-
Notifications
You must be signed in to change notification settings - Fork 0
/
Grab_Safety.Rmd
328 lines (273 loc) · 12 KB
/
Grab_Safety.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
---
title: "Grab 'Safety' Challenge"
output: html_notebook
author: "Bernardus Ari Kuncoro"
---
![](grab_safety_image.png)
#Problem Description
Given the telematics data for each trip and the label if the trip is tagged as dangerous driving, derive a model that can detect dangerous driving trips.
#Dataset
The given dataset contains telematics data during trips (bookingID). Each trip will be assigned with label 1 or 0 in a separate label file to indicate dangerous driving.
Field
**Data Dictionary**
- bookingID: trip id
- Accuracy: accuracy inferred by GPS in meters
- Bearing: GPS bearing in degree
- acceleration_x: accelerometer reading at x axis (m/s2)
- acceleration_y: accelerometer reading at y axis (m/s2)
- acceleration_z: accelerometer reading at z axis (m/s2)
- gyro_x: gyroscope reading in x axis (rad/s)
- gyro_y: gyroscope reading in y axis (rad/s)
- gyro_z: gyroscope reading in z axis (rad/s)
- second: time of the record by number of seconds
- Speed: speed measured by GPS in m/s
#1. Loading Library
```{r}
library(tidyverse) #for data preparation
library(DataExplorer) #for exploratory data analysis
library(caret) # for machine learning libraries
```
#2. Loading Dataset
We got the .zip files that contain
**Feature**
```{r}
options(scipen=999) # avoid scientific format in R
part_0 <- read.csv("dataset/safety/features/part-00000-e6120af0-10c2-4248-97c4-81baf4304e5c-c000.csv")
part_1 <- read.csv("dataset/safety/features/part-00001-e6120af0-10c2-4248-97c4-81baf4304e5c-c000.csv")
part_2 <- read.csv("dataset/safety/features/part-00002-e6120af0-10c2-4248-97c4-81baf4304e5c-c000.csv")
part_3 <- read.csv("dataset/safety/features/part-00003-e6120af0-10c2-4248-97c4-81baf4304e5c-c000.csv")
part_4 <- read.csv("dataset/safety/features/part-00004-e6120af0-10c2-4248-97c4-81baf4304e5c-c000.csv")
part_5 <- read.csv("dataset/safety/features/part-00005-e6120af0-10c2-4248-97c4-81baf4304e5c-c000.csv")
part_6 <- read.csv("dataset/safety/features/part-00006-e6120af0-10c2-4248-97c4-81baf4304e5c-c000.csv")
part_7 <- read.csv("dataset/safety/features/part-00007-e6120af0-10c2-4248-97c4-81baf4304e5c-c000.csv")
part_8 <- read.csv("dataset/safety/features/part-00008-e6120af0-10c2-4248-97c4-81baf4304e5c-c000.csv")
part_9 <- read.csv("dataset/safety/features/part-00009-e6120af0-10c2-4248-97c4-81baf4304e5c-c000.csv")
```
#3. Data Preparation
All features must be united into one dataframe
```{r}
feature_all <- do.call("rbind", list(part_0,part_1,part_2,part_3,part_4,part_5,part_6,part_7,part_8,part_9))
```
Remove the part_0 to part_9 dataframe to save memory
```{r}
rm(part_0,part_1,part_2,part_3,part_4,part_5,part_6,part_7,part_8,part_9)
```
Let's check the dimension of feature_all
```{r}
dim(feature_all)
```
**Label**
```{r}
label <- read.csv("dataset/safety/labels/part-00000-e9445087-aa0a-433b-a7f6-7f4c19d78ad6-c000.csv")
```
Now let's check the dimension of the label.
```{r}
dim(label)
```
Check whether the bookingID is unique.
```{r}
label2 <- label %>% group_by(bookingID) %>% summarise(n=n()) %>% filter(n>1)
dim(label2)
```
There are 18 unique Booking IDs are duplicate. Let's check the label of those 18 unique booking IDs.
```{r}
check_label <- label2 %>% left_join(label,by="bookingID")
check_label
```
All of the label has two options of 0 or 1. So, we just need to drop them.
```{r}
label_final <- label %>% anti_join(label2)
head(label_final)
```
Check the proportion of the label: 75% labeled as 0, 25% labeled as 1.
```{r}
prop.table(table(label_final$label))
```
Remove some dataframe to save memory
```{r}
rm(label, label2, check_label)
```
#4. Feature Engineering
We should think creatively, what would be the features whether a booking id is labeled as safe or not. Not Safe = 1, Safe = 0.
```{r}
# Perform undersampling first. Just use 50% class 0 and 50% class 1
# rows that have "z" and "zz" entries
z_ind <- which(label_final$label == 0)
zz_ind <- which(label_final$label == 1)
nsamp <- min(length(z_ind), length(zz_ind)) #number of elements to sample
## select `nsamp` entries with 0 and `nsamp` entries with 1
pick_z <- sample(z_ind, nsamp)
pick_zz <- sample(zz_ind, nsamp)
label_final_new <- label_final[c(pick_z, pick_zz), ]
# We need to order by time of each bookingID for undersampling features.
feature_all_1 <- label_final_new %>% left_join(feature_all, by='bookingID') %>%
group_by(bookingID) %>% arrange(second, .by_group=TRUE)
# Average speed, Median, Max Speed, Duration of Booking
candidate_feature_1 <- feature_all_1 %>% group_by(bookingID) %>%
summarise(avg_speed=mean(Speed), median_speed=median(Speed), max_speed=max(Speed), duration=max(second), sd_speed=sd(Speed))
# Delta Bearing: Average delta bearing, Max delta bearing, Median delta bearing
candidate_feature_2 <- feature_all_1 %>% select(bookingID,Bearing) %>%
mutate(lag_bearing=lag(Bearing),delta_bearing=abs(Bearing-lag_bearing)) %>%
filter(!is.na(delta_bearing)) %>% group_by(bookingID) %>%
summarise(avg_delta_bearing=mean(delta_bearing),
max_delta_bearing=max(delta_bearing),
median_delta_bearing= median(delta_bearing),
sd_delta_bearing=sd(delta_bearing))
# Acceleration: Average acceleration, median acceleration, max acceleration
candidate_feature_3 <- feature_all_1 %>%
select(bookingID, acceleration_x,acceleration_y, acceleration_z) %>%
group_by(bookingID) %>% summarise(avg_acceleration_x=mean(acceleration_x),
avg_acceleration_y=mean(acceleration_y),
avg_acceleration_z=mean(acceleration_z),
median_acceleration_x=median(acceleration_x),
median_acceleration_y=median(acceleration_y),
median_acceleration_z=median(acceleration_z),
max_acceleration_x=max(acceleration_x),
max_acceleration_y=max(acceleration_y),
max_acceleration_z=max(acceleration_z),
sd_acceleration_x=sd(acceleration_x),
sd_acceleration_y=sd(acceleration_y),
sd_acceleration_z=sd(acceleration_z))
# Gyro: average gyroscope, median gyro, max gyro
candidate_feature_4 <- feature_all_1 %>%
select(bookingID, gyro_x, gyro_y, gyro_z) %>% group_by(bookingID) %>%
summarise(avg_gyro_x=mean(gyro_x),
avg_gyro_y=mean(gyro_y),
avg_gyro_z=mean(gyro_z),
median_gyro_x=median(gyro_x),
median_gyro_y=median(gyro_y),
median_gyro_z=median(gyro_z),
max_gyro_x=max(gyro_x),
max_gyro_y=max(gyro_y),
max_gyro_z=max(gyro_z),
sd_gyro_x=sd(gyro_x),
sd_gyro_y=sd(gyro_y),
sd_gyro_z=sd(gyro_z))
# Delta Acceleration: Average Delta acceleration, median delta acceleration, max delta acceleration, and standard deviation
candidate_feature_5 <- feature_all_1 %>%
select(bookingID, acceleration_x,acceleration_y, acceleration_z) %>%
mutate(lag_acceleration_x=lag(acceleration_x),
lag_acceleration_y=lag(acceleration_y),
lag_acceleration_z=lag(acceleration_z)) %>%
mutate(delta_accel_x = abs(lag_acceleration_x-acceleration_x),
delta_accel_y = abs(lag_acceleration_y-acceleration_y),
delta_accel_z = abs(lag_acceleration_z-acceleration_z)) %>%
filter(!is.na(delta_accel_x)) %>% group_by(bookingID) %>%
summarise(avg_delta_accel_x=mean(delta_accel_x),
avg_delta_accel_y=mean(delta_accel_y),
avg_delta_accel_z=mean(delta_accel_z),
max_delta_accel_x=max(delta_accel_x),
max_delta_accel_y=max(delta_accel_y),
max_delta_accel_z=max(delta_accel_y),
median_delta_accel_x=median(delta_accel_x),
median_delta_accel_y=median(delta_accel_y),
median_delta_accel_z=median(delta_accel_z),
sd_delta_accel_x=sd(delta_accel_x),
sd_delta_accel_y=sd(delta_accel_y),
sd_delta_accel_z=sd(delta_accel_z))
# Delta Gyro: Average Delta gyro, median delta gyro, max delta gyro, and standard deviation gyro
candidate_feature_6 <- feature_all_1 %>%
select(bookingID, gyro_x,gyro_y, gyro_z) %>%
mutate(lag_gyro_x=lag(gyro_x),
lag_gyro_y=lag(gyro_y),
lag_gyro_z=lag(gyro_z)) %>%
mutate(delta_gyro_x = abs(lag_gyro_x-gyro_x),
delta_gyro_y = abs(lag_gyro_y-gyro_y),
delta_gyro_z = abs(lag_gyro_z-gyro_z)) %>%
filter(!is.na(delta_gyro_x)) %>% group_by(bookingID) %>%
summarise(avg_delta_gyro_x=mean(delta_gyro_x),
avg_delta_gyro_y=mean(delta_gyro_y),
avg_delta_gyro_z=mean(delta_gyro_z),
max_delta_gyro_x=max(delta_gyro_x),
max_delta_gyro_y=max(delta_gyro_y),
max_delta_gyro_z=max(delta_gyro_y),
median_delta_gyro_x=median(delta_gyro_x),
median_delta_gyro_y=median(delta_gyro_y),
median_delta_gyro_z=median(delta_gyro_z),
sd_delta_gyro_x=sd(delta_gyro_x),
sd_delta_gyro_y=sd(delta_gyro_y),
sd_delta_gyro_z=sd(delta_gyro_z))
# Combine all the feature candidates into one dataframe
feature_all_final <- candidate_feature_1 %>%
left_join(candidate_feature_2, by='bookingID') %>%
left_join(candidate_feature_3, by='bookingID') %>%
left_join(candidate_feature_4, by='bookingID') %>%
left_join(candidate_feature_5, by='bookingID') %>%
left_join(candidate_feature_6, by='bookingID') %>%
left_join(label_final_new, by='bookingID')
```
Check total feature + label final dimension
```{r}
feature_all_final$label <- ifelse(feature_all_final$label==0, 'Safe','NotSafe')
dim(feature_all_final)
```
#5. Modeling
```{r}
# Training and testing splitting, 75% training, 25% testing
set.seed(101) # Set Seed so that same sample can be reproduced in future also
# Now Selecting 75% of data as sample from total 'n' rows of the data
sample <- sample.int(n = nrow(feature_all_final), size = floor(.75*nrow(feature_all_final)), replace = F)
sample_train <- as.data.frame(feature_all_final[sample, ])
sample_test <- as.data.frame(feature_all_final[-sample, ])
```
Check the proportion of train and test label
```{r}
table(sample_train$label)
```
```{r}
table(sample_test$label)
```
Fit the training control
```{r}
fitControl <- trainControl(
method = 'cv', # k-fold cross validation
number = 5, # number of folds
savePredictions = 'final', # saves predictions for optimal tuning parameter
classProbs = T, # should class probabilities be returned
summaryFunction=twoClassSummary # results summary function
)
```
Model Options
```{r}
modelnames <- paste(names(getModelInfo()), collapse=', ')
modelnames
```
**Using glm, glmnet, and gbm**
```{r}
# Train the model using glm
model_glm = train(label ~ ., data=sample_train[,2:59], method='glm', tuneLength=5, trControl = fitControl)
model_glm
```
```{r}
# Train the model using glmnet
model_glmnet = train(label ~ ., data=sample_train[,2:59], method='glmnet', tuneLength=5, trControl = fitControl)
model_glmnet
```
```{r}
# Train the model using gbm
model_gbm = train(label ~ ., data=sample_train[,2:59], method='gbm', tuneLength=5, trControl = fitControl)
model_gbm
```
#6. Evaluation with Testing data for GBM
Since the best ROC among glmnet, glm, and gbm was achieved byu GBM with 72%, then we will use GBM for evaluation.
```{r}
# Load the ROCR library
library(ROCR)
# Predict probability values using the model: all_probs
all_probs <- predict(model_gbm,sample_test,type="prob")
# Print out all_probs
all_probs
# Select second column of all_probs: probs
probs <- all_probs[,2]
# Make a prediction object: pred
pred <- prediction(probs,sample_test$label)
# Make a performance object: perf
perf <- performance(pred,"tpr","fpr")
# Plot this curve
plot(perf)
```
The Area Under curve for testing: 74%. Slightly better than the training data above.
```{r}
auc <- performance(pred,"auc")
auc@y.values[[1]]
```