512)
aims to develop Cyclus’ demand-driven deployment capabilities. This ca-
pability is added as a Cyclus Institution agent that deploys facilities to
meet the front-end and back-end fuel cycle demands based on a user-defined
commodity demand. This demand-driven deployment capability is called
d3ploy.

In this paper, we explain the capabilities of d3ploy and demonstrate
how d3ploy minimizes undersupply of all commodities in a few simulations
while meeting key simulation constraints. Constant, linearly increasing, and
sinusoidal power demand transition scenarios are demonstrated. Insights are
discussed to inform parameter input decisions for future work in setting up
larger transition scenarios that include many facilities. And finally, the more
complex transition scenarios are demonstrated.

2 D3ploy capabilities

2.1 Core Capability of d3ploy

At each time step, d3ploy predicts demand and supply of each commodity
for the next time step. Then, d3ploy deploys facilities to meet predicted
demand. D3ploy’s primary objective is minimizing the number of time steps
of undersupply of any commodity.
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Figure 1: D3ploy logic flow at each time step in Cyclus.

Where d3ploy predicts an undersupply, it responds by deploying the
fewest number of available facilities to meet demand with minimal oversup-
ply. This logic is available in solver.py.
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2.2 Basic User-Defined Input Variables

The user inputs specific variables to customize their simulation. Descriptions
of each input variable can be found in the README of the d3ploy github
repository.

Essentially, the user must define the facilities the d3ploy institution
controls and can deploy. The user must also define the driving commodity,
all facility capacities for producing that commodity, its demand equation,
and which method predicts supply and demand. For example, the user can
define a demand equation for power of 1000×timestep MW and d3ploy will
deploy available reactor and supporting facilities to meet the defined power
demand.

The user can also provide a time-dependent equation that governs pref-
erence for a particular facility compared to other facilities that provide the
same commodity. For example, the user can define a Light Water Reac-
tor (LWR) and a Sodium-Cooled Fast Reactor (SFR) to have preferences
of 101 − timestep and timestep respectively. The institution will prefer
deployment of LWR facilities over SFR before time step 51.

The user can constrain facility deployment until a sizable inventory of
a specific commodity is accumulated. The user can also define an initial
facility list of facilities that are present in the institution at the beginning
of the simulation.

2.3 Prediction Algorithms

Three interchangeable algorithm types govern demand and supply predic-
tions: non-optimizing (NO), deterministic optimizing (DO), and stochastic
optimizing (SO).

There are three methods implemented for the non-optimizing model:
Moving Average (MA), autoregressive moving average (ARMA), and autore-
gressive conditional heteroskedasticity (ARCH). There are four methods im-
plemented for the deterministic optimizing model: Polynomial fit regression
(POLY), simple exponential smoothing (EXP SMOOTHING), triple expo-
nential smoothing (HOLT WINTERS) and fast fourier transform (FFT).
There is one method implemented for stochastic optimizing model: stepwise
seasonal (SW SEASONAL).

The user can choose which prediction algorithm governs each specific
d3ploy commodity. The effectiveness of a prediction algorithm depends on
the type of power demand in a scenario and the type of commodity (demand
driving commodity vs non-driving commodity, demand driven deployment
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vs supply driven deployment etc.). For example, the most effective method
for predicting demand and supply for the power commodity in a scenario
with a sinusoidal power demand is the triple exponential smoothing method.
However, for the non-driving commodities in the same scenario, the fast
fourier transform method is more effective than triple exponential smooth-
ing. This paper will comment on these categories of problems and their
suitable algorithms.

2.4 Demand-driven vs. Supply-driven Institutions

Within d3ploy, there are two institutions: Demand- DrivenDeploymentInst
and SupplyDrivenDeployment. Inst. The prior is used for the front-end of
the fuel cycle and the latter is used for the back-end. For example, for front
end facilities, the reactor demands fuel and DemandDrivenDeploymentInst

triggers the deployment of fuel fabrication facilities to create supply meeting
the demand for fuel. For back end facilities, the reactor generates spent
fuel and SupplyDrivenDeploymentInst triggers the deployment of waste
repository facilities to create capacity for storage of the supply of spent fuel.

2.5 Installed Capacity

The user can choose between deploying facilities based on the difference
between predicted demand and predicted supply or predicted demand and
installed capacity. There are two advantages to use installed capacity over
predicted supply. The first is for facilities that provide intermittent supply,
such as a reactor facility that has a designated refueling time. During time
steps in which a reactor is refueling, the user might not want d3ploy to de-
ploy more facilities to make up for the lack of supply caused by this one time
step gap in supply. The second is for situations where the input commodity
for a facility has run out and the facility that produces the input commod-
ity is no longer commissionable. Therefore, with the demand for the output
commodity of that facility, d3ploy would deploy that facility to meet the
demand, however due to the lack of the input commodity, even if there are
infinite numbers of that facility, it will not produce the output commodity.
For example, in a transition scenario from LWRs to fast reactors, the fast
reactor demand for Pu may exceed the inventory provided by LWRs before
they were decommissioned. This will result in the deployment of mixer fa-
cilities that generate the fast reactor fuel despite the lack of plutonium to
generate the fuel. This can be avoided by constraining fast reactor facility
deployment until a sizable inventory of Pu is accumulated.
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2.6 Supply/Capacity Buffer

In DemandDrivenDeploymentInst, the user can choose to provide a buffer
for predicted supply. D3ploy will deploy facilities to meet the predicted
demand with the additional buffer.

In SupplyDrivenDeploymentInst, the user can choose to provide a
buffer for predicted capacity. D3ploy will deploy facilities to meet the pre-
dicted supply with the additional buffer. The buffer can be defined as a
percentage value (equation 1) or an absolute value (equation 2).

Spwb = Sp ∗ (1 + d) (1)

Spwb = Sp + a (2)

where Spwb is predicted supply/capacity with buffer, Sp is the predicted
supply/capacity without buffer, d is the percentage value in decimal form,
and a is the absolute value of the buffer.

3 Demonstration of d3ploy capabilities

Constant, linearly increasing, and sinusoidal power demand simulations are
shown to demonstrate d3ploy’s capabilities. A balance between the various
system parameters must be met for each type of simulation to meet the goal
of minimizing undersupply and under capacity for the various commodi-
ties. The input files and scripts to produce the plots in this paper can be
reproduced using [?].

These simulations are basic transition scenarios that only include three
types of facilities: source, reactor and sink. All simulations in this work
begin with a ten reactor facilities, reactor1 to reactor10. These reactors
have staggered cycle lengths and lifetimes so that they do not all refuel and
decommission at the same time steps. When the ten initial reactor facili-
ties begin to decommission, d3ploy deploys reactor facilities of newreactor
type to meet unmet demand for power. All the simulations deploy facilities
based on the relationship between predicted demand and installed capacity.
This capability was discussed in the previous section. Table 1 shows the
simulation parameters that are consistent across all the discussed scenarios.

These basic transition scenarios were set up to demonstrate d3ploy’s
capabilities for simulating transition scenarios and to inform decisions about
input parameters when setting up larger demand transition scenarios with
many facilities.
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Table 1: Transition scenario parameters that are consisted for constant,
linear increasing and sinusoidal power demand simulations

Parameters Description

Facilities Present Source (Capacity: 3000kg),
Reactor (Capacity: 1000MW),
Sink (Capacity: 50000kg)

New Reactor Parameters Cycle time: 18, Refuel time: 1

Driving Commodity Power

3.1 Transition Scenario: Constant Demand

In this section, a constant power transition scenario is shown. Table 2 shows
the simulation parameters used in this transition scenario. The input file
used to generate this simulation can be found in:
/d3ploy/input/constant transition.xml
and the file used to run the simulation and generate the plots can be found
in:
/d3ploy/tests/performance tests/algorithm performance tests transitions.py

Table 2: Constant Power Demand Transition Scenario’s Parameters

Parameters Description

Overall Demand Equation 10000 MW

Power Commodity
Prediction Method Fast Fourier Transform
Supply Buffer 3000 MW (3 reactor ca-

pacities)

Fuel Commodity
Prediction Method Moving Average
Supply Buffer 0 kg

Spent Fuel
Commodity

Prediction Method Moving Average
Capacity Buffer 0 kg

Figures 2a, 2b and 2c demonstrate d3ploy’s capability to deploy reactor
and supporting facilities to meet the user determined power demand and
subsequently demanded secondary commodities with minimal undersupply.
Table 3 shows the number of undersupplied timesteps.

In figure 2a, there are no time steps in which the supply of power falls
under demand. By using a combination of the fast fourier transform method
for predicting demand and setting the supply buffer to 3000MW (the capac-
ity of 3 reactors), the user minimizes the number of undersupplied time steps
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Table 3: Undersupply results for each commodity in each scenario

Transition Scenario Commodity No. of time steps
with undersupply

Constant Power
Fuel 1
Power 0
Spent Fuel 0

Linearly Increasing
Power

Fuel 1
Power 0
Spent Fuel 0

Sinusoidal Power
Fuel 1
Power 1
Spent Fuel 0

of every commodity. To ensure there is no undersupply, it is important to
perform a sensitivity analysis of the size of buffer to use for each commodity.

In figure 2b, a facility with a large fuel throughput is initially deployed
to meet the large initial fuel demand for the starting up of ten reactors.
D3ploy is prevented from deploying many supporting facilities that end up
being redundant at the later parts of the simulation, by having an initial
facility with a large throughput exist for the first few time steps in the
simulation. This is a reflection of reality in which reactor manufacturers
will accumulate an appropriate amount of fuel inventory before starting up
reactors. There is one time step where there is an undersupply after the
decommissioning of the large initial facility. This is unavoidable since the
prediction methods in d3ploy are unable to predict this sudden drop in
demand.

It is important to perform a small sensitivity analysis of the size of buffer
used for each commodity to ensure that there is no undersupply based on
the nuances of any given facility type: refueling in a reactor, etc.. For simu-
lations such as this, where a facility requires a large initial amount of some
commodity, the user should add an initial facility with a large production
capacity that exists for only the first few time steps in the simulation; this
prevents d3ploy from deploying a large number of supporting facilities that
end up being redundant later in the simulation. Alternatively, this could be
circumvented by introducing decommissioning capability into d3ploy.
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(a) The power demand is a user-defined equation and power is supplied by the
reactors.

(b) Fuel is demanded by reactors and supplied by
source facilities.

(c) Spent Fuel is supplied by reactors and the capacity
is provided by sink facilities.

Figure 2: Transition Scenario: Constant Power Demand of 10000MW
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3.2 Transition Scenario: Linearly Increasing Demand

In this section, a transition scenario with a linearly increasing power demand
is shown. Table 4 shows the simulation parameters used in this transition
scenario.

Table 4: Linearly Increasing Power Demand Transition Scenario’s Parame-
ters

Parameters Description

Overall Demand Equation Time < 40 : 10000 MW,
Time > 40 : 250 ∗ t MW

Power Commodity
Prediction Method Fast Fourier Transform
Supply Buffer 2000 MW (2 reactor ca-

pacities)

Fuel Commodity
Prediction Method Moving Average
Supply Buffer 1000 kg

Spent Fuel
Commodity

Prediction Method Fast Fourier Transform
Capacity Buffer 0 kg

Figures 3a, 3b and 3c demonstrate the capability of d3ploy to deploy
reactor and supporting facilities to meet the power demand and subsequently
demanded secondary commodities for a linearly increasing power demand.

The fast fourier transform method for predicting power demand is used
for this scenario which is identical to what was used for the constant power
demand transition scenario. A smaller power buffer of 2000MW could be
used while still minimizing under supply.

The input file used to generate this simulation can be found in:
/d3ploy/input/growing transition.xml
and the file used to run the simulation and generate the plots can be found
in:
/d3ploy/tests/performance tests/algorithm performance tests transitions.py

3.3 Transition Scenario: Sinusoidal Demand

In this section, a transition scenario with sinusoidal power demand is shown.
A sinusoidal power demand is the reflection of power demand in the real
world where power usage is higher in the winter and summer and lower in
the spring and fall. Table 5 shows the simulation parameters used in this
transition scenario.
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(a) The power demand is a user-defined equation and power is supplied by the
reactors.

(b) Fuel is demanded by reactors and supplied by
source facilities.

(c) Spent Fuel is supplied by reactors and the capacity
is provided by sink facilities.

Figure 3: Transition Scenario: Linearly increasing power demand.
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Figures 4a, 4b and 4c demonstrate the capability of d3ploy to deploy
reactor and supporting facilities to meet the power demand and subsequently
demanded secondary commodities for a sinusoidal power demand.

For a sinusoidal power demand, the use of the triple exponential method
for predicting demand is more effective than the fast fourier transform
method which was used for the constant and linearly increasing power de-
mand transition scenarios. This is because the triple exponential smoothing
method excels in forecasting data points for repetitive seasonal series of data.

Table 5: Sinusoidal Power Demand Transition Scenario’s Parameters

Parameters Description

Overall Demand Equation 1000sin(π∗t3 ) + 10000

Power Commodity
Prediction Method Triple Exponential

Smoothing
Supply Buffer 2000 MW (2 reactor ca-

pacities)

Fuel Commodity
Prediction Method Moving Average
Supply Buffer 1000 kg

Spent Fuel
Commodity

Prediction Method Fast Fourier Transform
Capacity Buffer 0 kg

The input file used to generate this simulation can be found in:
/d3ploy/input/sine transition.xml
and the file used to run the simulation and generate the plots can be found
in:
/d3ploy/tests/performance tests/algorithm performance tests transitions.py
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(a) The power demand is a user-defined equation and power is supplied by the
reactors.

(b) Fuel is demanded by reactors and supplied by
source facilities.

(c) Spent Fuel is supplied by reactors and the capacity
is provided by sink facilities.

Figure 4: Transition Scenario: Sinusoidal Power Demand
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4 Transition Scenarios

The objective of this section was to carry out various simulations to vali-
date D3ploy’s current capabilities for simulating complex cycles. The Idaho
National Laboratory Nuclear Fuel Cycle Evaluation and Screening Report
[3] established several fuel cycle scenarios. As part of the project NEUP-
FY16-10512, the simulations focused on the cases EG01, EG23, EG24. The
scenarios started at EG01 – representing the current U.S. fuel cycle – and
transitioned to advanced fuel cycles. The simulations utilized d3ploy’s NO,
DO, and SO algorithms.

All the analyzed scenarios started at EG01. In EG01 all reactors were
LWRs running a once-through cycle burning enriched-U. In EG23 fast re-
actors (FRs) produced all the power, relying on the continuous recycle of
U/Pu supplemented by the addition of new natural-U to the cycle. EG24
was similar to EG23, but its cycle utilized continuous recycling of U/TRU
with the addition of new natural-U.

The present work focused on two transition scenarios: EG01-EG23 and
EG01-EG24, as shown in Figure 5. The simulations started with a fleet
of LWRs. After 80 years, the simulation progressively decommissioned the
LWRs while transitioning to FRs. By the end of the cycle, all power was
produced by FRs. Initial fueling of the FRs relied on reprocessed Pu from
the LWR fleet. Following the transition, the FRs were able to produce their
own Pu to sustain the cycle.

The following section presents the results for EG01-EG23 and EG01-
EG24. The power demand was set at a constant 60 GW at all times. The
transition scenarios used the capability of deploying facilities based on the
difference between predicted demand and predicted supply, using a power
supply buffer of 2000 MW.

This section also includes a sensitivity analysis of the buffer size. A
separate sensitivity analysis shows the dependency of the undersupply on
the number of previous time steps used to calculate the predicted demand
and supply.

4.1 EG01-EG23

Figure 6 shows the power demand and supply obtained using different pre-
diction methods. Following it, Table 6 displays a comparison of the different
algorithms. Table 6 displays the Cumulative Undersupply and the Cumula-
tive Oversupply magnitudes. These values represent the summation of the
difference between the power supplied and the power demanded for all the
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(a) EG01-EG23.
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(b) EG01-EG24.

Figure 5: Diagrams with facilities and mass flow of the scenarios EG01-EG23
and EG01-EG24.
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time steps in the simulation. This magnitude could best be thought of as
energy. For undersupply conditions, the magnitude represents lack of energy
provided during the time steps where the supply did not meet the demand.
Likewise, the oversupply would be the magnitude of excess energy produced.

Table 6: Undersupply and oversupply of Power for the different algorithms
used to calculate EG01-EG23.

Power

Algorithm
No. of time steps
of undersupply

Cumulative
Undersupply[GW]

Cumulative
Oversupply[GW]

MA 20 20.0 920.5

ARMA 18 7.7 1036.5

ARCH 0 0 1320.1

POLY 1 0.3 1783.5

EXP SMOOTHING 20 11.0 1473.5

HOLT-WINTERS 20 11.0 1473.5

FFT 2 60.3 1751.9

SW SEASONAL 20 18.6 1119.9

Table 7: No. of time steps with undersupply and under capacity of various
commodities for the different algorithms used to calculate EG01-EG23.

Undersupply Undercapcity

Algorithm Sourceout Enrichmentout FR fuel LWR PU FR PU

MA 0 0 0 1 1

ARMA 0 0 0 1 1

ARCH 0 0 0 1 1

POLY 0 0 0 1 1

EXP SMOOTHING 0 0 0 1 1

HOLT WINTERS 0 0 0 1 1

FFT 0 1 0 1 1

SW SEASONAL 0 0 0 1 1

Table 7 presents the no. of time steps with undersupply of natural-
U (sourceout), enriched-U (enrichmentout), and FR fuel. The table also
displays the no. of time steps where the capacity of the LWR Mixer to
process LWR Pu and the capacity of the FR Mixer to process FR Pu are
not enough (undercapacity). In this table it is possible to note that there is
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one time step of delay between the supply of Pu and the deployment of the
respective mixer facility.

One of the methods that performs the better is ARCH. For this scenario
and said method, Figure 7 presents some of the different supply and demand
time series plots for various commodities.

Figure 7a presents the number of Source facilities deployed, and the
resultant demand and supply of natural-U. For this case, the capacity of
natural-U supply is higher than the demand. It is easy to note that the
demand in the beginning of the simulation is higher than in the end. The
LWRs use enriched-U produced by the enrichment of natural-U, while the
FRs require a smaller quantity of U for their fuel. Figure 7b displays the
number of LWR Mixers deployed, and the supply and the capacity of LWR
Pu (Pu produced by the LWRs). Logically, the supply of Pu decreases as the
LWRs are decommissioned. Figure 7c shows the FR Mixers, and the supply
and capacity of FR Pu. The supply of Pu increases as d3ploy deploys new
FRs.

4.2 EG01-EG24

Figure 8 shows the power demand and supply obtained using different pre-
diction methods. Following it, Tables 8 and 9 display a comparison of the
different algorithms.

Table 8: Undersupply and oversupply of Power for the different algorithms
used to calculate EG01-EG24.

Power

Algorithm
No. of time steps
of undersupply

Cumulative
Undersupply[GW]

Cumulative
Oversupply[GW]

MA 20 20.0 920.5

ARMA 18 7.7 1036.5

ARCH 0 0 1320.1

POLY 1 0.3 1783.5

EXP SMOOTHING 20 11.0 1473.5

HOLT-WINTERS 20 11.0 1473.5

FFT 2 60.3 1751.9

SW SEASONAL 20 18.6 1119.9
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(a) NO algorithms.

(b) DO algorithms.

(c) SO algorithms.

Figure 6: Plot of the power demand and supply of EG01-EG23 for a constant
power demand of 60GW for different prediction algorithms.
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(a) Production of natural-U by the source.

(b) Pu produced by the LWRs and
exchanged to the LWR Mixer.

(c) Pu produced by the FRs and ex-
changed to the FR Mixer.

Figure 7: Plot for different commodities EG01-EG23.
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(a) NO algorithms.

(b) DO algorithms.

(c) SO algorithms.

Figure 8: Plot of the power demand and supply of EG01-EG24 for a constant
power demand of 60GW for different prediction algorithms.
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Table 9: No. of time steps with undersupply and under capacity of various
commodities for the different algorithms used to calculate EG01-EG24.

Undersupply Undercapcity

Algorithm Sourceout Enrichmentout FR fuel LWR PU FR PU

MA 0 0 0 1 1

ARMA 0 0 0 1 1

ARCH 0 0 0 1 1

POLY 0 0 0 1 1

EXP SMOOTHING 0 0 0 1 1

HOLT WINTERS 0 0 0 1 1

FFT 0 1 0 1 1

SW SEASONAL 0 0 0 1 1

4.3 Buffer Size

This section focuses on the analysis of undersupply dependency on buffer
size in the EG01-EG23 transition scenario. Table 10 shows the number of
time steps that contain undersupply and the cumulative undersupply for
different buffer sizes for various prediction methods. Figure 9 displays the
cumulative undersupply as a function of buffer size.

Table 10: Dependency of the undersupply of Power on the buffer size.

Buffer
[MW]

Algorithm MA ARMA POLY EXP SMOOTHING FFT

0
No. of time steps
of undersupply

20 60 75 30 28

Cumulative [GW] 60.0 87.3 52.9 68.3 93.3

2000
No. of time steps
of undersupply

20 18 1 20 2

Cumulative [GW] 20.0 7.7 0.3 11.0 60.3

4000
No. of time steps
of undersupply

0 0 0 0 1

Cumulative [GW] 0 0 0 0 60.
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Figure 9: Plot of the dependency of the undersupply of Power on the buffer
size.

4.4 Number of Forward Steps

This section focuses on the dependency on the number of forward steps
calculated at each time step by the prediction methods in scenario EG01-
EG23; the buffer size was fixed at 2000 MW. Table 11 shows number of time
steps containing undersupply and the cumulative undersupply for different
forward steps for some of the prediction methods. Figure 10 displays the
cumulative undersupply as a function of the no. of forward steps.

Figure 10: Plot of the dependency of the undersupply of Power on the no.
of forward steps.
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Table 11: Dependency of the undersupply of Power on the no. of forward
steps.

No. of
forward
steps

Algorithm MA ARMA POLY EXP SMOOTHING FFT

1
No. of time steps
of undersupply

18 20 2 20 1

Cumulative [GW] 7.6 11.0 60.3 20.0 0.3

3
No. of time steps
of undersupply

1 20 2 0 1

Cumulative [GW] 0.3 11.0 60.3 0 0.3

5
No. of time steps
of undersupply

4 20 20 0 1

Cumulative [GW] 1.3 11.0 60.3 0 0.3

5 Conclusion and Next Steps

This paper describes the capabilities of d3ploy and demonstrates the use of
d3ploy for simple transition scenarios with constant, linearly increasing, and
sinusoidal power demand. The demonstration goes further with the more
complex transition scenarios EG01-EG23 and EG01-EG24. This paper also
provides insights on parameter inputs to ease the setup of larger transition
scenarios that may include numerous facilities.

Future work includes setup of similar power demand transition scenarios
for extended nuclear fuel cycles incorporating multiple reactor designs that
consequently use different types of fuel. Such cases are currently under
study. [3] established the transition scenarios EG01-EG29 and EG01-EG30.
These scenarios are more complex than the cases presented in this report
and the distribution of fuel between different reactor technologies play a
main role in the transition. Additionally, as seen during the demonstration
of d3ploy capabilities, a Decommissioning capability is highly useful for the
setup of several NFCs and is currently under development.
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