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INTRODUCTION

Load following has given natural gas an economic edge
over nuclear power because natural gas plants can follow grid
demand and even shut off when renewable penetration makes
the price of electricity go negative [1]. Some French nuclear
plants have been retrofitted for load following capabilities to
follow daily variations in electricity demand [2]. Unlike the
United States, French nuclear power plants enjoy a majority
share of the country’s electric generation which makes daily
variations predictable. Renewable energy has challenged the
base load electricity production that nuclear provides in the
United States by introducing grid demand variability that is
much less predictable. This lack of predictability is primar-
ily due to renewables’ tight coupling with chaotic weather
systems. Figure 1 shows that daily variations in electricity
demand are reasonably predictable, with a usual evening min-
imum at 40 MW. When renewable energy is included in the
mix, demand is much harder to follow.

Fig. 1: Comparison between total demand and demand ac-
counting for renewable energy. “NetMW” is the wind and
solar production subtracted from the total.

Advanced reactor designs, like Molten Salt Reactors
(MSRs), promise strong load following capabilities due to
harder neutron spectra and faster Xe-135 burnup [3].

Unfortunately, the most mature MSR designs are at least
a decade away from obtaining a commercial license in the
United States. The climate crisis is too urgent to wait this long
for nuclear power to become fully competitive with natural
gas. Nuclear energy can be more economically feasible by
relaxing the strong load following requirements with high
fidelity predictions of renewable energy production several
hours or days in advance. If reactor operators knew in advance
how much electricity will be produced by renewable energy
they can slowly and accurately ramp reactor power to meet
demand rather than operate continuously at full power and
risk paying to export electricity. Thus, relaxed load following
improves nuclear energy’s comptetitiveness against natural

gas and strengthens nuclear’s ability to couple with renewable
energy. In this work we introduce Echo State Network (ESN)
as a preferred method for time series forecasting of chaotic
systems like electricity production from renewable sources.

BACKGROUND

Variability has been the primary drawback for renewable
energy sources like wind turbines, solar PV, and solar con-
centrators, since their inception. This flaw has become more
pronounced as renewable penetration on the electricity grid
increased in recent years. Forecasting electricity production
from renewable sources is therefore important for success-
ful management of power systems [4]. Recent studies have
applied artificial neural networks (ANNs), specifically multi-
layer perceptrons, to the task of net load forecasting [4, 5, 6].
These studies made short term forecasts of 4-6 hours. Nuclear
plants need accurate forecasts further ahead to facilitate re-
laxed load following. This study will be the first to apply Echo
State Networks (ESNs) to the task of net load prediction.

The University of Illinois at Urbana-Champaign is an
ideal model system for this work because of its diverse energy
mix. Previous work has been done to characterize this energy
grid and optimize the size of a nuclear reactor [7]. Due to
the degree of wind penetration, the University is sometimes
forced to sell electricity back to the grid operator, MISO, at a
loss because of overproduction from wind energy. Thus, a re-
liable prediction of electricity production from wind and other
variable sources will reduce the likelihood of these events.

ESNs, a flavor of reservoir computing, are a modern ma-
chine learning algorithm that enables accurate short to medium
term predictions. Pathak et. al used an ESN to predict the
evolution of a chaotic system, a laminar flame front, up to
seven Lyapunov times in the future [8, 9]. A Lyapunov time
simply measures the timescale at which chaos makes initial
predictions useless. The effect of chaos typically overwhelms
conventional predictions after a single Lyapunov time, by def-
inition. The Lyapunov time for a weather system is on the
order of a few days but depends on the regional environment.
ESNs have also been used to forecast multivariate time series
[10]. Echo state networks are unique among neural networks
in their ease of implementation and training speed. This is
owed to its sparse network architecture [8, 9, 11]. However,
their simplicity is balanced by the need for carefully chosen
hyperparameters for the desired task [12]. Combining accu-
rate demand and renewable energy predictions will enable
an artificially intelligent reactor operator to adjust power in a
relaxed manner.



METHODOLOGY

Echo State Networks

An “echo state network” (also called a “liquid state ma-
chine” [12]) is a type of recurrent neural network that uses a
single layer of many neurons called a “reservoir”. The reser-
voir has an adjacency matrix A that is

1. sparsely populated

2. connected by uniformly random weights centered at zero

3. has a large number of neurons

A reservoir computer also satisfies the echo state property
[8, 13]. This property ensures that a system’s state has a
decaying influence on future states (like an echo of sound
or ripples on water). This property is satisfied in most cases
when the spectral radius (the absolute value of the greatest
eigenvalue of A)[13] is,

ρ(A) < 1. (1)

However, the echo state property can still be satisfied for a
spectral radius greater than unity [12].

Fig. 2: A basic reservoir computer or echo state network. The
connections in the reservoir are given by A

Figure 2 gives a visual representation of a basic ESN.
An input vector of length K is mapped to the reservoir layer
by an input weight matrix Win. The state of the reservoir is
mapped to an output layer of length N with an output weight
matrix Wout . An ESN does not require K = N, nor does it
require K , N. In this work, the input vector is a function of
time, u(t), and the output vector is the next state of the system,
up(t + ∆t). Ideally, the difference between the prediction, up,
and the actual, ua, is minimized. During training, the output
weight matrix is trained through backpropagation using a loss
function like cross entropy [8, 14].

Hyperparameter Search

Due to the architecture of ESNs, the weights and con-
nections inside the reservoir do not need to be trained and, in
our choice of implementation, cannot be. This dramatically
reduces the training time because only the linear output layer

needs to be trained. One drawback of this approach is its sen-
sitivity to hyperparameters, which must be carefully chosen
before running the network [8, 12, 13, 15]. Here, we perform
grid searches to establish which combination of hyperparame-
ters minimizes the mean squared error of the model,

MS E =
1
N

N∑
i

(ŷ − yi)2 (2)

where

ŷ = the average value of the ouput.

Model Prediction

The weights of the output layer, Wout , are trained through
backpropagation by minimizing the error. When a trained
model is given some initial state and then makes a prediction,
up(t + ∆t), this prediction becomes the initial state for the next
prediction and so on. Even a good model, like in Pathak et. al
[8], has some propagating error that deteriorates the prediction
fidelity.

RESULTS

The hyperparameters of the ESN used in Figure 3 and
Figure 4 were randomly assigned and therefore not optimized.
In spite of this, preliminary predictions track reasonably well
with grid demand. The current iteration shows a potentially
misleading relationship between accuracy and training length.
By inspection, Figure 4 is more accurate but the comparison
is unfair because the two ESNs are predicting different time
periods. We also conducted a single grid search for the op-
timal combination of spectral radius (ρ) and noise injection
(for regularization of reservoir neurons), shown in Figure 5,
following the recommendations from [12].

Fig. 3: A simple ESN with a prediction of 100 hours into the
future after training on 1000 hours of historical data.

CONCLUSIONS

We have demonstrated that even a basic ESN can predict
the evolution of dynamic systems as others have [8, 9, 10].
Future work will include:



Fig. 4: A simple ESN with a prediction of 100 hours into the
future. After training on 3500 hours of historical data.

Fig. 5: A grid search over a range of spectral radii and noise
levels. The optimal set minimizes the mean squared error.

1. Identifying ideal input vectors, whether a single value for
net demand history will suffice or some combination of
values (e.g. local weather and total demand) will improve
predictive power.

2. Grid searches to tune hyperparameters.

3. Taking advantage of fast model training to perform un-
certainty analysis.

Fairer comparisons on the effectiveness of training length will
be done by fixing the prediction time period for each ESN.
Accurate predictions of chaotic systems, like wind energy
production, will enable nuclear power plants to improve their
economic feasibility through relaxed load following.
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