From 5a92f33353fe9eae292c5ad98bf9167deae4e946 Mon Sep 17 00:00:00 2001
From: joe bebel <joseph.bebel@gmail.com>
Date: Tue, 4 May 2021 03:49:48 -0700
Subject: [PATCH 01/11] fast amortized kzg commitments

---
 src/error.rs                 |   5 +
 src/kzg10/data_structures.rs |  37 ++++
 src/kzg10/fastpoly.rs        | 372 +++++++++++++++++++++++++++++++++++
 src/kzg10/mod.rs             | 262 +++++++++++++++++++++++-
 4 files changed, 673 insertions(+), 3 deletions(-)
 create mode 100644 src/kzg10/fastpoly.rs

diff --git a/src/error.rs b/src/error.rs
index de7091eb..72b03851 100644
--- a/src/error.rs
+++ b/src/error.rs
@@ -93,6 +93,9 @@ pub enum Error {
         /// Index of the offending polynomial.
         label: String,
     },
+
+    /// Attempt to open_amortized on too large a domain
+    AmortizedOpeningTooLarge(usize),
 }
 
 impl core::fmt::Display for Error {
@@ -179,6 +182,8 @@ impl core::fmt::Display for Error {
                 support up to degree ({:?})", label, poly_degree, supported_degree
             ),
             Error::IncorrectInputLength(err) => write!(f, "{}", err),
+            Error::AmortizedOpeningTooLarge(s) => write!(f, "tried to open_amortized on too large domain of size {:?}", s),
+
         }
     }
 }
diff --git a/src/kzg10/data_structures.rs b/src/kzg10/data_structures.rs
index 4bb95430..1037ec94 100644
--- a/src/kzg10/data_structures.rs
+++ b/src/kzg10/data_structures.rs
@@ -21,6 +21,8 @@ pub struct UniversalParams<E: PairingEngine> {
     pub h: E::G2Affine,
     /// \beta times the above generator of G2.
     pub beta_h: E::G2Affine,
+    /// Group elements of the form `{ \beta^i H }`, where `i` ranges from 0 to `degree`.
+    pub powers_of_h: Vec<E::G2Affine>,
     /// Group elements of the form `{ \beta^i G2 }`, where `i` ranges from `0` to `-degree`.
     pub neg_powers_of_h: BTreeMap<usize, E::G2Affine>,
     /// The generator of G2, prepared for use in pairings.
@@ -95,6 +97,7 @@ impl<E: PairingEngine> CanonicalDeserialize for UniversalParams<E> {
             powers_of_gamma_g,
             h,
             beta_h,
+            powers_of_h: vec![],
             neg_powers_of_h,
             prepared_h,
             prepared_beta_h,
@@ -118,6 +121,7 @@ impl<E: PairingEngine> CanonicalDeserialize for UniversalParams<E> {
             powers_of_gamma_g,
             h,
             beta_h,
+            powers_of_h: vec![],
             neg_powers_of_h,
             prepared_h,
             prepared_beta_h,
@@ -139,6 +143,7 @@ impl<E: PairingEngine> CanonicalDeserialize for UniversalParams<E> {
             powers_of_gamma_g,
             h,
             beta_h,
+            powers_of_h: vec![],
             neg_powers_of_h,
             prepared_h,
             prepared_beta_h,
@@ -557,3 +562,35 @@ impl<E: PairingEngine> ToBytes for Proof<E> {
             .write(&mut writer)
     }
 }
+
+/// Opening proofs of a commitment on a large domain
+pub struct AmortizedProof<E: PairingEngine> {
+    /// This is a vector of commitments to the witness polynomials
+    /// over a domain 1, omega, omega^2, ..., omega^{n-1}
+    /// where omega is a primitive n'th root of unity
+    pub w: Vec<E::G1Projective>,
+    /// Scale factor whose multiplication is deferred until the proofs are combined
+    pub scale: E::Fr,
+}
+
+impl<E: PairingEngine> AmortizedProof<E> {
+    /// Combine opening proofs onto a subset of the domain
+    pub fn combine_at_evals(
+        &self,
+        range: &std::ops::Range<usize>, // Domain is omega^{start}, ..., omega^{end-1}
+        evals: &[E::Fr],                // Evaluation of polynomial at domain
+        s: &super::fastpoly::SubproductDomain<E>, // SubproductDomain of the domain
+    ) -> Proof<E> {
+        let lagrange_coeff = s.fast_inverse_lagrange_coefficients();
+        let mut total = E::G1Projective::zero();
+        for (c_i, point) in lagrange_coeff.iter().zip(self.w[range.clone()].iter()) {
+            total += point.into_affine().mul::<E::Fr>(c_i.inverse().unwrap());
+        }
+        Proof {
+            w: total.into(),
+            // NOTE: if the ifft had not multiplied by domain_size_inv
+            //w: total.into_affine().mul::<E::Fr>(self.scale).into(),
+            random_v: None,
+        }
+    }
+}
diff --git a/src/kzg10/fastpoly.rs b/src/kzg10/fastpoly.rs
new file mode 100644
index 00000000..50bd8ea9
--- /dev/null
+++ b/src/kzg10/fastpoly.rs
@@ -0,0 +1,372 @@
+use crate::Error;
+use ark_ec::PairingEngine;
+use ark_ff::{Field, One, Zero};
+use ark_poly::UVPolynomial;
+
+use ark_poly::polynomial::univariate::DensePolynomial;
+
+type P<E: PairingEngine> = DensePolynomial<E::Fr>;
+
+/// Computes the inverse of f mod x^l
+pub fn inverse_mod_xl<E: PairingEngine>(f: &P<E>, l: usize) -> Option<P<E>> {
+    //use std::ops::Mul;
+    //let r =
+    //    std::mem::size_of::<u64>() * 8 - (l as u64).leading_zeros() as usize; // ceil(log_2(l))
+
+    //assert_eq!((l as f64).log2().ceil() as usize, r);
+    let r = (l as f64).log2().ceil() as usize; //TODO: rounding problems??
+    let mut g = DensePolynomial::<E::Fr> {
+        coeffs: vec![f.coeffs[0].inverse().unwrap()], //todo unwrap
+    };
+    let mut i = 2usize;
+    for _ in 0..r {
+        g = &(&g + &g) - &(f * &(&g * &g)); //todo: g*2?
+        g.coeffs.resize(i, E::Fr::zero());
+        i *= 2;
+    }
+    Some(g)
+}
+
+/// Computes the rev_m(f) function in place
+pub fn rev<E: PairingEngine>(f: &mut P<E>, m: usize) {
+    assert!(f.coeffs.len() - 1 <= m);
+    for _ in 0..(m - (f.coeffs.len() - 1)) {
+        f.coeffs.push(E::Fr::zero());
+    }
+    f.reverse();
+}
+
+/// Divide f by g in nearly linear time
+pub fn fast_divide_monic<E: PairingEngine>(f: &P<E>, g: &P<E>) -> (P<E>, P<E>) {
+    if f.coeffs().len() < g.coeffs().len() {
+        return (
+            P::<E> {
+                coeffs: vec![E::Fr::zero()],
+            },
+            f.clone(),
+        );
+    }
+    let m = f.coeffs().len() - g.coeffs().len();
+
+    let mut rev_f = f.clone();
+    let mut rev_g = g.clone();
+    rev_f.reverse();
+    rev_g.reverse();
+
+    let mut q = &rev_f * &inverse_mod_xl::<E>(&rev_g, m + 1).unwrap();
+    q.coeffs.resize(m + 1, E::Fr::zero());
+    rev::<E>(&mut q, m);
+    let r = f - &(g * &q);
+    (q, r)
+}
+
+/// The subproduct tree of a polynomial m over a domain u
+#[derive(Debug, Clone)]
+pub struct SubproductDomain<E: PairingEngine> {
+    /// Domain values
+    pub u: Vec<E::Fr>,
+    /// Subproduct tree over domain u
+    pub t: SubproductTree<E>,
+    /// Derivative of the subproduct polynomial
+    pub prime: P<E>, // Derivative
+}
+
+impl<E: PairingEngine> SubproductDomain<E> {
+    /// Create a subproduct tree domain
+    pub fn new(u: Vec<E::Fr>) -> SubproductDomain<E> {
+        let t = SubproductTree::new(&u);
+        let prime = derivative::<E>(&t.m);
+        SubproductDomain { u, t, prime }
+    }
+    /// evaluate a polynomial over the domain
+    pub fn fast_evaluate(&self, f: &P<E>) -> Vec<E::Fr> {
+        let mut evals = vec![E::Fr::zero(); self.u.len()];
+        self.t.fast_evaluate(f, &self.u, &mut evals);
+        evals
+    }
+    /// interpolate a polynomial over the domain
+    pub fn fast_interpolate(&self, v: &[E::Fr]) -> P<E> {
+        self.t.fast_interpolate(&self.u, v)
+    }
+    /// compute the inverse of the lagrange coefficients fast
+    pub fn fast_inverse_lagrange_coefficients(&self) -> Vec<E::Fr> {
+        self.t.fast_inverse_lagrange_coefficients(&self.u)
+    }
+    /// compute a linear coefficient of lagrange factors times c_i
+    pub fn fast_linear_combine(&self, c: &[E::Fr]) -> P<E> {
+        self.t.fast_linear_combine(&self.u, &c)
+    }
+}
+
+/// A subproduct tree of the subproduct domain
+#[derive(Debug, Clone)]
+pub struct SubproductTree<E: PairingEngine> {
+    /// The left child
+    pub left: Option<Box<SubproductTree<E>>>,
+    /// The right child
+    pub right: Option<Box<SubproductTree<E>>>,
+    /// The polynomial for this subdomain
+    pub m: P<E>,
+}
+
+impl<E: PairingEngine> SubproductTree<E> {
+    /// Compute the subproduct tree of m = (x - u_0)*...*(x-u_{n-1})
+    pub fn new(u: &[E::Fr]) -> SubproductTree<E> {
+        if u.len() == 1 {
+            SubproductTree {
+                left: None,
+                right: None,
+                m: P::<E> {
+                    coeffs: vec![-u[0], E::Fr::one()],
+                },
+            }
+        } else {
+            let n = u.len() / 2;
+            let (u_0, u_1) = u.split_at(n);
+            let left = Box::new(SubproductTree::new(u_0));
+            let right = Box::new(SubproductTree::new(u_1));
+            let m = &left.m * &right.m;
+            SubproductTree {
+                left: Some(left),
+                right: Some(right),
+                m,
+            }
+        }
+    }
+    /// Fast evaluate f over this subproduct tree
+    pub fn fast_evaluate(&self, f: &P<E>, u: &[E::Fr], t: &mut [E::Fr]) {
+        //todo: assert degree < u.len()
+        if u.len() == 1 {
+            t[0] = f.coeffs[0];
+            return;
+        }
+
+        let left = self.left.as_ref().unwrap();
+        let right = self.right.as_ref().unwrap();
+
+        let (q_0, r_0) = fast_divide_monic::<E>(f, &left.m);
+        let (_, r_1) = fast_divide_monic::<E>(f, &right.m);
+
+        let n = u.len() / 2;
+        let (u_0, u_1) = u.split_at(n);
+        let (t_0, t_1) = t.split_at_mut(n);
+
+        left.fast_evaluate(&r_0, u_0, t_0);
+        right.fast_evaluate(&r_1, u_1, t_1);
+    }
+    /// Fast interpolate over this subproduct tree
+    pub fn fast_interpolate(&self, u: &[E::Fr], v: &[E::Fr]) -> P<E> {
+        let mut lagrange_coeff = self.fast_inverse_lagrange_coefficients(u);
+
+        for (s_i, v_i) in lagrange_coeff.iter_mut().zip(v.iter()) {
+            *s_i = s_i.inverse().unwrap() * *v_i;
+        }
+
+        self.fast_linear_combine(u, &lagrange_coeff)
+    }
+    /// Fast compute lagrange coefficients over this subproduct tree
+    pub fn fast_inverse_lagrange_coefficients(&self, u: &[E::Fr]) -> Vec<E::Fr> {
+        //assert u.len() == degree of s.m
+        if u.len() == 1 {
+            return vec![E::Fr::one()];
+        }
+        let mut evals = vec![E::Fr::zero(); u.len()];
+        let m_prime = derivative::<E>(&self.m);
+        self.fast_evaluate(&m_prime, u, &mut evals);
+        evals
+    }
+    /// Fast linear combine over this subproduct tree
+    pub fn fast_linear_combine(&self, u: &[E::Fr], c: &[E::Fr]) -> P<E> {
+        if u.len() == 1 {
+            return P::<E> { coeffs: vec![c[0]] };
+        }
+        let n = u.len() / 2;
+        let (u_0, u_1) = u.split_at(n);
+        let (c_0, c_1) = c.split_at(n);
+
+        let left = self.left.as_ref().unwrap();
+        let right = self.right.as_ref().unwrap();
+        let r_0 = left.fast_linear_combine(u_0, c_0);
+        let r_1 = right.fast_linear_combine(u_1, c_1);
+
+        &(&right.m * &r_0) + &(&left.m * &r_1)
+    }
+}
+/// compute the derivative of polynomial p
+pub fn derivative<E: PairingEngine>(p: &P<E>) -> P<E> {
+    let mut coeffs = Vec::with_capacity(p.coeffs().len() - 1);
+    for (i, c) in p.coeffs.iter().enumerate().skip(1) {
+        coeffs.push(E::Fr::from(i as u64) * c);
+    }
+    P::<E> { coeffs }
+}
+
+/// Build a vector representation of the circulant matrix of polynomial p
+pub fn build_circulant<E: PairingEngine>(polynomial: &P<E>, size: usize) -> Vec<E::Fr> {
+    let mut circulant = vec![E::Fr::zero(); 2 * size];
+    let coeffs = polynomial.coeffs();
+    if size == coeffs.len() - 1 {
+        circulant[0] = *coeffs.last().unwrap();
+        circulant[size] = *coeffs.last().unwrap();
+        circulant[size + 1..size + 1 + coeffs.len() - 2]
+            .copy_from_slice(&coeffs[1..coeffs.len() - 1]);
+    } else {
+        circulant[size + 1..size + 1 + coeffs.len() - 1].copy_from_slice(&coeffs[1..]);
+    }
+    circulant
+}
+/// Computes the Toeplitz matrix of polynomial times the vector v
+pub fn toeplitz_mul<E: PairingEngine>(
+    polynomial: &P<E>,
+    v: &[E::G1Affine],
+    size: usize,
+) -> Result<(Vec<E::G1Projective>, E::Fr), Error> {
+    use ark_ec::AffineCurve;
+    use ark_poly::EvaluationDomain;
+    let m = polynomial.coeffs().len() - 1;
+    let size = ark_std::cmp::max(size, m);
+
+    let domain = ark_poly::Radix2EvaluationDomain::<E::Fr>::new(2 * size)
+        .ok_or(Error::AmortizedOpeningTooLarge(size))?;
+
+    let size = domain.size() / 2;
+    let mut circulant = build_circulant::<E>(polynomial, size);
+
+    let mut tmp: Vec<E::G1Projective> = Vec::with_capacity(domain.size());
+
+    for _ in 0..(size - v.len()) {
+        tmp.push(E::G1Projective::zero());
+    }
+
+    for i in v.iter().rev() {
+        tmp.push(i.into_projective());
+    }
+
+    tmp.resize(domain.size(), E::G1Projective::zero());
+    domain.fft_in_place(&mut tmp);
+    domain.fft_in_place(&mut circulant);
+
+    for (i, j) in tmp.iter_mut().zip(circulant.iter()) {
+        *i *= *j;
+    }
+
+    // NOTE: it is possible to avoid scaling by domain_size_inv, and defer this to later
+    domain.ifft_in_place(&mut tmp);
+
+    Ok((
+        tmp[..size].to_vec(),
+        E::Fr::from(domain.size() as u64).inverse().unwrap(),
+    ))
+}
+
+#[cfg(test)]
+mod tests {
+    use super::*;
+    use ark_ec::PairingEngine;
+    use ark_ff::{One, Zero};
+    use ark_poly::polynomial::univariate::DensePolynomial;
+    use ark_poly::Polynomial;
+    use ark_poly::UVPolynomial;
+    use ark_std::UniformRand;
+
+    type E = ark_bls12_381::Bls12_381;
+    type Fr = <ark_bls12_381::Bls12_381 as PairingEngine>::Fr;
+    #[test]
+    fn test_inverse() {
+        let rng = &mut ark_std::test_rng();
+
+        let degree = 100;
+        let l = 101;
+        for _ in 0..100 {
+            let p = DensePolynomial::<Fr>::rand(degree, rng);
+            let p_inv = inverse_mod_xl::<E>(&p, l).unwrap();
+            let mut t = &p * &p_inv;
+            t.coeffs.resize(l, Fr::zero());
+            assert_eq!(t.coeffs[0], Fr::one());
+            for i in t.iter().skip(1) {
+                assert_eq!(*i, Fr::zero());
+            }
+        }
+    }
+
+    #[test]
+    fn test_divide() {
+        let rng = &mut ark_std::test_rng();
+
+        let degree = 100;
+        let l = 101;
+        for g_deg in 1..100 {
+            let f = DensePolynomial::<Fr>::rand(degree, rng);
+            let mut g = DensePolynomial::<Fr>::rand(g_deg, rng);
+            *g.last_mut().unwrap() = Fr::one(); //monic
+
+            let (q, r) = fast_divide_monic::<E>(&f, &g);
+
+            let t = &(&q * &g) + &r;
+
+            for (i, j) in t.coeffs.iter().zip(f.coeffs.iter()) {
+                assert_eq!(*i, *j);
+            }
+        }
+    }
+
+    #[test]
+    fn test_interpolate() {
+        let rng = &mut ark_std::test_rng();
+        for d in 1..100 {
+            let mut points = vec![];
+            let mut evals = vec![];
+            for _ in 0..d {
+                points.push(Fr::rand(rng));
+                evals.push(Fr::rand(rng));
+            }
+
+            let s = SubproductDomain::<E>::new(points);
+            let p = s.fast_interpolate(&evals);
+
+            for (x, y) in s.u.iter().zip(evals.iter()) {
+                assert_eq!(p.evaluate(x), *y)
+            }
+        }
+    }
+
+    #[test]
+    fn test_linear_combine() {
+        let rng = &mut ark_std::test_rng();
+        for d in 1..100 {
+            let mut u = vec![];
+            let mut c = vec![];
+            for _ in 0..d {
+                u.push(Fr::rand(rng));
+                c.push(Fr::rand(rng));
+            }
+            let s = SubproductDomain::<E>::new(u);
+            let f = s.fast_linear_combine(&c);
+
+            let r = Fr::rand(rng);
+            let m = s.t.m.evaluate(&r);
+            let mut total = Fr::zero();
+            for (u_i, c_i) in s.u.iter().zip(c.iter()) {
+                total += m * *c_i / (r - u_i);
+            }
+            assert_eq!(f.evaluate(&r), total);
+        }
+    }
+
+    #[test]
+    fn test_inv_lagrange() {
+        let rng = &mut ark_std::test_rng();
+        for d in 1..100 {
+            let mut u = vec![];
+            for _ in 0..d {
+                u.push(Fr::rand(rng));
+            }
+            let s = SubproductDomain::<E>::new(u);
+            let f = s.fast_inverse_lagrange_coefficients();
+
+            for (a, (i, j)) in s.u.iter().zip(f.iter()).enumerate() {
+                assert_eq!(s.prime.evaluate(i), *j);
+            }
+        }
+    }
+}
diff --git a/src/kzg10/mod.rs b/src/kzg10/mod.rs
index 66b26884..646fef04 100644
--- a/src/kzg10/mod.rs
+++ b/src/kzg10/mod.rs
@@ -9,7 +9,9 @@ use crate::{BTreeMap, Error, LabeledPolynomial, PCRandomness, ToString, Vec};
 use ark_ec::msm::{FixedBaseMSM, VariableBaseMSM};
 use ark_ec::{group::Group, AffineCurve, PairingEngine, ProjectiveCurve};
 use ark_ff::{One, PrimeField, UniformRand, Zero};
-use ark_poly::UVPolynomial;
+use ark_poly::polynomial::univariate::DensePolynomial;
+use ark_poly::EvaluationDomain;
+use ark_poly::{Polynomial, UVPolynomial};
 use ark_std::{format, marker::PhantomData, ops::Div, vec};
 
 use ark_std::rand::RngCore;
@@ -18,6 +20,8 @@ use rayon::prelude::*;
 
 mod data_structures;
 pub use data_structures::*;
+mod fastpoly;
+pub use fastpoly::*;
 
 /// `KZG10` is an implementation of the polynomial commitment scheme of
 /// [Kate, Zaverucha and Goldbgerg][kzg10]
@@ -41,6 +45,8 @@ where
         produce_g2_powers: bool,
         rng: &mut R,
     ) -> Result<UniversalParams<E>, Error> {
+        let produce_h_powers = true;
+
         if max_degree < 1 {
             return Err(Error::DegreeIsZero);
         }
@@ -119,16 +125,37 @@ where
 
         end_timer!(neg_powers_of_h_time);
 
+        let powers_of_h_time = start_timer!(|| "Generating powers of h in G2");
+        let powers_of_h = if produce_h_powers {
+            let h_table = FixedBaseMSM::get_window_table(scalar_bits, window_size, h);
+
+            let powers_of_h = FixedBaseMSM::multi_scalar_mul::<E::G2Projective>(
+                scalar_bits,
+                window_size,
+                &h_table,
+                &powers_of_beta,
+            );
+
+            E::G2Projective::batch_normalization_into_affine(&powers_of_h)
+        } else {
+            let h = h.into_affine();
+            let beta_h = h.mul(beta).into_affine();
+            vec![h, beta_h]
+        };
+        end_timer!(powers_of_h_time);
+
         let h = h.into_affine();
         let beta_h = h.mul(beta).into_affine();
+
         let prepared_h = h.into();
-        let prepared_beta_h = beta_h.into();
+        let prepared_beta_h = powers_of_h[1].into();
 
         let pp = UniversalParams {
             powers_of_g,
             powers_of_gamma_g,
             h,
             beta_h,
+            powers_of_h,
             neg_powers_of_h,
             prepared_h,
             prepared_beta_h,
@@ -191,6 +218,30 @@ where
         Ok((Commitment(commitment.into()), randomness))
     }
 
+    /// Outputs a commitment to `polynomial` in G2
+    pub fn G2_commit(
+        powers: &UniversalParams<E>,
+        polynomial: &DensePolynomial<E::Fr>,
+    ) -> Result<E::G2Projective, Error> {
+        Self::check_degree_is_too_large(polynomial.degree(), powers.powers_of_h.len())?;
+
+        let commit_time = start_timer!(|| format!(
+            "Committing to polynomial of degree {} in G2",
+            polynomial.degree(),
+        ));
+
+        let (num_leading_zeros, plain_coeffs) =
+            skip_leading_zeros_and_convert_to_bigints(polynomial);
+
+        let msm_time = start_timer!(|| "MSM to compute commitment to plaintext poly in G2");
+        let commitment = VariableBaseMSM::multi_scalar_mul(
+            &powers.powers_of_h[num_leading_zeros..],
+            &plain_coeffs,
+        );
+        end_timer!(msm_time);
+        end_timer!(commit_time);
+        Ok(commitment)
+    }
     /// Compute witness polynomial.
     ///
     /// The witness polynomial w(x) the quotient of the division (p(x) - p(z)) / (x - z)
@@ -265,7 +316,7 @@ where
     }
 
     /// On input a polynomial `p` and a point `point`, outputs a proof for the same.
-    pub(crate) fn open<'a>(
+    pub fn open<'a>(
         powers: &Powers<E>,
         p: &P,
         point: P::Point,
@@ -290,6 +341,32 @@ where
         proof
     }
 
+    /// Open a polynomial at an entire evaluation domain simultaneously
+    pub fn open_amortized<'a>(
+        pp: &UniversalParams<E>,
+        p: &DensePolynomial<E::Fr>,
+        domain: &ark_poly::domain::Radix2EvaluationDomain<E::Fr>,
+    ) -> Result<AmortizedProof<E>, Error> {
+        Self::check_degree_is_too_large(p.degree(), pp.powers_of_g.len())?;
+        let open_time =
+            start_timer!(|| format!("Amortized opening polynomial of degree {}", p.degree()));
+
+        let m = p.coeffs().len() - 1;
+        let powers_of_g = pp.powers_of_g[0..m].to_vec();
+
+        let toeplitz_time = start_timer!(|| "Computing Toeplitz product");
+        let (mut h, scale) = toeplitz_mul::<E>(p, &powers_of_g, domain.size())?;
+
+        end_timer!(toeplitz_time);
+
+        domain.fft_in_place(&mut h);
+
+        let proofs = AmortizedProof { w: h, scale };
+
+        end_timer!(open_time);
+        Ok(proofs)
+    }
+
     /// Verifies that `value` is the evaluation at `point` of the polynomial
     /// committed inside `comm`.
     pub fn check(
@@ -427,6 +504,60 @@ where
             Ok(())
         }
     }
+
+    /// Verifies that `value` is the evaluation at `point` of the polynomial
+    /// committed inside `comm`.
+    pub fn check_amortized(
+        pp: &UniversalParams<E>,
+        ck: &Powers<E>,
+        comm: &Commitment<E>,
+        proof: &Proof<E>,
+        evals: &[E::Fr],         // Evaluations at the SubproductDomain
+        s: &SubproductDomain<E>, // SubproductDomain of the evaluation domain
+    ) -> Result<bool, Error> {
+        let evaluation_interpolation_time = start_timer!(|| "Constructing evaluation polynomial");
+
+        let evaluation_polynomial = s.fast_interpolate(evals);
+        end_timer!(evaluation_interpolation_time);
+        let evaluation_commit_time =
+            start_timer!(|| "Constructing commitment to evaluation polynomial in G1");
+
+        let evaluation_polynomial_commitment =
+            KZG10::<E, DensePolynomial<E::Fr>>::commit(&ck, &evaluation_polynomial, None, None)?;
+
+        end_timer!(evaluation_commit_time);
+
+        let s_commitment_time =
+            start_timer!(|| "Constructing commitment to SubproductDomain in G2");
+        let s_commitment = Self::G2_commit(pp, &s.t.m)?;
+        end_timer!(s_commitment_time);
+        Self::check_amortized_with_commitments(
+            pp,
+            comm,
+            proof,
+            &s_commitment,
+            &evaluation_polynomial_commitment.0,
+        )
+    }
+
+    /// Check amortized proof with precomputed commitments
+    pub fn check_amortized_with_commitments(
+        ck: &UniversalParams<E>,
+        comm: &Commitment<E>,
+        proof: &Proof<E>,
+        s_commitment: &E::G2Projective, // G2 Commitment to the SubproductDomain
+        evaluation_polynomial_commitment: &Commitment<E>,
+    ) -> Result<bool, Error> {
+        let check_time = start_timer!(|| "Checking evaluation");
+        let inner = comm.0.into_projective() - evaluation_polynomial_commitment.0.into_projective();
+
+        let lhs = E::pairing(inner, ck.powers_of_h[0]);
+
+        let rhs = E::pairing(proof.w, *s_commitment);
+
+        end_timer!(check_time, || format!("Result: {}", lhs == rhs));
+        Ok(lhs == rhs)
+    }
 }
 
 fn skip_leading_zeros_and_convert_to_bigints<F: PrimeField, P: UVPolynomial<F>>(
@@ -653,4 +784,129 @@ mod tests {
         assert!(p.degree() > max_degree);
         assert!(KZG_Bls12_381::check_degree_is_too_large(p.degree(), powers.size()).is_err());
     }
+    #[test]
+    fn test_toeplitz() {
+        type G1Projective = <Bls12_381 as PairingEngine>::G1Projective;
+        type G1Affine = <Bls12_381 as PairingEngine>::G1Affine;
+
+        let rng = &mut test_rng();
+        for total_weight in 15..30 {
+            let degree = 2 * total_weight / 3;
+
+            let pp = KZG_Bls12_381::setup(degree, false, rng).unwrap();
+            let (ck, vk) = KZG_Bls12_381::trim(&pp, degree).unwrap();
+
+            for _ in 0..4 {
+                let polynomial = DensePolynomial::<Fr>::rand(degree, rng);
+
+                let coeffs = polynomial.coeffs();
+                let m = polynomial.coeffs.len() - 1;
+
+                let domain = ark_poly::Radix2EvaluationDomain::<Fr>::new(total_weight).unwrap();
+                let p = ck.powers_of_g[0..m].to_vec();
+                let (h, scale): (Vec<G1Projective>, Fr) =
+                    toeplitz_mul::<Bls12_381>(&polynomial, &p, domain.size()).unwrap();
+
+                let h = h
+                    .iter()
+                    .map(
+                        |p: &G1Projective| (*p).into_affine(), /*. mul(scale).into_affine()*/
+                    )
+                    .collect::<Vec<G1Affine>>();
+
+                for i in 1..=m {
+                    let mut total = G1Projective::zero();
+                    for j in 0..=m - i {
+                        total = total + (p[j].mul(coeffs[i + j]));
+                    }
+                    assert_eq!(G1Affine::from(total), h[i - 1]);
+                }
+            }
+        }
+    }
+    #[test]
+    fn test_check_amortized() {
+        let rng = &mut test_rng();
+        let n = 10;
+        let eval_domain_size = 1 << n;
+
+        let degree = 1 << (n - 1);
+
+        let pp = KZG_Bls12_381::setup(eval_domain_size, false, rng).unwrap();
+        let (ck, vk) = KZG_Bls12_381::trim(&pp, degree).unwrap();
+
+        let p = DensePoly::<Fr>::rand(degree, rng);
+
+        let (comm, rand) = KZG_Bls12_381::commit(&ck, &p, None, None).unwrap();
+
+        let domain = ark_poly::Radix2EvaluationDomain::<Fr>::new(eval_domain_size).unwrap();
+        let openings = KZG_Bls12_381::open_amortized(&pp, &p, &domain).unwrap();
+
+        let evals = p.evaluate_over_domain_by_ref(domain).evals;
+
+        assert!(KZG_Bls12_381::check(
+            &vk,
+            &comm,
+            Fr::one(),
+            evals[0],
+            &Proof {
+                w: openings.w[0].into_affine(),
+                /*.mul::<Fr>(openings.scale) // If the ifft does not multiply by domain_size_inv
+                .into_affine()*/
+                random_v: None,
+            }
+        )
+        .unwrap());
+
+        let mut whole_domain = Vec::with_capacity(domain.size());
+        let mut t = Fr::one();
+        for _ in 0..domain.size() {
+            whole_domain.push(t);
+            t *= domain.group_gen;
+        }
+
+        let subproduct_domains = [
+            SubproductDomain::new(whole_domain[0..100].to_vec()),
+            SubproductDomain::new(whole_domain[100..400].to_vec()),
+            SubproductDomain::new(whole_domain[400..].to_vec()),
+        ];
+
+        let combined = [
+            openings.combine_at_evals(&(0..100), &evals[0..100], &subproduct_domains[0]),
+            openings.combine_at_evals(&(100..400), &evals[100..400], &subproduct_domains[1]),
+            openings.combine_at_evals(
+                &(400..eval_domain_size),
+                &evals[400..],
+                &subproduct_domains[2],
+            ),
+        ];
+
+        assert!(KZG_Bls12_381::check_amortized(
+            &pp,
+            &ck,
+            &comm,
+            &combined[0],
+            &evals[0..100],
+            &subproduct_domains[0]
+        )
+        .unwrap());
+        assert!(KZG_Bls12_381::check_amortized(
+            &pp,
+            &ck,
+            &comm,
+            &combined[1],
+            &evals[100..400],
+            &subproduct_domains[1]
+        )
+        .unwrap());
+        assert!(KZG_Bls12_381::check_amortized(
+            &pp,
+            &ck,
+            &comm,
+            &combined[2],
+            &evals[400..],
+            &subproduct_domains[2]
+        )
+        .unwrap());
+    }
 }

From dbe472ff58da895c63ad57366c327bf838b57c52 Mon Sep 17 00:00:00 2001
From: joe <55120843+joebebel@users.noreply.github.com>
Date: Tue, 4 May 2021 18:13:41 -0700
Subject: [PATCH 02/11] Update src/kzg10/mod.rs

Co-authored-by: Pratyush Mishra <pratyushmishra@berkeley.edu>
---
 src/kzg10/mod.rs | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/src/kzg10/mod.rs b/src/kzg10/mod.rs
index 646fef04..96edb8bc 100644
--- a/src/kzg10/mod.rs
+++ b/src/kzg10/mod.rs
@@ -219,7 +219,7 @@ where
     }
 
     /// Outputs a commitment to `polynomial` in G2
-    pub fn G2_commit(
+    pub fn commit_g2(
         powers: &UniversalParams<E>,
         polynomial: &DensePolynomial<E::Fr>,
     ) -> Result<E::G2Projective, Error> {

From b5e9b68429660a231f73fcdfa4559df87ee570ec Mon Sep 17 00:00:00 2001
From: joe bebel <joseph.bebel@gmail.com>
Date: Tue, 4 May 2021 19:05:27 -0700
Subject: [PATCH 03/11] cleanup suggestions

---
 src/kzg10/data_structures.rs |  10 +--
 src/kzg10/fastpoly.rs        | 119 +++++++++++++++++------------------
 src/kzg10/mod.rs             |  79 +++++++++++------------
 src/marlin/marlin_pc/mod.rs  |   6 +-
 src/sonic_pc/mod.rs          |   5 +-
 5 files changed, 106 insertions(+), 113 deletions(-)

diff --git a/src/kzg10/data_structures.rs b/src/kzg10/data_structures.rs
index 1037ec94..43356c18 100644
--- a/src/kzg10/data_structures.rs
+++ b/src/kzg10/data_structures.rs
@@ -575,15 +575,15 @@ pub struct AmortizedProof<E: PairingEngine> {
 
 impl<E: PairingEngine> AmortizedProof<E> {
     /// Combine opening proofs onto a subset of the domain
-    pub fn combine_at_evals(
+    pub fn combine_at_domain(
         &self,
-        range: &std::ops::Range<usize>, // Domain is omega^{start}, ..., omega^{end-1}
-        evals: &[E::Fr],                // Evaluation of polynomial at domain
-        s: &super::fastpoly::SubproductDomain<E>, // SubproductDomain of the domain
+        start: usize, // Domain is omega^{start}, ..., omega^{end-1}
+        end: usize,
+        s: &super::fastpoly::SubproductDomain<E::Fr>, // SubproductDomain of the domain
     ) -> Proof<E> {
         let lagrange_coeff = s.fast_inverse_lagrange_coefficients();
         let mut total = E::G1Projective::zero();
-        for (c_i, point) in lagrange_coeff.iter().zip(self.w[range.clone()].iter()) {
+        for (c_i, point) in lagrange_coeff.iter().zip(self.w[start..end].iter()) {
             total += point.into_affine().mul::<E::Fr>(c_i.inverse().unwrap());
         }
         Proof {
diff --git a/src/kzg10/fastpoly.rs b/src/kzg10/fastpoly.rs
index 50bd8ea9..1d28b9c7 100644
--- a/src/kzg10/fastpoly.rs
+++ b/src/kzg10/fastpoly.rs
@@ -1,47 +1,46 @@
 use crate::Error;
 use ark_ec::PairingEngine;
-use ark_ff::{Field, One, Zero};
+use ark_ff::{FftField, Field, Zero};
 use ark_poly::UVPolynomial;
 
-use ark_poly::polynomial::univariate::DensePolynomial;
-
-type P<E: PairingEngine> = DensePolynomial<E::Fr>;
+use ark_poly::polynomial::univariate::DensePolynomial as Poly;
 
 /// Computes the inverse of f mod x^l
-pub fn inverse_mod_xl<E: PairingEngine>(f: &P<E>, l: usize) -> Option<P<E>> {
+pub fn inverse_mod_xl<F: FftField>(f: &Poly<F>, l: usize) -> Option<Poly<F>> {
     //use std::ops::Mul;
     //let r =
     //    std::mem::size_of::<u64>() * 8 - (l as u64).leading_zeros() as usize; // ceil(log_2(l))
 
     //assert_eq!((l as f64).log2().ceil() as usize, r);
-    let r = (l as f64).log2().ceil() as usize; //TODO: rounding problems??
-    let mut g = DensePolynomial::<E::Fr> {
+    //let r = (l as f64).log2().ceil() as usize; //TODO: rounding problems??
+    let r = ark_std::log2(l);
+    let mut g = Poly::<F> {
         coeffs: vec![f.coeffs[0].inverse().unwrap()], //todo unwrap
     };
     let mut i = 2usize;
     for _ in 0..r {
         g = &(&g + &g) - &(f * &(&g * &g)); //todo: g*2?
-        g.coeffs.resize(i, E::Fr::zero());
+        g.coeffs.resize(i, F::zero());
         i *= 2;
     }
     Some(g)
 }
 
 /// Computes the rev_m(f) function in place
-pub fn rev<E: PairingEngine>(f: &mut P<E>, m: usize) {
+pub fn rev<F: FftField>(f: &mut Poly<F>, m: usize) {
     assert!(f.coeffs.len() - 1 <= m);
     for _ in 0..(m - (f.coeffs.len() - 1)) {
-        f.coeffs.push(E::Fr::zero());
+        f.coeffs.push(F::zero());
     }
     f.reverse();
 }
 
 /// Divide f by g in nearly linear time
-pub fn fast_divide_monic<E: PairingEngine>(f: &P<E>, g: &P<E>) -> (P<E>, P<E>) {
+pub fn fast_divide_monic<F: FftField>(f: &Poly<F>, g: &Poly<F>) -> (Poly<F>, Poly<F>) {
     if f.coeffs().len() < g.coeffs().len() {
         return (
-            P::<E> {
-                coeffs: vec![E::Fr::zero()],
+            Poly::<F> {
+                coeffs: vec![F::zero()],
             },
             f.clone(),
         );
@@ -53,71 +52,71 @@ pub fn fast_divide_monic<E: PairingEngine>(f: &P<E>, g: &P<E>) -> (P<E>, P<E>) {
     rev_f.reverse();
     rev_g.reverse();
 
-    let mut q = &rev_f * &inverse_mod_xl::<E>(&rev_g, m + 1).unwrap();
-    q.coeffs.resize(m + 1, E::Fr::zero());
-    rev::<E>(&mut q, m);
+    let mut q = &rev_f * &inverse_mod_xl::<F>(&rev_g, m + 1).unwrap();
+    q.coeffs.resize(m + 1, F::zero());
+    rev::<F>(&mut q, m);
     let r = f - &(g * &q);
     (q, r)
 }
 
 /// The subproduct tree of a polynomial m over a domain u
 #[derive(Debug, Clone)]
-pub struct SubproductDomain<E: PairingEngine> {
+pub struct SubproductDomain<F: FftField> {
     /// Domain values
-    pub u: Vec<E::Fr>,
+    pub u: Vec<F>,
     /// Subproduct tree over domain u
-    pub t: SubproductTree<E>,
+    pub t: SubproductTree<F>,
     /// Derivative of the subproduct polynomial
-    pub prime: P<E>, // Derivative
+    pub prime: Poly<F>, // Derivative
 }
 
-impl<E: PairingEngine> SubproductDomain<E> {
+impl<F: FftField> SubproductDomain<F> {
     /// Create a subproduct tree domain
-    pub fn new(u: Vec<E::Fr>) -> SubproductDomain<E> {
+    pub fn new(u: Vec<F>) -> SubproductDomain<F> {
         let t = SubproductTree::new(&u);
-        let prime = derivative::<E>(&t.m);
+        let prime = derivative::<F>(&t.m);
         SubproductDomain { u, t, prime }
     }
     /// evaluate a polynomial over the domain
-    pub fn fast_evaluate(&self, f: &P<E>) -> Vec<E::Fr> {
-        let mut evals = vec![E::Fr::zero(); self.u.len()];
+    pub fn fast_evaluate(&self, f: &Poly<F>) -> Vec<F> {
+        let mut evals = vec![F::zero(); self.u.len()];
         self.t.fast_evaluate(f, &self.u, &mut evals);
         evals
     }
     /// interpolate a polynomial over the domain
-    pub fn fast_interpolate(&self, v: &[E::Fr]) -> P<E> {
+    pub fn fast_interpolate(&self, v: &[F]) -> Poly<F> {
         self.t.fast_interpolate(&self.u, v)
     }
     /// compute the inverse of the lagrange coefficients fast
-    pub fn fast_inverse_lagrange_coefficients(&self) -> Vec<E::Fr> {
+    pub fn fast_inverse_lagrange_coefficients(&self) -> Vec<F> {
         self.t.fast_inverse_lagrange_coefficients(&self.u)
     }
     /// compute a linear coefficient of lagrange factors times c_i
-    pub fn fast_linear_combine(&self, c: &[E::Fr]) -> P<E> {
+    pub fn fast_linear_combine(&self, c: &[F]) -> Poly<F> {
         self.t.fast_linear_combine(&self.u, &c)
     }
 }
 
 /// A subproduct tree of the subproduct domain
 #[derive(Debug, Clone)]
-pub struct SubproductTree<E: PairingEngine> {
+pub struct SubproductTree<F: FftField> {
     /// The left child
-    pub left: Option<Box<SubproductTree<E>>>,
+    pub left: Option<Box<SubproductTree<F>>>,
     /// The right child
-    pub right: Option<Box<SubproductTree<E>>>,
+    pub right: Option<Box<SubproductTree<F>>>,
     /// The polynomial for this subdomain
-    pub m: P<E>,
+    pub m: Poly<F>,
 }
 
-impl<E: PairingEngine> SubproductTree<E> {
+impl<F: FftField> SubproductTree<F> {
     /// Compute the subproduct tree of m = (x - u_0)*...*(x-u_{n-1})
-    pub fn new(u: &[E::Fr]) -> SubproductTree<E> {
+    pub fn new(u: &[F]) -> SubproductTree<F> {
         if u.len() == 1 {
             SubproductTree {
                 left: None,
                 right: None,
-                m: P::<E> {
-                    coeffs: vec![-u[0], E::Fr::one()],
+                m: Poly::<F> {
+                    coeffs: vec![-u[0], F::one()],
                 },
             }
         } else {
@@ -134,7 +133,7 @@ impl<E: PairingEngine> SubproductTree<E> {
         }
     }
     /// Fast evaluate f over this subproduct tree
-    pub fn fast_evaluate(&self, f: &P<E>, u: &[E::Fr], t: &mut [E::Fr]) {
+    pub fn fast_evaluate(&self, f: &Poly<F>, u: &[F], t: &mut [F]) {
         //todo: assert degree < u.len()
         if u.len() == 1 {
             t[0] = f.coeffs[0];
@@ -144,8 +143,8 @@ impl<E: PairingEngine> SubproductTree<E> {
         let left = self.left.as_ref().unwrap();
         let right = self.right.as_ref().unwrap();
 
-        let (q_0, r_0) = fast_divide_monic::<E>(f, &left.m);
-        let (_, r_1) = fast_divide_monic::<E>(f, &right.m);
+        let (_, r_0) = fast_divide_monic::<F>(f, &left.m);
+        let (_, r_1) = fast_divide_monic::<F>(f, &right.m);
 
         let n = u.len() / 2;
         let (u_0, u_1) = u.split_at(n);
@@ -155,7 +154,7 @@ impl<E: PairingEngine> SubproductTree<E> {
         right.fast_evaluate(&r_1, u_1, t_1);
     }
     /// Fast interpolate over this subproduct tree
-    pub fn fast_interpolate(&self, u: &[E::Fr], v: &[E::Fr]) -> P<E> {
+    pub fn fast_interpolate(&self, u: &[F], v: &[F]) -> Poly<F> {
         let mut lagrange_coeff = self.fast_inverse_lagrange_coefficients(u);
 
         for (s_i, v_i) in lagrange_coeff.iter_mut().zip(v.iter()) {
@@ -165,20 +164,20 @@ impl<E: PairingEngine> SubproductTree<E> {
         self.fast_linear_combine(u, &lagrange_coeff)
     }
     /// Fast compute lagrange coefficients over this subproduct tree
-    pub fn fast_inverse_lagrange_coefficients(&self, u: &[E::Fr]) -> Vec<E::Fr> {
+    pub fn fast_inverse_lagrange_coefficients(&self, u: &[F]) -> Vec<F> {
         //assert u.len() == degree of s.m
         if u.len() == 1 {
-            return vec![E::Fr::one()];
+            return vec![F::one()];
         }
-        let mut evals = vec![E::Fr::zero(); u.len()];
-        let m_prime = derivative::<E>(&self.m);
+        let mut evals = vec![F::zero(); u.len()];
+        let m_prime = derivative::<F>(&self.m);
         self.fast_evaluate(&m_prime, u, &mut evals);
         evals
     }
     /// Fast linear combine over this subproduct tree
-    pub fn fast_linear_combine(&self, u: &[E::Fr], c: &[E::Fr]) -> P<E> {
+    pub fn fast_linear_combine(&self, u: &[F], c: &[F]) -> Poly<F> {
         if u.len() == 1 {
-            return P::<E> { coeffs: vec![c[0]] };
+            return Poly::<F> { coeffs: vec![c[0]] };
         }
         let n = u.len() / 2;
         let (u_0, u_1) = u.split_at(n);
@@ -193,17 +192,17 @@ impl<E: PairingEngine> SubproductTree<E> {
     }
 }
 /// compute the derivative of polynomial p
-pub fn derivative<E: PairingEngine>(p: &P<E>) -> P<E> {
+pub fn derivative<F: FftField>(p: &Poly<F>) -> Poly<F> {
     let mut coeffs = Vec::with_capacity(p.coeffs().len() - 1);
     for (i, c) in p.coeffs.iter().enumerate().skip(1) {
-        coeffs.push(E::Fr::from(i as u64) * c);
+        coeffs.push(F::from(i as u64) * c);
     }
-    P::<E> { coeffs }
+    Poly::<F> { coeffs }
 }
 
 /// Build a vector representation of the circulant matrix of polynomial p
-pub fn build_circulant<E: PairingEngine>(polynomial: &P<E>, size: usize) -> Vec<E::Fr> {
-    let mut circulant = vec![E::Fr::zero(); 2 * size];
+pub fn build_circulant<F: FftField>(polynomial: &Poly<F>, size: usize) -> Vec<F> {
+    let mut circulant = vec![F::zero(); 2 * size];
     let coeffs = polynomial.coeffs();
     if size == coeffs.len() - 1 {
         circulant[0] = *coeffs.last().unwrap();
@@ -217,7 +216,7 @@ pub fn build_circulant<E: PairingEngine>(polynomial: &P<E>, size: usize) -> Vec<
 }
 /// Computes the Toeplitz matrix of polynomial times the vector v
 pub fn toeplitz_mul<E: PairingEngine>(
-    polynomial: &P<E>,
+    polynomial: &Poly<E::Fr>,
     v: &[E::G1Affine],
     size: usize,
 ) -> Result<(Vec<E::G1Projective>, E::Fr), Error> {
@@ -230,7 +229,7 @@ pub fn toeplitz_mul<E: PairingEngine>(
         .ok_or(Error::AmortizedOpeningTooLarge(size))?;
 
     let size = domain.size() / 2;
-    let mut circulant = build_circulant::<E>(polynomial, size);
+    let mut circulant = build_circulant::<E::Fr>(polynomial, size);
 
     let mut tmp: Vec<E::G1Projective> = Vec::with_capacity(domain.size());
 
@@ -269,7 +268,6 @@ mod tests {
     use ark_poly::UVPolynomial;
     use ark_std::UniformRand;
 
-    type E = ark_bls12_381::Bls12_381;
     type Fr = <ark_bls12_381::Bls12_381 as PairingEngine>::Fr;
     #[test]
     fn test_inverse() {
@@ -279,7 +277,7 @@ mod tests {
         let l = 101;
         for _ in 0..100 {
             let p = DensePolynomial::<Fr>::rand(degree, rng);
-            let p_inv = inverse_mod_xl::<E>(&p, l).unwrap();
+            let p_inv = inverse_mod_xl::<Fr>(&p, l).unwrap();
             let mut t = &p * &p_inv;
             t.coeffs.resize(l, Fr::zero());
             assert_eq!(t.coeffs[0], Fr::one());
@@ -294,13 +292,12 @@ mod tests {
         let rng = &mut ark_std::test_rng();
 
         let degree = 100;
-        let l = 101;
         for g_deg in 1..100 {
             let f = DensePolynomial::<Fr>::rand(degree, rng);
             let mut g = DensePolynomial::<Fr>::rand(g_deg, rng);
             *g.last_mut().unwrap() = Fr::one(); //monic
 
-            let (q, r) = fast_divide_monic::<E>(&f, &g);
+            let (q, r) = fast_divide_monic::<Fr>(&f, &g);
 
             let t = &(&q * &g) + &r;
 
@@ -321,7 +318,7 @@ mod tests {
                 evals.push(Fr::rand(rng));
             }
 
-            let s = SubproductDomain::<E>::new(points);
+            let s = SubproductDomain::<Fr>::new(points);
             let p = s.fast_interpolate(&evals);
 
             for (x, y) in s.u.iter().zip(evals.iter()) {
@@ -340,7 +337,7 @@ mod tests {
                 u.push(Fr::rand(rng));
                 c.push(Fr::rand(rng));
             }
-            let s = SubproductDomain::<E>::new(u);
+            let s = SubproductDomain::<Fr>::new(u);
             let f = s.fast_linear_combine(&c);
 
             let r = Fr::rand(rng);
@@ -361,10 +358,10 @@ mod tests {
             for _ in 0..d {
                 u.push(Fr::rand(rng));
             }
-            let s = SubproductDomain::<E>::new(u);
+            let s = SubproductDomain::<Fr>::new(u);
             let f = s.fast_inverse_lagrange_coefficients();
 
-            for (a, (i, j)) in s.u.iter().zip(f.iter()).enumerate() {
+            for (i, j) in s.u.iter().zip(f.iter()) {
                 assert_eq!(s.prime.evaluate(i), *j);
             }
         }
diff --git a/src/kzg10/mod.rs b/src/kzg10/mod.rs
index 96edb8bc..592fde66 100644
--- a/src/kzg10/mod.rs
+++ b/src/kzg10/mod.rs
@@ -43,10 +43,9 @@ where
     pub fn setup<R: RngCore>(
         max_degree: usize,
         produce_g2_powers: bool,
+        produce_h_powers: bool,
         rng: &mut R,
     ) -> Result<UniversalParams<E>, Error> {
-        let produce_h_powers = true;
-
         if max_degree < 1 {
             return Err(Error::DegreeIsZero);
         }
@@ -165,7 +164,7 @@ where
     }
 
     /// Outputs a commitment to `polynomial`.
-    pub fn commit(
+    pub fn commit_g1(
         powers: &Powers<E>,
         polynomial: &P,
         hiding_bound: Option<usize>,
@@ -342,7 +341,7 @@ where
     }
 
     /// Open a polynomial at an entire evaluation domain simultaneously
-    pub fn open_amortized<'a>(
+    pub fn open_at_domain<'a>(
         pp: &UniversalParams<E>,
         p: &DensePolynomial<E::Fr>,
         domain: &ark_poly::domain::Radix2EvaluationDomain<E::Fr>,
@@ -505,15 +504,15 @@ where
         }
     }
 
-    /// Verifies that `value` is the evaluation at `point` of the polynomial
-    /// committed inside `comm`.
-    pub fn check_amortized(
+    /// Verifies that `evals` are the evaluation at `s` of the polynomial
+    /// committed inside `comm` where `s` is a constructed SubproductDomain
+    pub fn check_at_domain(
         pp: &UniversalParams<E>,
         ck: &Powers<E>,
         comm: &Commitment<E>,
         proof: &Proof<E>,
-        evals: &[E::Fr],         // Evaluations at the SubproductDomain
-        s: &SubproductDomain<E>, // SubproductDomain of the evaluation domain
+        evals: &[E::Fr],             // Evaluations at the SubproductDomain
+        s: &SubproductDomain<E::Fr>, // SubproductDomain of the evaluation domain
     ) -> Result<bool, Error> {
         let evaluation_interpolation_time = start_timer!(|| "Constructing evaluation polynomial");
 
@@ -523,15 +522,15 @@ where
             start_timer!(|| "Constructing commitment to evaluation polynomial in G1");
 
         let evaluation_polynomial_commitment =
-            KZG10::<E, DensePolynomial<E::Fr>>::commit(&ck, &evaluation_polynomial, None, None)?;
+            KZG10::<E, DensePolynomial<E::Fr>>::commit_g1(&ck, &evaluation_polynomial, None, None)?;
 
         end_timer!(evaluation_commit_time);
 
         let s_commitment_time =
             start_timer!(|| "Constructing commitment to SubproductDomain in G2");
-        let s_commitment = Self::G2_commit(pp, &s.t.m)?;
+        let s_commitment = Self::commit_g2(pp, &s.t.m)?;
         end_timer!(s_commitment_time);
-        Self::check_amortized_with_commitments(
+        Self::check_at_domain_with_commitments(
             pp,
             comm,
             proof,
@@ -541,7 +540,7 @@ where
     }
 
     /// Check amortized proof with precomputed commitments
-    pub fn check_amortized_with_commitments(
+    pub fn check_at_domain_with_commitments(
         ck: &UniversalParams<E>,
         comm: &Commitment<E>,
         proof: &Proof<E>,
@@ -643,12 +642,12 @@ mod tests {
         f_p += (f, &p);
 
         let degree = 4;
-        let pp = KZG_Bls12_381::setup(degree, false, rng).unwrap();
+        let pp = KZG_Bls12_381::setup(degree, false, false, rng).unwrap();
         let (powers, _) = KZG_Bls12_381::trim(&pp, degree).unwrap();
 
         let hiding_bound = None;
-        let (comm, _) = KZG10::commit(&powers, &p, hiding_bound, Some(rng)).unwrap();
-        let (f_comm, _) = KZG10::commit(&powers, &f_p, hiding_bound, Some(rng)).unwrap();
+        let (comm, _) = KZG10::commit_g1(&powers, &p, hiding_bound, Some(rng)).unwrap();
+        let (f_comm, _) = KZG10::commit_g1(&powers, &f_p, hiding_bound, Some(rng)).unwrap();
         let mut f_comm_2 = Commitment::empty();
         f_comm_2 += (f, &comm);
 
@@ -667,11 +666,11 @@ mod tests {
             while degree <= 1 {
                 degree = usize::rand(rng) % 20;
             }
-            let pp = KZG10::<E, P>::setup(degree, false, rng)?;
+            let pp = KZG10::<E, P>::setup(degree, false, false, rng)?;
             let (ck, vk) = KZG10::<E, P>::trim(&pp, degree)?;
             let p = P::rand(degree, rng);
             let hiding_bound = Some(1);
-            let (comm, rand) = KZG10::<E, P>::commit(&ck, &p, hiding_bound, Some(rng))?;
+            let (comm, rand) = KZG10::<E, P>::commit_g1(&ck, &p, hiding_bound, Some(rng))?;
             let point = E::Fr::rand(rng);
             let value = p.evaluate(&point);
             let proof = KZG10::<E, P>::open(&ck, &p, point, &rand)?;
@@ -695,11 +694,11 @@ mod tests {
         let rng = &mut test_rng();
         for _ in 0..100 {
             let degree = 50;
-            let pp = KZG10::<E, P>::setup(degree, false, rng)?;
+            let pp = KZG10::<E, P>::setup(degree, false, false, rng)?;
             let (ck, vk) = KZG10::<E, P>::trim(&pp, 2)?;
             let p = P::rand(1, rng);
             let hiding_bound = Some(1);
-            let (comm, rand) = KZG10::<E, P>::commit(&ck, &p, hiding_bound, Some(rng))?;
+            let (comm, rand) = KZG10::<E, P>::commit_g1(&ck, &p, hiding_bound, Some(rng))?;
             let point = E::Fr::rand(rng);
             let value = p.evaluate(&point);
             let proof = KZG10::<E, P>::open(&ck, &p, point, &rand)?;
@@ -726,7 +725,7 @@ mod tests {
             while degree <= 1 {
                 degree = usize::rand(rng) % 20;
             }
-            let pp = KZG10::<E, P>::setup(degree, false, rng)?;
+            let pp = KZG10::<E, P>::setup(degree, false, false, rng)?;
             let (ck, vk) = KZG10::<E, P>::trim(&pp, degree)?;
             let mut comms = Vec::new();
             let mut values = Vec::new();
@@ -735,7 +734,7 @@ mod tests {
             for _ in 0..10 {
                 let p = P::rand(degree, rng);
                 let hiding_bound = Some(1);
-                let (comm, rand) = KZG10::<E, P>::commit(&ck, &p, hiding_bound, Some(rng))?;
+                let (comm, rand) = KZG10::<E, P>::commit_g1(&ck, &p, hiding_bound, Some(rng))?;
                 let point = E::Fr::rand(rng);
                 let value = p.evaluate(&point);
                 let proof = KZG10::<E, P>::open(&ck, &p, point, &rand)?;
@@ -777,7 +776,7 @@ mod tests {
         let rng = &mut test_rng();
 
         let max_degree = 123;
-        let pp = KZG_Bls12_381::setup(max_degree, false, rng).unwrap();
+        let pp = KZG_Bls12_381::setup(max_degree, false, false, rng).unwrap();
         let (powers, _) = KZG_Bls12_381::trim(&pp, max_degree).unwrap();
 
         let p = DensePoly::<Fr>::rand(max_degree + 1, rng);
@@ -793,8 +792,8 @@ mod tests {
         for total_weight in 15..30 {
             let degree = 2 * total_weight / 3;
 
-            let pp = KZG_Bls12_381::setup(degree, false, rng).unwrap();
-            let (ck, vk) = KZG_Bls12_381::trim(&pp, degree).unwrap();
+            let pp = KZG_Bls12_381::setup(degree, false, false, rng).unwrap();
+            let (ck, _) = KZG_Bls12_381::trim(&pp, degree).unwrap();
 
             for _ in 0..4 {
                 let polynomial = DensePolynomial::<Fr>::rand(degree, rng);
@@ -804,20 +803,20 @@ mod tests {
 
                 let domain = ark_poly::Radix2EvaluationDomain::<Fr>::new(total_weight).unwrap();
                 let p = ck.powers_of_g[0..m].to_vec();
-                let (h, scale): (Vec<G1Projective>, Fr) =
+                let (h, _scale): (Vec<G1Projective>, Fr) =
                     toeplitz_mul::<Bls12_381>(&polynomial, &p, domain.size()).unwrap();
 
                 let h = h
                     .iter()
                     .map(
-                        |p: &G1Projective| (*p).into_affine(), /*. mul(scale).into_affine()*/
+                        |p: &G1Projective| (*p).into_affine(), /*. mul(_scale).into_affine()*/
                     )
                     .collect::<Vec<G1Affine>>();
 
                 for i in 1..=m {
                     let mut total = G1Projective::zero();
                     for j in 0..=m - i {
-                        total = total + (p[j].mul(coeffs[i + j]));
+                        total += p[j].mul(coeffs[i + j]);
                     }
                     assert_eq!(G1Affine::from(total), h[i - 1]);
                 }
@@ -825,22 +824,22 @@ mod tests {
         }
     }
     #[test]
-    fn test_check_amortized() {
+    fn test_check_at_domain() {
         let rng = &mut test_rng();
         let n = 10;
         let eval_domain_size = 1 << n;
 
         let degree = 1 << (n - 1);
 
-        let pp = KZG_Bls12_381::setup(eval_domain_size, false, rng).unwrap();
+        let pp = KZG_Bls12_381::setup(eval_domain_size, false, true, rng).unwrap();
         let (ck, vk) = KZG_Bls12_381::trim(&pp, degree).unwrap();
 
         let p = DensePoly::<Fr>::rand(degree, rng);
 
-        let (comm, rand) = KZG_Bls12_381::commit(&ck, &p, None, None).unwrap();
+        let (comm, _) = KZG_Bls12_381::commit_g1(&ck, &p, None, None).unwrap();
 
         let domain = ark_poly::Radix2EvaluationDomain::<Fr>::new(eval_domain_size).unwrap();
-        let openings = KZG_Bls12_381::open_amortized(&pp, &p, &domain).unwrap();
+        let openings = KZG_Bls12_381::open_at_domain(&pp, &p, &domain).unwrap();
 
         let evals = p.evaluate_over_domain_by_ref(domain).evals;
 
@@ -872,16 +871,12 @@ mod tests {
         ];
 
         let combined = [
-            openings.combine_at_evals(&(0..100), &evals[0..100], &subproduct_domains[0]),
-            openings.combine_at_evals(&(100..400), &evals[100..400], &subproduct_domains[1]),
-            openings.combine_at_evals(
-                &(400..eval_domain_size),
-                &evals[400..],
-                &subproduct_domains[2],
-            ),
+            openings.combine_at_domain(0, 100, &subproduct_domains[0]),
+            openings.combine_at_domain(100, 400, &subproduct_domains[1]),
+            openings.combine_at_domain(400, eval_domain_size, &subproduct_domains[2]),
         ];
 
-        assert!(KZG_Bls12_381::check_amortized(
+        assert!(KZG_Bls12_381::check_at_domain(
             &pp,
             &ck,
             &comm,
@@ -890,7 +885,7 @@ mod tests {
             &subproduct_domains[0]
         )
         .unwrap());
-        assert!(KZG_Bls12_381::check_amortized(
+        assert!(KZG_Bls12_381::check_at_domain(
             &pp,
             &ck,
             &comm,
@@ -899,7 +894,7 @@ mod tests {
             &subproduct_domains[1]
         )
         .unwrap());
-        assert!(KZG_Bls12_381::check_amortized(
+        assert!(KZG_Bls12_381::check_at_domain(
             &pp,
             &ck,
             &comm,
diff --git a/src/marlin/marlin_pc/mod.rs b/src/marlin/marlin_pc/mod.rs
index d101e3ae..218e7dab 100644
--- a/src/marlin/marlin_pc/mod.rs
+++ b/src/marlin/marlin_pc/mod.rs
@@ -74,7 +74,7 @@ where
         _num_vars: Option<usize>,
         rng: &mut R,
     ) -> Result<Self::UniversalParams, Self::Error> {
-        kzg10::KZG10::setup(max_degree, false, rng).map_err(Into::into)
+        kzg10::KZG10::setup(max_degree, false, false, rng).map_err(Into::into)
     }
 
     fn trim(
@@ -215,13 +215,13 @@ where
             ));
 
             let (comm, rand) =
-                kzg10::KZG10::commit(&ck.powers(), polynomial, hiding_bound, Some(rng))?;
+                kzg10::KZG10::commit_g1(&ck.powers(), polynomial, hiding_bound, Some(rng))?;
             let (shifted_comm, shifted_rand) = if let Some(degree_bound) = degree_bound {
                 let shifted_powers = ck
                     .shifted_powers(degree_bound)
                     .ok_or(Error::UnsupportedDegreeBound(degree_bound))?;
                 let (shifted_comm, shifted_rand) =
-                    kzg10::KZG10::commit(&shifted_powers, &polynomial, hiding_bound, Some(rng))?;
+                    kzg10::KZG10::commit_g1(&shifted_powers, &polynomial, hiding_bound, Some(rng))?;
                 (Some(shifted_comm), Some(shifted_rand))
             } else {
                 (None, None)
diff --git a/src/sonic_pc/mod.rs b/src/sonic_pc/mod.rs
index 806221ed..3eb189a9 100644
--- a/src/sonic_pc/mod.rs
+++ b/src/sonic_pc/mod.rs
@@ -151,7 +151,7 @@ where
         _: Option<usize>,
         rng: &mut R,
     ) -> Result<Self::UniversalParams, Self::Error> {
-        kzg10::KZG10::<E, P>::setup(max_degree, true, rng).map_err(Into::into)
+        kzg10::KZG10::<E, P>::setup(max_degree, true, false, rng).map_err(Into::into)
     }
 
     fn trim(
@@ -320,7 +320,8 @@ where
                 ck.powers()
             };
 
-            let (comm, rand) = kzg10::KZG10::commit(&powers, polynomial, hiding_bound, Some(rng))?;
+            let (comm, rand) =
+                kzg10::KZG10::commit_g1(&powers, polynomial, hiding_bound, Some(rng))?;
 
             labeled_comms.push(LabeledCommitment::new(
                 label.to_string(),

From a8957c0facbee90efea8bdb46d53057ae8db9900 Mon Sep 17 00:00:00 2001
From: joe bebel <joseph.bebel@gmail.com>
Date: Tue, 4 May 2021 19:05:29 -0700
Subject: [PATCH 04/11] cleanup suggestions

---
 src/kzg10/fastpoly.rs | 6 ------
 1 file changed, 6 deletions(-)

diff --git a/src/kzg10/fastpoly.rs b/src/kzg10/fastpoly.rs
index 1d28b9c7..4e1f00b3 100644
--- a/src/kzg10/fastpoly.rs
+++ b/src/kzg10/fastpoly.rs
@@ -7,12 +7,6 @@ use ark_poly::polynomial::univariate::DensePolynomial as Poly;
 
 /// Computes the inverse of f mod x^l
 pub fn inverse_mod_xl<F: FftField>(f: &Poly<F>, l: usize) -> Option<Poly<F>> {
-    //use std::ops::Mul;
-    //let r =
-    //    std::mem::size_of::<u64>() * 8 - (l as u64).leading_zeros() as usize; // ceil(log_2(l))
-
-    //assert_eq!((l as f64).log2().ceil() as usize, r);
-    //let r = (l as f64).log2().ceil() as usize; //TODO: rounding problems??
     let r = ark_std::log2(l);
     let mut g = Poly::<F> {
         coeffs: vec![f.coeffs[0].inverse().unwrap()], //todo unwrap

From 7671ed38c112d76c028c586198d818861b95de8e Mon Sep 17 00:00:00 2001
From: joe bebel <joseph.bebel@gmail.com>
Date: Tue, 4 May 2021 19:36:45 -0700
Subject: [PATCH 05/11] rename fast methods

---
 src/kzg10/data_structures.rs                  |  4 +-
 src/kzg10/mod.rs                              |  6 +--
 .../{fastpoly.rs => subproductdomain.rs}      | 44 +++++++++----------
 3 files changed, 27 insertions(+), 27 deletions(-)
 rename src/kzg10/{fastpoly.rs => subproductdomain.rs} (88%)

diff --git a/src/kzg10/data_structures.rs b/src/kzg10/data_structures.rs
index 43356c18..67e8d440 100644
--- a/src/kzg10/data_structures.rs
+++ b/src/kzg10/data_structures.rs
@@ -579,9 +579,9 @@ impl<E: PairingEngine> AmortizedProof<E> {
         &self,
         start: usize, // Domain is omega^{start}, ..., omega^{end-1}
         end: usize,
-        s: &super::fastpoly::SubproductDomain<E::Fr>, // SubproductDomain of the domain
+        s: &super::subproductdomain::SubproductDomain<E::Fr>, // SubproductDomain of the domain
     ) -> Proof<E> {
-        let lagrange_coeff = s.fast_inverse_lagrange_coefficients();
+        let lagrange_coeff = s.inverse_lagrange_coefficients();
         let mut total = E::G1Projective::zero();
         for (c_i, point) in lagrange_coeff.iter().zip(self.w[start..end].iter()) {
             total += point.into_affine().mul::<E::Fr>(c_i.inverse().unwrap());
diff --git a/src/kzg10/mod.rs b/src/kzg10/mod.rs
index 592fde66..d2d65646 100644
--- a/src/kzg10/mod.rs
+++ b/src/kzg10/mod.rs
@@ -20,8 +20,8 @@ use rayon::prelude::*;
 
 mod data_structures;
 pub use data_structures::*;
-mod fastpoly;
-pub use fastpoly::*;
+mod subproductdomain;
+pub use subproductdomain::*;
 
 /// `KZG10` is an implementation of the polynomial commitment scheme of
 /// [Kate, Zaverucha and Goldbgerg][kzg10]
@@ -516,7 +516,7 @@ where
     ) -> Result<bool, Error> {
         let evaluation_interpolation_time = start_timer!(|| "Constructing evaluation polynomial");
 
-        let evaluation_polynomial = s.fast_interpolate(evals);
+        let evaluation_polynomial = s.interpolate(evals);
         end_timer!(evaluation_interpolation_time);
         let evaluation_commit_time =
             start_timer!(|| "Constructing commitment to evaluation polynomial in G1");
diff --git a/src/kzg10/fastpoly.rs b/src/kzg10/subproductdomain.rs
similarity index 88%
rename from src/kzg10/fastpoly.rs
rename to src/kzg10/subproductdomain.rs
index 4e1f00b3..6013bc67 100644
--- a/src/kzg10/fastpoly.rs
+++ b/src/kzg10/subproductdomain.rs
@@ -72,22 +72,22 @@ impl<F: FftField> SubproductDomain<F> {
         SubproductDomain { u, t, prime }
     }
     /// evaluate a polynomial over the domain
-    pub fn fast_evaluate(&self, f: &Poly<F>) -> Vec<F> {
+    pub fn evaluate(&self, f: &Poly<F>) -> Vec<F> {
         let mut evals = vec![F::zero(); self.u.len()];
-        self.t.fast_evaluate(f, &self.u, &mut evals);
+        self.t.evaluate(f, &self.u, &mut evals);
         evals
     }
     /// interpolate a polynomial over the domain
-    pub fn fast_interpolate(&self, v: &[F]) -> Poly<F> {
-        self.t.fast_interpolate(&self.u, v)
+    pub fn interpolate(&self, v: &[F]) -> Poly<F> {
+        self.t.interpolate(&self.u, v)
     }
     /// compute the inverse of the lagrange coefficients fast
-    pub fn fast_inverse_lagrange_coefficients(&self) -> Vec<F> {
-        self.t.fast_inverse_lagrange_coefficients(&self.u)
+    pub fn inverse_lagrange_coefficients(&self) -> Vec<F> {
+        self.t.inverse_lagrange_coefficients(&self.u)
     }
     /// compute a linear coefficient of lagrange factors times c_i
-    pub fn fast_linear_combine(&self, c: &[F]) -> Poly<F> {
-        self.t.fast_linear_combine(&self.u, &c)
+    pub fn linear_combine(&self, c: &[F]) -> Poly<F> {
+        self.t.linear_combine(&self.u, &c)
     }
 }
 
@@ -127,7 +127,7 @@ impl<F: FftField> SubproductTree<F> {
         }
     }
     /// Fast evaluate f over this subproduct tree
-    pub fn fast_evaluate(&self, f: &Poly<F>, u: &[F], t: &mut [F]) {
+    pub fn evaluate(&self, f: &Poly<F>, u: &[F], t: &mut [F]) {
         //todo: assert degree < u.len()
         if u.len() == 1 {
             t[0] = f.coeffs[0];
@@ -144,32 +144,32 @@ impl<F: FftField> SubproductTree<F> {
         let (u_0, u_1) = u.split_at(n);
         let (t_0, t_1) = t.split_at_mut(n);
 
-        left.fast_evaluate(&r_0, u_0, t_0);
-        right.fast_evaluate(&r_1, u_1, t_1);
+        left.evaluate(&r_0, u_0, t_0);
+        right.evaluate(&r_1, u_1, t_1);
     }
     /// Fast interpolate over this subproduct tree
-    pub fn fast_interpolate(&self, u: &[F], v: &[F]) -> Poly<F> {
-        let mut lagrange_coeff = self.fast_inverse_lagrange_coefficients(u);
+    pub fn interpolate(&self, u: &[F], v: &[F]) -> Poly<F> {
+        let mut lagrange_coeff = self.inverse_lagrange_coefficients(u);
 
         for (s_i, v_i) in lagrange_coeff.iter_mut().zip(v.iter()) {
             *s_i = s_i.inverse().unwrap() * *v_i;
         }
 
-        self.fast_linear_combine(u, &lagrange_coeff)
+        self.linear_combine(u, &lagrange_coeff)
     }
     /// Fast compute lagrange coefficients over this subproduct tree
-    pub fn fast_inverse_lagrange_coefficients(&self, u: &[F]) -> Vec<F> {
+    pub fn inverse_lagrange_coefficients(&self, u: &[F]) -> Vec<F> {
         //assert u.len() == degree of s.m
         if u.len() == 1 {
             return vec![F::one()];
         }
         let mut evals = vec![F::zero(); u.len()];
         let m_prime = derivative::<F>(&self.m);
-        self.fast_evaluate(&m_prime, u, &mut evals);
+        self.evaluate(&m_prime, u, &mut evals);
         evals
     }
     /// Fast linear combine over this subproduct tree
-    pub fn fast_linear_combine(&self, u: &[F], c: &[F]) -> Poly<F> {
+    pub fn linear_combine(&self, u: &[F], c: &[F]) -> Poly<F> {
         if u.len() == 1 {
             return Poly::<F> { coeffs: vec![c[0]] };
         }
@@ -179,8 +179,8 @@ impl<F: FftField> SubproductTree<F> {
 
         let left = self.left.as_ref().unwrap();
         let right = self.right.as_ref().unwrap();
-        let r_0 = left.fast_linear_combine(u_0, c_0);
-        let r_1 = right.fast_linear_combine(u_1, c_1);
+        let r_0 = left.linear_combine(u_0, c_0);
+        let r_1 = right.linear_combine(u_1, c_1);
 
         &(&right.m * &r_0) + &(&left.m * &r_1)
     }
@@ -313,7 +313,7 @@ mod tests {
             }
 
             let s = SubproductDomain::<Fr>::new(points);
-            let p = s.fast_interpolate(&evals);
+            let p = s.interpolate(&evals);
 
             for (x, y) in s.u.iter().zip(evals.iter()) {
                 assert_eq!(p.evaluate(x), *y)
@@ -332,7 +332,7 @@ mod tests {
                 c.push(Fr::rand(rng));
             }
             let s = SubproductDomain::<Fr>::new(u);
-            let f = s.fast_linear_combine(&c);
+            let f = s.linear_combine(&c);
 
             let r = Fr::rand(rng);
             let m = s.t.m.evaluate(&r);
@@ -353,7 +353,7 @@ mod tests {
                 u.push(Fr::rand(rng));
             }
             let s = SubproductDomain::<Fr>::new(u);
-            let f = s.fast_inverse_lagrange_coefficients();
+            let f = s.inverse_lagrange_coefficients();
 
             for (i, j) in s.u.iter().zip(f.iter()) {
                 assert_eq!(s.prime.evaluate(i), *j);

From 420c17d46f2c82992d9e6833f2fd18708939c607 Mon Sep 17 00:00:00 2001
From: joe bebel <joseph.bebel@gmail.com>
Date: Tue, 4 May 2021 19:45:10 -0700
Subject: [PATCH 06/11] rename amortizedproof to domainproof

---
 src/kzg10/data_structures.rs |  5 +++--
 src/kzg10/mod.rs             | 10 +++++-----
 2 files changed, 8 insertions(+), 7 deletions(-)

diff --git a/src/kzg10/data_structures.rs b/src/kzg10/data_structures.rs
index 67e8d440..88185da0 100644
--- a/src/kzg10/data_structures.rs
+++ b/src/kzg10/data_structures.rs
@@ -564,7 +564,7 @@ impl<E: PairingEngine> ToBytes for Proof<E> {
 }
 
 /// Opening proofs of a commitment on a large domain
-pub struct AmortizedProof<E: PairingEngine> {
+pub struct DomainProof<E: PairingEngine> {
     /// This is a vector of commitments to the witness polynomials
     /// over a domain 1, omega, omega^2, ..., omega^{n-1}
     /// where omega is a primitive n'th root of unity
@@ -573,8 +573,9 @@ pub struct AmortizedProof<E: PairingEngine> {
     pub scale: E::Fr,
 }
 
-impl<E: PairingEngine> AmortizedProof<E> {
+impl<E: PairingEngine> DomainProof<E> {
     /// Combine opening proofs onto a subset of the domain
+    /// represented by the SubproductDomain s
     pub fn combine_at_domain(
         &self,
         start: usize, // Domain is omega^{start}, ..., omega^{end-1}
diff --git a/src/kzg10/mod.rs b/src/kzg10/mod.rs
index d2d65646..ba29d881 100644
--- a/src/kzg10/mod.rs
+++ b/src/kzg10/mod.rs
@@ -345,7 +345,7 @@ where
         pp: &UniversalParams<E>,
         p: &DensePolynomial<E::Fr>,
         domain: &ark_poly::domain::Radix2EvaluationDomain<E::Fr>,
-    ) -> Result<AmortizedProof<E>, Error> {
+    ) -> Result<DomainProof<E>, Error> {
         Self::check_degree_is_too_large(p.degree(), pp.powers_of_g.len())?;
         let open_time =
             start_timer!(|| format!("Amortized opening polynomial of degree {}", p.degree()));
@@ -360,7 +360,7 @@ where
 
         domain.fft_in_place(&mut h);
 
-        let proofs = AmortizedProof { w: h, scale };
+        let proofs = DomainProof { w: h, scale };
 
         end_timer!(open_time);
         Ok(proofs)
@@ -510,8 +510,8 @@ where
         pp: &UniversalParams<E>,
         ck: &Powers<E>,
         comm: &Commitment<E>,
-        proof: &Proof<E>,
-        evals: &[E::Fr],             // Evaluations at the SubproductDomain
+        proof: &Proof<E>, // A multi-reveal KZG proof over the SubproductDomain s
+        evals: &[E::Fr],  // Evaluations at the SubproductDomain
         s: &SubproductDomain<E::Fr>, // SubproductDomain of the evaluation domain
     ) -> Result<bool, Error> {
         let evaluation_interpolation_time = start_timer!(|| "Constructing evaluation polynomial");
@@ -539,7 +539,7 @@ where
         )
     }
 
-    /// Check amortized proof with precomputed commitments
+    /// Check combined domain proof with precomputed commitments
     pub fn check_at_domain_with_commitments(
         ck: &UniversalParams<E>,
         comm: &Commitment<E>,

From 0b9e5f45853b14e72a5d15080fda221f19c89acb Mon Sep 17 00:00:00 2001
From: joe bebel <joseph.bebel@gmail.com>
Date: Wed, 12 May 2021 17:29:10 -0700
Subject: [PATCH 07/11] add comments

---
 src/kzg10/subproductdomain.rs | 145 ++++++++++++++++++++++++----------
 1 file changed, 103 insertions(+), 42 deletions(-)

diff --git a/src/kzg10/subproductdomain.rs b/src/kzg10/subproductdomain.rs
index 6013bc67..9d354016 100644
--- a/src/kzg10/subproductdomain.rs
+++ b/src/kzg10/subproductdomain.rs
@@ -1,26 +1,43 @@
 use crate::Error;
 use ark_ec::PairingEngine;
 use ark_ff::{FftField, Field, Zero};
-use ark_poly::UVPolynomial;
+use ark_poly::{Polynomial, UVPolynomial};
 
 use ark_poly::polynomial::univariate::DensePolynomial as Poly;
 
+/// Where indicated, algorithms are from Modern Computer Algebra, 3rd edition, by Gathen and Gerhard
+/// Abbreviated as GG
+/// Let M(n) denote the time to multiply.
+
+/// GG Algorithm 9.3
 /// Computes the inverse of f mod x^l
+/// Takes O(M(l)) field arithmetic operations
 pub fn inverse_mod_xl<F: FftField>(f: &Poly<F>, l: usize) -> Option<Poly<F>> {
-    let r = ark_std::log2(l);
-    let mut g = Poly::<F> {
-        coeffs: vec![f.coeffs[0].inverse().unwrap()], //todo unwrap
-    };
-    let mut i = 2usize;
-    for _ in 0..r {
-        g = &(&g + &g) - &(f * &(&g * &g)); //todo: g*2?
-        g.coeffs.resize(i, F::zero());
-        i *= 2;
+    let r = ark_std::log2(l); // Compute ceil(log_2(l))
+    if let Some(f_0_inv) = f.coeffs[0].inverse() {
+        // Invert f(0)^-1 if possible
+        let mut g = Poly::<F> {
+            coeffs: vec![f_0_inv], // Constant polynomial f(0)^-1
+        };
+
+        let mut i = 2usize;
+        // Use Newton iteration which converges to the inverse mod x^l
+        for _ in 0..r {
+            g = &(&g + &g) - &(f * &(&g * &g)); //TODO: is g*2 better than g+g?
+            g.coeffs
+                .resize(ark_std::cmp::min(g.coeffs.len(), i), F::zero()); // Take g remainder mod x^{2^i}
+            i *= 2;
+        }
+        Some(g)
+    } else {
+        // No inverse exists because f(0)^-1 does not exist
+        None
     }
-    Some(g)
 }
 
+/// GG chapter 9.1
 /// Computes the rev_m(f) function in place
+/// rev_m(f) = x^m f(1/x)
 pub fn rev<F: FftField>(f: &mut Poly<F>, m: usize) {
     assert!(f.coeffs.len() - 1 <= m);
     for _ in 0..(m - (f.coeffs.len() - 1)) {
@@ -29,8 +46,11 @@ pub fn rev<F: FftField>(f: &mut Poly<F>, m: usize) {
     f.reverse();
 }
 
+/// GG Algorithm 9.5
 /// Divide f by g in nearly linear time
 pub fn fast_divide_monic<F: FftField>(f: &Poly<F>, g: &Poly<F>) -> (Poly<F>, Poly<F>) {
+    //assert_eq!(g.coeffs.last(), F::one()); //TODO: check monic condition
+
     if f.coeffs().len() < g.coeffs().len() {
         return (
             Poly::<F> {
@@ -53,67 +73,84 @@ pub fn fast_divide_monic<F: FftField>(f: &Poly<F>, g: &Poly<F>) -> (Poly<F>, Pol
     (q, r)
 }
 
-/// The subproduct tree of a polynomial m over a domain u
+/// A subproduct domain is a domain { u_0, ..., u_{n-1} } of scalar values
+/// accompanied by a subproduct tree of the polynomial:
+/// m = (x - u_0)*...*(x-u_{n-1})
+/// Once the subproduct tree is constructed, operations over the
+/// entire subproduct domain can be done in a fast, recursive way.
+/// Unlike other fast algorithms, the subproduct domain may be
+/// arbitrary points instead of a multiplicative subgroup
+/// of roots of unity of the field
 #[derive(Debug, Clone)]
 pub struct SubproductDomain<F: FftField> {
-    /// Domain values
+    /// Domain values u = { u_0, ..., u_{n-1} }
     pub u: Vec<F>,
     /// Subproduct tree over domain u
     pub t: SubproductTree<F>,
     /// Derivative of the subproduct polynomial
-    pub prime: Poly<F>, // Derivative
+    pub prime: Poly<F>, // Derivative of the polynomial m
 }
 
 impl<F: FftField> SubproductDomain<F> {
-    /// Create a subproduct tree domain
+    /// Create a new subproduct tree domain over the domain { u_0, ..., u_{n-1} }
     pub fn new(u: Vec<F>) -> SubproductDomain<F> {
         let t = SubproductTree::new(&u);
         let prime = derivative::<F>(&t.m);
         SubproductDomain { u, t, prime }
     }
-    /// evaluate a polynomial over the domain
+    /// Evaluate a polynomial f over the subproduct domain u
     pub fn evaluate(&self, f: &Poly<F>) -> Vec<F> {
         let mut evals = vec![F::zero(); self.u.len()];
         self.t.evaluate(f, &self.u, &mut evals);
         evals
     }
-    /// interpolate a polynomial over the domain
+    /// Interpolate a polynomial f over the domain, such that f(u_i) = v_i
     pub fn interpolate(&self, v: &[F]) -> Poly<F> {
         self.t.interpolate(&self.u, v)
     }
-    /// compute the inverse of the lagrange coefficients fast
+    /// Compute the inverse of the lagrange coefficients necessary to interpolate over u
     pub fn inverse_lagrange_coefficients(&self) -> Vec<F> {
         self.t.inverse_lagrange_coefficients(&self.u)
     }
-    /// compute a linear coefficient of lagrange factors times c_i
+    /// Compute a linear combination of lagrange factors times c_i
     pub fn linear_combine(&self, c: &[F]) -> Poly<F> {
         self.t.linear_combine(&self.u, &c)
     }
 }
 
 /// A subproduct tree of the subproduct domain
+/// This type is defined separately from SubproductDomain
+/// because the domain u is owned by SubproductDomain, whereas
+/// m = (x - u_i)*...*(x-u_j) is owned by the SubproductTree
+/// The subdomain { u_i, ..., u_j } is borrowed by SubproductTree for each operation
 #[derive(Debug, Clone)]
 pub struct SubproductTree<F: FftField> {
-    /// The left child
+    /// The left child SubproductTree
     pub left: Option<Box<SubproductTree<F>>>,
-    /// The right child
+    /// The right child SubproductTree
     pub right: Option<Box<SubproductTree<F>>>,
-    /// The polynomial for this subdomain
+    /// The polynomial m = (x - u_i)*...*(x-u_j) for this subdomain
     pub m: Poly<F>,
 }
 
 impl<F: FftField> SubproductTree<F> {
+    /// GG Algorithm 10.3
     /// Compute the subproduct tree of m = (x - u_0)*...*(x-u_{n-1})
+    /// Takes O(M(r) log r) field operations
+    /// Specialized to assume the leaves are of the form m_i = x-u_i
+    /// Generalized to arbitrary r, not just powers of 2
     pub fn new(u: &[F]) -> SubproductTree<F> {
+        // A degree 1 polynomial is a leaf of the tree
         if u.len() == 1 {
             SubproductTree {
                 left: None,
                 right: None,
                 m: Poly::<F> {
-                    coeffs: vec![-u[0], F::one()],
+                    coeffs: vec![-u[0], F::one()], // m_0 = x - u_0
                 },
             }
         } else {
+            // Split as evenly as possible
             let n = u.len() / 2;
             let (u_0, u_1) = u.split_at(n);
             let left = Box::new(SubproductTree::new(u_0));
@@ -126,20 +163,31 @@ impl<F: FftField> SubproductTree<F> {
             }
         }
     }
-    /// Fast evaluate f over this subproduct tree
+    /// GG algorithm 9.5
+    /// Evaluate f over this subproduct tree
+    /// deg(f) must be less than the size of the domain
+    /// self must be the subproduct tree of the slice u
+    /// The output is stored in the slice t:
+    /// t_i = f(u_i)
+    /// Takes O(M(n) log n) field operations
     pub fn evaluate(&self, f: &Poly<F>, u: &[F], t: &mut [F]) {
-        //todo: assert degree < u.len()
+        assert!(f.degree() < u.len());
+
         if u.len() == 1 {
+            // By the assertion above, f must be a constant polynomial, so evaluating
             t[0] = f.coeffs[0];
             return;
         }
 
+        // if u.len() > 1, then this SubproductTree must not be a leaf, and it has both children
         let left = self.left.as_ref().unwrap();
         let right = self.right.as_ref().unwrap();
 
+        // if f = q*m + r, then on the domain u where m(u_i) = 0, f(u_i) = r(u_i)
         let (_, r_0) = fast_divide_monic::<F>(f, &left.m);
         let (_, r_1) = fast_divide_monic::<F>(f, &right.m);
 
+        // divide the domain in the same way that the SubproductTree was constructed
         let n = u.len() / 2;
         let (u_0, u_1) = u.split_at(n);
         let (t_0, t_1) = t.split_at_mut(n);
@@ -168,36 +216,46 @@ impl<F: FftField> SubproductTree<F> {
         self.evaluate(&m_prime, u, &mut evals);
         evals
     }
-    /// Fast linear combine over this subproduct tree
+    /// GG Algorithm 10.9
+    /// Fast linear combination of moduli over this subproduct tree
+    /// On input c = { c_0, ..., c_{n-1} }
+    /// output sum_i (c_i * m) / (x- u_i)
+    /// Takes O(M(n) log n) field operations
     pub fn linear_combine(&self, u: &[F], c: &[F]) -> Poly<F> {
         if u.len() == 1 {
+            // Output c_0 * (x-u_0) / (x-u_0) = c_0
             return Poly::<F> { coeffs: vec![c[0]] };
         }
         let n = u.len() / 2;
         let (u_0, u_1) = u.split_at(n);
         let (c_0, c_1) = c.split_at(n);
 
+        // Linear combination of moduli over both halves of the subproduct tree
         let left = self.left.as_ref().unwrap();
         let right = self.right.as_ref().unwrap();
         let r_0 = left.linear_combine(u_0, c_0);
         let r_1 = right.linear_combine(u_1, c_1);
 
+        // r_0 = sum_{i in left} c_i m_left / (x-u_i)
+        // so m_right * r_0 = sum_{i in left} c_i (m_left*m_right) / (x-u_i) = sum_{i in left} c_i m / (x-u_i)
         &(&right.m * &r_0) + &(&left.m * &r_1)
     }
 }
-/// compute the derivative of polynomial p
-pub fn derivative<F: FftField>(p: &Poly<F>) -> Poly<F> {
-    let mut coeffs = Vec::with_capacity(p.coeffs().len() - 1);
-    for (i, c) in p.coeffs.iter().enumerate().skip(1) {
+/// compute the derivative of polynomial f
+pub fn derivative<F: FftField>(f: &Poly<F>) -> Poly<F> {
+    let mut coeffs = Vec::with_capacity(f.coeffs().len() - 1);
+    for (i, c) in f.coeffs.iter().enumerate().skip(1) {
         coeffs.push(F::from(i as u64) * c);
     }
     Poly::<F> { coeffs }
 }
 
-/// Build a vector representation of the circulant matrix of polynomial p
-pub fn build_circulant<F: FftField>(polynomial: &Poly<F>, size: usize) -> Vec<F> {
+/// Build a vector representation of the (n x n) circulant matrix of polynomial f
+/// Based on the blog post:
+/// https://alinush.github.io/2020/03/19/multiplying-a-vector-by-a-toeplitz-matrix.html
+pub fn build_circulant<F: FftField>(f: &Poly<F>, size: usize) -> Vec<F> {
     let mut circulant = vec![F::zero(); 2 * size];
-    let coeffs = polynomial.coeffs();
+    let coeffs = f.coeffs();
     if size == coeffs.len() - 1 {
         circulant[0] = *coeffs.last().unwrap();
         circulant[size] = *coeffs.last().unwrap();
@@ -267,16 +325,19 @@ mod tests {
     fn test_inverse() {
         let rng = &mut ark_std::test_rng();
 
-        let degree = 100;
         let l = 101;
-        for _ in 0..100 {
-            let p = DensePolynomial::<Fr>::rand(degree, rng);
-            let p_inv = inverse_mod_xl::<Fr>(&p, l).unwrap();
-            let mut t = &p * &p_inv;
-            t.coeffs.resize(l, Fr::zero());
-            assert_eq!(t.coeffs[0], Fr::one());
-            for i in t.iter().skip(1) {
-                assert_eq!(*i, Fr::zero());
+        for l in [1, 2, 3, 5, 19, 25, 101].iter() {
+            for degree in 0..*l {
+                for _ in 0..10 {
+                    let p = DensePolynomial::<Fr>::rand(degree, rng);
+                    let p_inv = inverse_mod_xl::<Fr>(&p, *l).unwrap();
+                    let mut t = &p * &p_inv;
+                    t.coeffs.resize(*l, Fr::zero());
+                    assert_eq!(t.coeffs[0], Fr::one());
+                    for i in t.iter().skip(1) {
+                        assert_eq!(*i, Fr::zero());
+                    }
+                }
             }
         }
     }

From 37656a99bd06313b0d3da656e57312223e306957 Mon Sep 17 00:00:00 2001
From: joe <55120843+joebebel@users.noreply.github.com>
Date: Fri, 28 May 2021 14:52:30 -0700
Subject: [PATCH 08/11] Update src/kzg10/subproductdomain.rs

Co-authored-by: Pratyush Mishra <pratyushmishra@berkeley.edu>
---
 src/kzg10/subproductdomain.rs | 4 +---
 1 file changed, 1 insertion(+), 3 deletions(-)

diff --git a/src/kzg10/subproductdomain.rs b/src/kzg10/subproductdomain.rs
index 9d354016..100187fb 100644
--- a/src/kzg10/subproductdomain.rs
+++ b/src/kzg10/subproductdomain.rs
@@ -53,9 +53,7 @@ pub fn fast_divide_monic<F: FftField>(f: &Poly<F>, g: &Poly<F>) -> (Poly<F>, Pol
 
     if f.coeffs().len() < g.coeffs().len() {
         return (
-            Poly::<F> {
-                coeffs: vec![F::zero()],
-            },
+            Poly::zero(),
             f.clone(),
         );
     }

From b425bef3620a75f5f69f5a665396d023c725f9cb Mon Sep 17 00:00:00 2001
From: joe <55120843+joebebel@users.noreply.github.com>
Date: Fri, 28 May 2021 14:52:42 -0700
Subject: [PATCH 09/11] Update src/error.rs

Co-authored-by: Pratyush Mishra <pratyushmishra@berkeley.edu>
---
 src/error.rs | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/src/error.rs b/src/error.rs
index 72b03851..37087058 100644
--- a/src/error.rs
+++ b/src/error.rs
@@ -94,7 +94,7 @@ pub enum Error {
         label: String,
     },
 
-    /// Attempt to open_amortized on too large a domain
+    /// Attempt to `open_amortized` on too large a domain
     AmortizedOpeningTooLarge(usize),
 }
 

From 1237258dfd1f477ed423d17c5e30b52ae05bdc61 Mon Sep 17 00:00:00 2001
From: joe <55120843+joebebel@users.noreply.github.com>
Date: Thu, 10 Jun 2021 14:18:11 -0700
Subject: [PATCH 10/11] Update src/kzg10/subproductdomain.rs

Co-authored-by: Pratyush Mishra <pratyushmishra@berkeley.edu>
---
 src/kzg10/subproductdomain.rs | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/src/kzg10/subproductdomain.rs b/src/kzg10/subproductdomain.rs
index 100187fb..d319c5ff 100644
--- a/src/kzg10/subproductdomain.rs
+++ b/src/kzg10/subproductdomain.rs
@@ -49,7 +49,7 @@ pub fn rev<F: FftField>(f: &mut Poly<F>, m: usize) {
 /// GG Algorithm 9.5
 /// Divide f by g in nearly linear time
 pub fn fast_divide_monic<F: FftField>(f: &Poly<F>, g: &Poly<F>) -> (Poly<F>, Poly<F>) {
-    //assert_eq!(g.coeffs.last(), F::one()); //TODO: check monic condition
+    assert_eq!(g.coeffs.last(), F::one()); // check that `g` is monic
 
     if f.coeffs().len() < g.coeffs().len() {
         return (

From 389646f21d2eab749a85846d1844631557b87f9b Mon Sep 17 00:00:00 2001
From: joe <55120843+joebebel@users.noreply.github.com>
Date: Thu, 10 Jun 2021 14:18:26 -0700
Subject: [PATCH 11/11] Update src/kzg10/subproductdomain.rs

Co-authored-by: Pratyush Mishra <pratyushmishra@berkeley.edu>
---
 src/kzg10/subproductdomain.rs | 6 +++---
 1 file changed, 3 insertions(+), 3 deletions(-)

diff --git a/src/kzg10/subproductdomain.rs b/src/kzg10/subproductdomain.rs
index d319c5ff..95761da7 100644
--- a/src/kzg10/subproductdomain.rs
+++ b/src/kzg10/subproductdomain.rs
@@ -5,9 +5,9 @@ use ark_poly::{Polynomial, UVPolynomial};
 
 use ark_poly::polynomial::univariate::DensePolynomial as Poly;
 
-/// Where indicated, algorithms are from Modern Computer Algebra, 3rd edition, by Gathen and Gerhard
-/// Abbreviated as GG
-/// Let M(n) denote the time to multiply.
+//! Where indicated, algorithms are from Modern Computer Algebra, 3rd edition, by Gathen and Gerhard
+//! Abbreviated as GG
+//! Let M(n) denote the time to multiply.
 
 /// GG Algorithm 9.3
 /// Computes the inverse of f mod x^l