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1 Generative Design

Generative design is an exploratory design method that autonomously generates optimal designs

by iteratively varying design geometry to meet user-defined performance metrics [11, 16]. The

user defines the design parameters and the generative design software helps the user create many

solutions simultaneously [5]. This sometimes results in unanticipated unique solutions, that would

have been difficult to discover using traditional methods [5]. Generative design varies the parameters

of the problem definition [14]. At each iteration step, the design is evaluated on the performance

metrics. Based on the results, the generative design algorithm changes the interval allowed for

each design geometry variable, refining design constraints (problem definition) and moving towards

designs that best meets performance metrics.

There is confusion to how generative design differs from other shape optimization tools. Gen-

erative design is more than topology optimization which has been around since 1988 [6]. Topology

optimization requires the user to start with a complete design and the software improves it by

removing material, it answers the fundamental engineering question of how to place material in a

domain space to obtain best structural performance [21]. Generative design does not require the

user to start with a complete design, but instead a few design constraints. Table 1 summarizes the

differences between generative design and traditional design optimization tools.

Table 1: Comparison of generative design and traditional design optimization tools [4].

Point of Comparison Generative Design Traditional Design Optimization

Tools

Initial input A few design constraints Complete design

No. of outcomes Generates a wide set of designs that

meets design constraints

Identifies one unique design that meets

constraints

Solving strategies Uses multiple strategies to solve de-

sign problem

Mainly uses topology optimization so-

lutions
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1.1 State of Work

Generative design is used in the following industries: automotive [9], aerospace [8], architecture,

product design etc. For the automotive and aerospace industries, the goal of generative design is to

decrease the weight of the vehicle while ensuring each part can continue to withstand the stresses and

strains that are put on it within a safety factor. These industries can rely on commerical softwares

such as Autodesk Fusion360 [5] and SolidWorks Topology [13] to produce their generative designs,

since these softwares have structural simulation-based generative design technology.

1.2 Genetic Algorithms

Multi-objective design problems inevitably require a trade off between desirable attributes [8, 22].

In nuclear reactor design there are many trade offs, one example is the trade-off between neutron

economy and fuel enrichment. A reactor design must have sufficient neutron economy to ensure

criticality, but must also have a low fuel enrichment to reduce proliferation risk. Conflicting ob-

jectives means that there is no one perfect solution, but a set of equally optimal solutions [8].

Multi-objective problems are difficult to optimize, such problems cannot be handled by classical

optimization methods such as gradient methods, because only the local optimum will be found

[18]. Evolutionary algorithms have proven to be successful methods to optimize multi-objective

problems [11] as they can find a solution near the global optimum [18]. The most popular evolu-

tionary algorithms used to solve multi-objective problems are genetic algorithms [8, 11]. Genetic

algorithms imitate natural selection to evolve solutions by (1) maintaining a population of solutions,

(2) allowing fitter solutions reproduce, and (3) letting lesser fit solutions die off, resulting in final

solutions that are better than the previous generations [18]. Figure 1 depicts the iterative process

of using a genetic algorithm to solve a problem. The key part of this process is defining evaluation

and termination criteria.

Two types of genetic algorithms are typically used to solve shape optimization problems: para-

metric and cell. Parametric genetic algorithms optimize complex shapes by varying parametric

variables to meet the desired design performance [24]. Examples of parametric variables are: di-

ameter of a sphere, twist angle of a cylinder, etc. Optimization of aerodynamic configurations [15],

and truss and bridge structures [17] used parametric genetic algorithms. Cell genetic algorithms

represent the shape of an object to be optimized in small subdivided rectangular domains (pixels in

2D, voxels in 3D) [18]. Figure 2 shows an example of cell representation. Cell genetic algorithms are

advantageous compared to parametric genetic algorithms since the initial structure and topology of

the object need not be created and is instead developed through the iterative optimization process

[18]. Both parametric and cell genetic algorithms will be explored for the generative reactor design

problem.
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Create initial population

Evaluate initial population

Create new population:

1. select individuals for mating

2. create offspring by crossover

3. mutate selected individuals

4. keep selected individuals from
previous generation

Evaluate new population

Is termination criteria satisfied?

Best solution is returned!

Yes

no

Figure 1: Process of solving a problem with genetic algorithm [18]. When a population does not
meet termination criteria, a new generation is created. This occurs iteratively till the termination
criteria is met.

Figure 2: Cell representation in 2D [18].
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2 Generative Reactor Design

For nuclear reactors, generative design is constrained by variables such as mass or volume of fuel,

fuel enrichment, effectiveness of heat transfer, effective neutron multiplication factor, etc. Nuclear

reactors not only experience physical forces, but also require evaluation of the neutronics of the

system, therefore generative design of a nuclear reactor cannot make use of tools such as Autodesk

Fusion360 or SolidWorks Topology. Therefore, a framework that couples well-developed advanced

genetic algorithms with well-supported monte-carlo particle transport codes (Serpent [12], MCNP

[25], etc.) and thermal hydraulics codes (RELAP7 [3] etc.) must be created to successfully produce

generative reactor designs.

2.1 Workflow

Figure 3 depicts a framework for leveraging genetic algorithms to design nuclear reactors. This is

a general framework that does not specify algorithms or analytical softwares. Instead, it provides

placeholders for algorithm and software types, so that a user may choose the types of algorithms

and softwares they want to use in their mission towards using generative design to design a nuclear

reactor. Table 2 lists algorithm and software types that could be used in the framework.

Table 2: Example algorithm and software types to populate generative reactor design framework
(Fig 3).

Framework Component Examples

Genetic algorithm parametric, cell [18]

Computer-aided design software Trelis [1], FreeCAD [10], SolidWorks [13], grasshopper3d [20],

GenerativeComponents [2]

Neutron transport code Serpent [12], MCNP [25], SCALE [7], OpenMC [19]

Thermal hydraulics code RELAP5-3D [23], RELAP7 [3], TRACE [26]

User-defined metrics/criteria keff, heat transfer rate, fuel enrichment, mass of fuel
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Create
GA: Creates
population

CAD: Generates
reactor designs

Analyze
NT: Run NT code
for each solution

TH: Run TH code
for each solution

Evaluate
GA: Evalu-

ate population

M: Evaluation
based on perfor-
mance metrics

Check
M: Is termination criteria met?

GA: Best solution is returned!
Completed

no

yes

GA: Genetic algorithm

CAD: Computer-aided design software

NT: Neutron transport code

TH: Thermal hydaulics code

M: User-defined metrics/criteria

Figure 3: Generative reactor design framework. Each component of the framework is user-selected.
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