
Summary by Arjen de Ruiter - https://arjenderuiter.github.io

Summary of Team Topologies

Organizing business and technology teams for fast flow

A book by Matthew Skelton and Manuel Pais

PART I - Teams as the Means of Delivery

1 The Problem with Org Charts: Rethink Team Structures, Purpose, and
Interactions

“Organizations should be viewed as complex and adaptive organisms rather than mechanistic
and linear system.”

- Naomi Stanford, Guide to Organisation Design

Developing and operating software effectively for modern, interconnected systems and
services requires organizations to consider many different dimensions. Historically, most
organizations have seen software development as a kind of manufacturing to be completed
by separate individuals arranged into functional specialties, with large projects planned up
front and with little consideration for sociotechnical dynamics. This led to the prevailing
problems depicted in the picture below.

The Agile, Lean IT, and DevOps movements helped demonstrate the enormous value of
smaller, more autonomous teams that were aligned to the flow of business, developing and
releasing in small, iterative cycles, and course correcting based on feedback from users.

Summary by Arjen de Ruiter - https://arjenderuiter.github.io

Lean IT and DevOps also encouraged big strides in telemetry and metrics tooling for both
systems and teams, helping people building and running software to make proactive, early
decisions based on past trends, rather than simply responding to incidents and problems as
they arose.

However, traditional organizations have often been limited in their ability to fully reap the
benefits of Agile, Lean IT, and DevOps due to their organizational models. It's no surprise
that there is a strong focus on the more immediate automation and tooling adoption, while
cultural and organizational changes are haphazardly addressed. The latter changes are
much harder to visualize, let alone to measure their effectiveness. Yet having the right team
structure, approach, and interaction in place, and understanding their need to evolve over
time is a key differentiator for success in the long run.

In particular, traditional org charts are out of sync with this new reality of frequent
(re)shaping of teams for collaborative knowledge work in environments filled with
uncertainty and novelty. Instead, we need to take advantage of Conway's law
(organizational design prevails over software architecture design), cognitive load
restrictions, and a team-first approach in order to design teams with clear purposes and
promote team interactions that prioritize flow of software delivery and strategic
adaptability.

The goal of Team Topologies is to give you the approach and mental tools to enable your
organization to adapt and dynamically find the places and timing
when collaboration is needed, as well as when it is best to focus on execution and reduce
communication overhead.

KEY TAKEWAYS

• Conway's law suggests major gains from designing software architectures and team
interactions together, since they are similar forces.

• Team Topologies clarifies team purpose and responsibilities, increasing the
effectiveness of their interrelationships.

• Team Topologies takes a humanistic approach to building software systems while
setting up organizations for strategic adaptability.

Summary by Arjen de Ruiter - https://arjenderuiter.github.io

2 Conway's Law and Why It Matters: Conway's Law Is Critical for Efficient Team
Design in Tech

“[Conway's law] creates an imperative to keep asking: Is there a better design that is not
available to us because of our organization?"

- Mel Conway, Toward Simplifying Application Development, in a Dozen Lessons

Conway's law tells us that an organization's structure and the actual communication paths
between teams persevere in the resulting architecture of the systems built. They void the
attempts of designing software as a separate activity from the design of the teams
themselves.

The effects of this simple law are far reaching. On one hand, the organization's design limits
the number of possible solutions for a given system's architecture. On the other hand, the
speed of software delivery is strongly affected by how many team dependencies the
organization design instills.

Fast flow requires restricting communication between teams. Team collaboration is
important for gray areas of development, where discovery and expertise is needed to make
progress. But in areas where execution prevails - not discovery - communication becomes
an unnecessary overhead.

One key approach to achieving the software architecture (and associated benefits like
speed of delivery or time to recover from failure) is to apply the reverse Conway maneuver:
designing teams to match the desired architecture. The authors provided a simple example
(see picture below) where an organization could avoid a monolithic database by embedding
database skills in the application team, so that they had sufficient autonomy to maintain a
separate data store (perhaps relying on a centralized DBA team for recommendations on
database design or synchronization with other databases).

Summary by Arjen de Ruiter - https://arjenderuiter.github.io

In short, by considering the impact of Conway's law when designing software architectures
and/or reorganizing team structures, you will be able to take advantage of the isomorphic
force at play, which converges the software architecture and the team design.

KEY TAKEAWAYS

• Organizations are constrained to produce designs that reflect communication paths.
• The design of the organization constrains the "solution search space," limiting

possible software designs.
• Requiring everyone to communicate with everyone else is a recipe for a mess.
• Choose software architectures that encourage team-scoped flow.
• Limiting communication paths to well-defined team interactions pro- duces

modular, decoupled systems.

Summary by Arjen de Ruiter - https://arjenderuiter.github.io

3 Team-First Thinking: Limit Teams' Cognitive Load and Facilitate Team
Interactions to Go Faster

Disbanding high-performing teams is worse than vandalism: it is corporate psychopathy.

- Allan Kelly, Project Myopia

In a fast-changing and challenging context, teams are more effective than groups of
individuals. Successful organizations - from the US military to corporations large and small
- treat the team as the fundamental means of getting work done. Teams are generally small,
stable, and long lived, allowing team members the time and space to develop their working
patterns and team dynamics.

Importantly, due to limits on team size (Dunbar's number), there is an effective upper limit
on the cognitive load that a single team can bear. This strongly suggests a limit on the size of
the software systems and complexity of team should work with. The team needs to own the
system domains or subsystems they are responsible for. Teams working on multiple
codebases lack ownership and, especially, the mental space to understand and keep the
corresponding systems healthy.

The team-first approach provides opportunities for many kinds of ple to thrive in an
organization. Instead of needing a thick skin or resilience in order to survive in an
organization that atomizes individuals, people in a team-first organization have the space
and support to develop their skills and practices within the context of a team.

Crucially, because communication between individuals is de-emphasized in favor of
communication between teams for day-to-day work, the organization supports a wide
range of communication preferences, from those people who communicate best one to one
to those who like large group conversations. Furthermore, the effect of previously
destructive individuals is curtailed. This humanistic approach is a huge benefit of choosing
teams first.

KEY TAKEAWAYS

• The team is the most effective means of software delivery, not individuals.
• Limit the size of multi-team groupings within the organization based on Dunbar's

number.
• Restrict team responsibilities to match the maximum team cognitive load.
• Establish clear boundaries of responsibility for teams.
• Change the team working environment to help teams succeed.

Summary by Arjen de Ruiter - https://arjenderuiter.github.io

PART II - Team Topologies that Work for Flow

4 Static Team Topologies: Adopt and Evolve Team Topologies that Match Your
Current Context

“Instead of structuring teams according to technical know-how or activities, organize teams
according to business domain areas.”

-Jutta Eckstein, "Feature Teams-Distributed and Dispersed," in Agility Across Time
and Space

Setting up new team structures and responsibilities reactively, triggered by the need to
scale a product, adopt new technologies, or respond to new market demands, can help in
the present moment but often fails to achieve the speed and efficiency of well thought-out
topologies.

Because those decisions are often made on an individual team basis, they lack
consideration for important organization-wide factors, like technical and cultural maturity,
organization size, scale of the software, engineering disciple, or inter-team dependencies.
The result is team structures optimized for problems that are temporary or limited in scope,
rather than adaptive to new problems over time.

The "DevOps team" anti-pattern is a quintessential example. On paper, it makes sense to
bring automation and tooling experts in house to accelerate the delivery and operations of
our software. However, this team can quickly become a hard dependency for application
teams if the DevOps team is being asked to execute steps on the delivery path of every
application, rather th helping to design and build self-service capabilities that application
teams can rely on autonomously.

It is critical to explicitly consider the different aspects at play and adopt topologies that
work given the organizational context (which tends to evolve slowly), rather than adapting
those that solve a particular problem or need in a given moment in time.

In particular, within a DevOps context the DevOps Topologies can help shed some light on
which topologies work well for which contexts. Forward- thinking organizations take a
multi-stage approach to their team design, understanding that what works best today
might not necessarily be the case in a few years, or even months from now.

KEY TAKEAWAYS

• Ad hoc or constantly changing team design slows down software delivery.
• There is no single definitive team topology but several inadequate topologies for any

one organization.
• Technical and cultural maturity, org scale, and engineering discipline are critical

aspects when considering which topology to adopt.
• In particular, the feature-team/product-team pattern is powerful but only works

with a supportive surrounding environment.
• Splitting a team's responsibilities can break down silos and empower other teams.

Summary by Arjen de Ruiter - https://arjenderuiter.github.io

5 The Four Fundamental Team Topologies: Use Loosely Coupled, Modular Groups of
Four Specific Team Types

“The architecture of the system gets cemented in the forms of the teams that develop it.”

- Ruth Malan, "Conway's Law"

Many organizations struggling with rapid, sustainable software delivery have a wide range
of different types of teams, each with different (usually poorly defined) responsibilities. To
avoid this problem, restrict teams to just four fundamental types:

• stream aligned,
• enabling,
• complicated subsystem,
• and platform.

This focuses the organization on team interaction patterns that are known to promote flow
at both personal and organizational levels.

Organizations developing and running non-trivial software systems today need to optimize
their teams for a safe and rapid flow of change strongly informed by how live production
systems work (or fail). This means that the majority of teams need to be loosely coupled,
aligned to the flow of change (the "stream"), and capable of delivering a useful increment in
the product, service, or user experience for which they are responsible.

Helping stream-aligned teams achieve this high rate of flow are:

• enabling teams (which identify impediments and cross-team challenges, and
simplify the adoption of new approaches),

• complicated-subsystem teams (if needed, to bring deep specialist expertise to
specific parts of the system),

• and platform teams (which provide the underlying "substrate" on which stream-
aligned teams can build and support software products and services with minimal
friction).

This standardization on the types and responsibilities of teams building and running
software systems helps to increase flow by ensuring that most teams are stream aligned,
with supporting capabilities and skills provided by enabling, complicated-subsystem, and
platform teams.

In turn, the platform itself is run as a product or service, with well-established software-
product-management techniques used to prioritize work, regular interaction with
customers of the platform (mostly stream- aligned teams), and a strong focus on UX and
DevEx. The platform itself may be composed of internal stream-aligned teams, enabling
teams, complicated-subsystem teams, and even lower-level platform teams, using the
same team types and interactions that are used by the teams consuming the platform.

Summary by Arjen de Ruiter - https://arjenderuiter.github.io

The focus on empowering stream-aligned teams to achieve fast flow helps to drive
decisions at all levels of the organization and provides the overarching mission for all
teams.

KEY TAKEAWAYS

• The four fundamental team topologies simplify modern software team interactions.
• Mapping common industry team types to the fundamental topologies sets up

organizations for success, removing gray areas of ownership and
overloaded/underloaded teams.

• The main topology is (business) stream-aligned; all other topologies support this
type.

• The other topologies are enabling, complicated-subsystems, and platform.
• The topologies are often "fractal" (self-similar) at large scale: teams of teams.

6 Choose Team-First Boundaries: Choose Software Boundaries to Match Team
Cognitive Load

“When code doesn't work... the problem starts in how teams are organized and [how] people
interact.”

- Eric Evans, Domain-Driven Design

When optimizing for flow, stream-aligned teams should be responsible for a single domain.
This is a challenge when domains are hidden in monolithic systems that include many
different responsibilities and are mostly driven by technology choices, providing
functionalities across multiple areas of business.

We need to look for natural ways to break down the system (fracture planes) that allow the
resulting parts to evolve as independently as possible.
Consequently, teams assigned to those parts will experience more autonomy and
ownership over them.

Looking to align subsystem boundaries with (mostly independent) segments of the business
is a great approach, and the domain-driven design methodology supports that approach
nicely. But we need to beware and sense for other fracture planes, such as change cadence,
risk, regulatory compliance, and so on. Often, a combination of fracture planes will be
required.

Finally, we need to be aware of different types of monoliths impeding flow and causing
unnecessary dependencies between teams. While we typically think of system architecture
as a monolith, there are other, more subtle ways in which coupling creeps in, even when the
system architecture is already modular (for example, shared databases, coupled builds
and/or releases, and more). As Amy Phillips puts it, "If you have microservices but you wait
and do end-to-end testing of a combination of them before a release, what you have is a
distributed monolith."

Summary by Arjen de Ruiter - https://arjenderuiter.github.io

When considering subsystem boundaries, the main aim should be to find software fracture
planes that align to business domain bounded contexts, because most of these bounded
contexts will map to streams of change that are natural for the organization. This, in turn,
means that business-domain boundaries can be aligned to stream-aligned teams, helping
to focus on flow across the organization.

Fracture planes can be chosen around specific challenges, e.g.:

• Technology
• Regulation
• Performance
• Geographic location of staff
• User personas

The fracture planes help avoid hand-offs between teams and promote flow.

In all cases, it is essential to make software segments team sized so that teams can
effectively own and evolve their software in a sustainable way.

KEY TAKEAWAYS

• Choose software boundaries using a team-first approach.
• Beware of hidden monoliths and coupling in the software-delivery chain.
• Use software boundaries defined by business-domain bounded contexts.
• Consider alternative software boundaries when necessary and suitable.

Summary by Arjen de Ruiter - https://arjenderuiter.github.io

PART III Evolving Team Interactions for Innovation and Rapid Delivery

7 Team Interaction Modes: Three Well-Defined Team Interaction Modes

“Technologies and organizations should be redesigned to intermittently isolate people from
each other's work for best collective performance in solving complex problems.”

- Ethan Bernstein, Jesse Shore, and David Lazer, "How Intermittent Breaks in
Interaction Improve Collective Intelligence."

An effective, modern organization building and running software is a product of the
interactions between teams. Yet many organizations fail to define what good team
interactions look like, resulting in confusion, annoyance, and ineffectiveness. Simply
defining a set of teams with responsibility boundaries is not enough to produce an effective
sociotechnical system; it is also necessary to define sensible and effective interactions
between teams.

In this chapter, the authors have shown how three core team interaction modes provide the
clarity needed for all team interactions within the organization:
- Collaboration: two teams work closely together for a defined period to discover new

patterns, approaches, and limitations. Responsibility is shared and boundaries blurred,
but problems are solved rapidly and the organization learns quickly.

- X-as-a-Service: one team consumes something (such as a service or an API) provided
“as a service" from another team. Responsibilities are clearly delineated and if the
boundary is effective, the consuming team can deliver rapidly. The team providing the
service seeks to make their service as easy to consume as possible.

- Facilitating: one team helps another team to learn or adopt new approaches for a
defined period of time. The team providing the facilitation aims to make the other team
self-sufficient as soon as possible, while the team receiving the facilitation has an open-
minded attitude to learning.

The combination of well-defined team types and well-defined team interactions provides a
clear and powerful way to promote team-based organizational effectiveness, avoiding the
ambiguities and conflicts that many organizations experience.

KEY TAKEAWAYS

• Choose specific team interaction modes to enhance software delivery.
• Choose between three team interaction modes to help teams provide and evolve

services to other teams:
o Collaboration can be a powerful driver for innovation but can also reduce

flow.
o X-as-a-Service can help other teams deliver quickly but only if the boundary

is suitable.
o Facilitating helps to avoid cross-team challenges and detects problems.

Summary by Arjen de Ruiter - https://arjenderuiter.github.io

8 Evolve Team Structures with Organizational Sensing

“The design...is almost never the best possible, [so] the prevailing system concept may need to
change. Therefore, flexibility of organization is important to effective design.”

- Mel Conway, "How Do Committees Invent?"

The rapid pace of change in technology, markets, customer and user demands, and
regulatory requirements means successful organizations need to expect to adapt and
evolve their organization structure on a regular basis. However, organizations that build
and run software systems need to ensure that their team interactions optimize for flow,
Conway's law, and a team-first approach (including team cognitive load). By deploying the
four fundamental team topologies with the three core team interaction modes,
organizations gain crucial clarity of purpose for their teams on an ongoing basis. Teams
understand:

• how, when, and why they need to collaborate with other teams;
• how, when, and why they should be consuming or providing something “as a

service”;
• and how, when, and why they should provide or seek facilitation with another team.

Thus, an organization should expect to see different kinds of interactions between different
kinds of teams at any given time as the organization responds to new challenges.

Summary by Arjen de Ruiter - https://arjenderuiter.github.io

The combination of well-defined teams and well-defined interaction modes provides a
powerful and flexible organizational capability for structural adaptation to changing
external and internal conditions, enabling the organization to "sense" its environment,
modify its activities, and focus to fit.

KEY TAKEAWAYS

• Use different team topologies simultaneously for strategic advantage.
• Change team topologies and team interactions to accelerate adoption of new

approaches.
• Differentiate between explore, exploit, sustain, retire phases using team topologies.
• Expect multiple, simultaneous team topologies to meet different needs. Recognize

triggers for organization change.
• Treat operations as high-fidelity sensory input for self-steering

