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INTRODUCTION

The development of algorithms that can accurately iden-
tify the isotopic sources of low-resolution gamma-ray spectra
is an important advancement in current spectroscopy work-
flow (Sullivan, 2010). Previous work has shown that artificial
neural networks can be used to perform isotope identification
(Cite: [3], [4], [5]). This paper introduces a new feature to
the existing architecture of the Artificial Neural Network for
Spectroscopic Analysis (ANNSA) package. This new feature
is known as an Inception Neural Network (INN). An INN
implements inception layers that consist of wide convolutional
layers with several filters, rather than the typical single-filter
layer in a simple convolutional neural network (CNN). This
paper also demonstrates improved methods for simulating
spectra to better emulate the background radiation found in
real measurements. The features of a gamma-ray spectrum
vary depending on the full width at half max (FWHM) of the
photopeaks. Simultaneously applying multiple filters of dif-
ferent sizes allows an INN to capture more features during a
single layer than a CNN. We hypothesize that an INN will also
be robust to changes in background radiation thereby general-
izing the ANNSA framework to more scenarios. We compare
the accuracy of an INN to a simple CNN to determine if the
improvement in accuracy is enough to warrant the increased
computational complexity. Finally, new training data will be
obtained through simulations with GADRAS-DRF (Mitchell
and Harding, 2014) software.

THEORY – ARTIFICIAL NEURAL NETWORKS

An artificial neural network (ANN) is a function that
maps values from RN to RK by mimicking biological neurons.
Examples of an arbitrary neural net and a single neuron are
shown in figures 1 and 2.

The sum of the inputs times the weights pointing to a
neuron are passed through an activation function. In this paper
it is a rectified linear unit,

Relu = argmax(0, x). (1)

The result is used as the input for the next layer, as shown in
figure 2 An ANN may be trained by iteratively updating the
weights of a network that minimizes an error function, E. The
weights are updated through back propagation by taking the
derivative of E with respect to the weights. The error function
minimized during training of the INN is cross-entropy,

E = −

M∑
c

yo,c ln po,c. (2)

Eq. 2 is the cross-entropy for multiclass classification,
where there are more than two possible labels for a given input.

Fig. 1: An arbitrary neural network that maps values with
weights (arrows).

Fig. 2: A single neuron being passed through an activation
function, f.

M is the total number of labels for a given model, in this case
it corresponds to 29 radionuclides (ANSI, 2015). Variable yo,c
is binary, indicating whether observation, o, has the correct
label, c. Variable po,c is the probability that o is a member of
c. The complete INN model is shown in figure 3 and figure ??
The input for the INN is a 2âĂİx2âĂİ NaI spectrum of 1024
channels and the final output is a softmax given by,

so f tmax(z j) =
exp(z j)∑k

k=1

. (3)

The input data is passed through three inception layers
and, after flattening, the output is passed to a dense layer
which gives the final softmax output. Each inception layer
has a bottleneck, a convolution, and a concatenation (Szegedy,
et. al, 2014). The bottleneck is performed to reduce the
computational complexity before large convolution filters are
applied. A large filter can be factorized into several smaller



Fig. 3: A gamma spectrum shown as the input for the first
inception layer.

Fig. 4: A zoomed out example of a full inception neural
network.

filters thereby reducing the number of required multiplica-
tions. The convolution layer uses filters to select features of
a spectrum that have local spatial significance, but no long-
range relationships. Once the convolution has been done with
several filters in parallel the outputs of each of those convolu-
tions are concatenated into a single tensor that is passed to the
next inception layer, or dense layer if the last layer has been
reached. Just like a typical CNN, shown in figure 5, the final
step after feature identification, is classification. Classification
is performed by using a dense, or fully connected, layer that
learns weights that correspond to a probability for a certain
label. In this case, the corresponding labels are radioactive
isotopes.

METHODS

Training set creation

It is infeasible to obtain enough real measurements to
properly train a neural network. Thus all of the datasets used to
train the neural network here were simulated using GADRAS-
DRF (Mitchell and Harding, 2014). The 29 isotopes in the
dataset are based on the American National Standards Institute
performance criteria for handheld instruments for the detec-
tion and identification of radionuclides, ANSI N42-34-2015
(ANSI, 2015). Previous work (Kamuda, et. al 2018) used a

Fig. 5: An example of a typical convolutional neural network
(Kamuda et.al 2018).

uniform distribution of background isotopes and a constant av-
erage count of 65 counts per second (cps) for the background.
Simulating background radiation in this manner is insufficient
for training a neural network to be robust against background
variations and thus cannot be generalized to real conditions.
We are updating the simulation protocol to increase the vari-
ability in background conditions. New simulated data will
include random noise in a range of 40 to 200 cps. We believe
this range is realistic for background radiation.

Network Structure and Hyperparameters

A neural network can memorize training sets resulting in
overtraining and a misidentification of novel data. This is espe-
cially true for an INN, whose weights are difficult to tune with
simple back propagation. To solve this problem during train-
ing, we include an intermediate softmax output that allows for
error corrections before the entire forward pass is complete.
This branch is ignored during prediction, but offers a way to
prevent overtraining. In the fully connected layer, dropout
regularization forces the neural network to learn newpathways.
Hyperparaemters can be used to optimize performance and
prevent overfitting of the model. There is no way to know
which hyperparameters will influence the model before train-
ing, so a random hyperparameter search is performed to find



a set of hyperparameters that are close to ideal (Bergstra and
Bengio, 2012). For CNN structures, like the INN, hyperparam-
eters include the number and sizes of convolutional filters, and
the number of nodes and dropout rate for the fully connected
layer.

Benchmark Techniques

In order to compare the efficiency of these two neural net-
works and the effectiveness of updated datasets, we will train
each network twice. Once by reusing data from previous work
(Kamuda, et. al, 2018) and again with the improved datasets.
This will allow us to identify if accuracy improved more due
to a sophisticated algorithm or the advance is attributable to
better training data, or some combination thereof. The INN
will demonstrate a satisfactory improvement over the CNN if
the amount of time required to train the network results in an
equivalent reduction in variance for predictions. For concrete-
ness, a 10 percent increase in training time should correspond
to a 10 percent, or greater, decrease in the variance for the
INN when compared with the training time and variance of
the CNN.

CONCLUSION

In this study, we compare the accuracy of two neural net-
works, a convolutional neural network with two convolutional
layers and an inception neural network with three inception
layers, for identifying radioactive isotopes in low-resolution
gamma-ray spectra. We hypothesize that the INN would ex-
hibit an increase in robustness commensurate to its computa-
tional complexity and that training the neural networks with
larger and varied datasets will also improve its robustness. Im-
provements to the identification of isotopes present in a sample
of radioactive material will have important implications for
national security and nuclear nonproliferation.
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