## Comparison of two trees

## General information

Both trees are rooted. Both trees contain 91 nodes. Both trees contain 46 leaves. Both trees have branch lengths. 40 leaves are shared between the two trees; 6 leaves are present only in the first tree, while 6 are present only in the second tree. These are summarised in the following table:

```
Acaryochloris.marina.MBIC1
1017 2
Angiopteris.evecta.vascCT
Anthoceros.formosae.strCT
Chaetosphaeridium.globosum
.strCT Coccomya.sp.C169
Coffea.arabica.vascCT
Cyanobium.gracile.PCC6307
Cyanophora.paradoxa.glauCT
Cyanothece.sp.CCY0110 Trichodesmium.erythraeum.I
Cyanothece.sp.PCC7424 MS101
Cyanothece.sp.PCC7425
Fischerella.sp.JSC11
Floydiella.terrestris.cCT
Gnetum.parvifolium.vascCT
Illicium.oligandrum.vascCT
Lyngbya.majuscula.3L
Mesostigma.viride.strCT
Microcystis.aeruginosa.NIE
S843
Nephroselmis.olivacea.cCT
Nodosilinea.nodulosa.PCC71
04 Nostoc.azollae.0708
Oscillatoria.sp.PCC6506
P.marinus.str.AS9601
P.marinus.str.MIT9303
P.marinus.str.MIT9515
Pedinomonas.minor.cCT
Pinus.contorta.vascCT
Porphyra.purpurea.rCT
Pseudanabaena.sp.PCC7367
Stigeoclonium.helveticum.c
CT
Synechococcus.sp.JA33Ab
Synechococcus.sp.PCC7002
Synechococcus.sp.RCC307
Synechococcus.sp.RS9916
Synechococcus.sp.WH7803
Synechococcus.sp.WH8102
Synechococcus.spongiarum.S
H4 Synedra.acus.bacCT
Thalassiosira.pseudonana.b
acCT
Zygnema.circumcarinatum.st
rCT
```

The following analyses are based on the subset of leaves shared between the two trees.
The trees have different topologies. The Robinson-Foulds distance between them is 38 . The weighted Robinson-Foulds distance between them is $\mathbf{0 . 7 9 7 5}$. There are $\mathbf{6 0}$ splits in common between the two trees. There are 19 splits that only appear in the first tree, and 19 splits that only appear in the second tree.

Considering the 60 splits in common between the two trees, the average difference in length between a split from the first tree and the corresponding split from the second tree is $\mathbf{0 . 0 1 1 8 7}$ ( $89 \%$ highest-density interval: -0.02723 -0.09020 ). Figure shows the distribution of the difference in length between splits from the first tree and the
corresponding splits from the second tree.
Distribution of split length differences


Figure 1. Distribution of split length differences. The histogram shows the distribution of the difference in length between splits from the first tree and the corresponding splits from the second tree. 5 values smaller than -0.02723 are shown in the underflow bin. The box and whisker plot at the top represents the median branch length, the interquartile range, and the $89 \% \mathrm{HDI}$.

## Tree shape statistics

The Sackin indices of the trees are 321 (YHK model normalisation: 0.1449 , PDA model normalisation: 1.03) and 259 (YHK model normalisation: -1.2029, PDA model normalisation: 0.83 ). The difference between the Sackin indices of the trees is not significantly different than expected under the YHK model. The difference between the Sackin indices of the trees is not significantly different than expected under the PDA model. Figure $\square$ shows the expected distribution of Sackin index differences under the YHK and PDA models.


Figure 2. Distribution of Sackin index differences. The curve shows the expected distribution of (normalised) Sackin index differences under the null hypothesis for two trees containing 40 tips, computed using a Monte Carlo approach (2000 random trees were sampled according to the YHK or PDA model, and all possible pairings between them were considered). The dashed line represents the observed value of the Sackin index difference, normalised according to the YHK or PDA model. The blue plot refers to the YHK model, while the orange plot to the PDA model.

The Colless indices of the trees are 173 (YHK model normalisation: 0.9454 , PDA model normalisation: 0.5545 ) and 91 (YHK model normalisation: -0.8372, PDA model normalisation: 0.2917 ). The difference between the Colless indices of the trees is not significantly different than expected under the YHK model. The difference between the Colless indices of the trees is not significantly different than expected under the PDA model. Figure B shows the expected distribution of Colless index differences under the YHK and PDA models.

Colless index difference distribution


Figure 3. Distribution of Colless index differences. The curve shows the expected distribution of (normalised) Colless index differences under the null hypothesis for two trees containing 40 tips, computed using a Monte Carlo approach (2000 random trees were sampled according to the YHK or PDA model, and all possible pairings between them were considered). The dashed line represents the observed value of the Colless index difference, normalised according to the YHK or PDA model. The blue plot refers to the YHK model, while the orange plot to the PDA model.

The first tree has 10 cherries (YHK model normalisation: -3.73, PDA model normalisation: -1.14), while the second tree has 12 cherries (YHK model normalisation: -2.33, PDA model normalisation: 0.06215). The difference between the numbers of cherries does not differ significantly from the value expected under the YHK model. The difference between the numbers of cherries does not differ significantly from the number expected under the PDA model. Figure ${ }^{\text {a }}$ shows the expected distribution of the difference between the numbers of cherries under the YHK and PDA models.


Figure 4. Distribution of the difference between the numbers of cherries. The curve shows the expected distribution of the (normalised) difference between the numbers of cherries under the null hypothesis for two trees containing 40 tips, computed using a Monte Carlo approach ( 2000 random trees were sampled according to the YHK or PDA model, and all possible pairings between them were considered). The dashed line represents
the observed value of the difference between the numbers of cherries, normalised according to the YHK or PDA model. The blue plot refers to the YHK model, while the orange plot to the PDA model. The green curve represents the limit distribution for the (normalised) difference between the numbers of cherries as the number of tips grows to infinity.

