Analysis of multiple trees

General information

The 500 loaded trees all have the same tip labels.

The trees have different topologies. The maximum unweighted Robinson-Foulds distance between two trees is **14.00**. The maximum weighted Robinson-Foulds distance between two trees is **0.1073**. Figure 1 represents the trees in a 2-dimensional space, using the Robinson-Foulds metric. Figure 2 also represents the trees in a 2-dimensional space, using instead the weighted Robinson-Foulds metric.

Figure 1. 2-dimensional representation of the trees. Each tree is represented by a point, whose position was determined using multidimensional scaling (MDS); the distance between two points is approximately proportional to the unweighted Robinson-Foulds distance between the corresponding trees. The Duda-Hart test was used to determine that the trees do not show significance evidence for clustering ($p \approx 0.1872$, $\alpha = 0.001$), based on the 2D metric obtained after the MDS analysis.

Tree space

Tree shape statistics

Not all the trees are rooted.

The average **Number of cherries** of the trees is **15.82** (89% highest-density interval: 15.00 — 16.00). Figure 3 shows the distribution of the number of cherries among the trees.

Figure 3. Distribution of the number of cherries. The histogram shows the distribution of the number of cherries among the trees. 5 values smaller than 15.00 are shown in the underflow bin; 2 values greater than 16.00 are shown in the overflow bin. The box and whisker plot at the top represents the median branch length, the interquartile range, and the 89% HDI.