
Approach
In my approach to this project, I aimed for a user-friendly, versatile program. To start off, we
need to perform some preliminary setup in order to have the most accurate reading possible.
While this is going on, the red LED is lit up, to indicate that the user shouldn’t do anything yet.
The board should be lying motionless at this time because after setting up the gyroscope, we
take 100 samples right away to calculate the average noise in each axis that the gyro picks up
when not moving. After this is done, the red LED turns off and there is a 5-second delay to give
the user time to affix the board to their leg. The board should be affixed such that it only moves
along one axis, which is fairly easy to do. The green LED lights up when recording data for
distance measurement and turns off when the recording is done. The code uses the x-axis for
demonstration purposes, but this can easily be changed to the desired axis. 800 measurements
are taken over 12 seconds. The average noise is subtracted from each one and it is converted
to degrees per second (dps) using the following formula:

SC is 0.0077 for our range of ±250dps. Then, every 10 samples are averaged into one data
point. The resulting array of data is passed into the distance calculation function, along with the
user’s height in feet, inches. First, this function finds the number of strides taken by finding local
peaks in the array. This is done by finding consecutive decreasing values where both values are
still positive. Both values being positive ensures that we don’t count the leg going back as a
stride, because that’s already included in the stride equations. At the end, the number of strides
is multiplied by the average stride length in inches of the user’s height1. I’ve adjusted this
number based on my own observations. We also have to account for longer or shorter strides,
which happen while walking slowly or running, respectively. Since we have 80 data points for 12
seconds, each data point is 150ms apart. We can multiply the difference in indices of where
consecutive strides occur in the original array to find the length of that stride. Then we adjust the
distance covered accordingly, subtracting one inches per 100ms over the average stride time2

and adding two inches per 100ms under the average stride time. Once again, I’ve adjusted this
average number based on my own observations. The total distance is calculated using the
average string length and time. Finally, the distance covered in inches is returned.

2 Appendix 1
1 Stride Length

https://doi.org/10.1016/B978-075068883-3.50013-1
https://www.verywellfit.com/set-pedometer-better-accuracy-3432895


Problems
Unfortunately, I was unable to test and demo my program because of some issues I was having
with my board. On the day before the due date, my board started giving me a hardfault
exception and crashing when I tried to run any SPI instructions or printf instructions. It was
working earlier that same day and I'm not sure what happened. The first error message is in this
pastebin. I opened a fresh new project and started with very basic instructions to see what
triggered the issue. I spent a few hours incrementally adding instructions and running them, until
it was the same as my original one. I found that there was one function call on a certain line,
which when included in the program, caused it to crash. This was the readAxes function call on
line 202. I replaced the function call with the actual code in the function and then my program
was able to run. Additionally, this function was called earlier in the program with no ill effects.
Other weird things broke my program too, such as adding printf statements for certain variables
and changing certain local variables to global. Also, printf didn’t work anymore at all, even when
it was called successfully, nothing appeared on my terminal. The most interesting part was that
using the debugger, I was able to see when my code crashed, and it always crashed at
spi.format() in the setupGyro() function, before it even got to the lines that were causing the
problem.

In light of these late-occurring issues, the professor told me to submit without running any tests
or having a demo. As such, I was unable to see if my distance calculation function works since I
wasn’t able to see any of the measurement data. I’ve given it my best try using just my
theoretical idea of what the data would look like.

After being given some more time to work on it, as well as the information that my errors were
likely caused by too much memory usage, I was able to get it working. I removed some
unnecessary arrays to reduce memory usage and made some necessary adjustments to my
distance calculation. I was able to get my program working and measuring distance traveled
with an error of less than 10%.

Code
#include <mbed.h>

#define NOISE_SAMPLE_SIZE 100

#define NUM_SAMPLES 800

SPI spi(PF_9, PF_8, PF_7);

DigitalOut recordLight(LED1);

DigitalOut setupLight(LED2);

https://pastebin.com/D3Hqf0E9


DigitalOut cs(PC_1);

//This function sets up the gyroscope to be read from using SPI

void setupGyro(){

// Chip must be deselected

cs = 1;

// Setup the spi for 8 bit data, high steady state clock,

// second edge capture, with a 1MHz clock rate

spi.format(8, 3);

spi.frequency(1000000);

// Select chip

cs = 0;

// Write to control register 1

spi.write(0x20);

// Mode = normal, enable x,y,z axes, default output data rate and

bandwidth

spi.write(0x0f);

cs = 1;

}

//This function reads all three axes from the gyroscope once.

//It takes arrays for the low and high bytes for each axis, as well as the

index to place the value into

void readAxes(uint16_t index, int16_t x_low[], int16_t x_hi[]){

cs = 0;

spi.write(0xa8);

x_low[index] = spi.write(0x00);

//The cs line must go high between each read, otherwise the same register

is read over and over again

cs = 1;

wait_us(10);

cs = 0;



spi.write(0xa9);

x_hi[index] = spi.write(0x00);

cs = 1;

wait_us(10);

cs = 0;

/* Removed to reduce memory usage

spi.write(0xaa);

y_low[index] = spi.write(0x00);

cs = 1;

wait_us(10);

cs = 0;

spi.write(0xab);

y_hi[index] = spi.write(0x00);

cs = 1;

wait_us(10);

cs = 0;

spi.write(0xac);

z_low[index] = spi.write(0x00);

cs = 1;

wait_us(10);

cs = 0;

spi.write(0xad);

z_hi[index] = spi.write(0x00);

*/

cs = 1;

}

//This function calculates and returns distance covered in one direction in

inches.

//It takes as parameters an array of angular velocity values and its size,

and the person's height in feet, inches

//It uses the average stride length per height, as well as the average



stride time, and accounts for

//different stride times by adjusting the distance covered for each short

or long stride

//Average stride length per height formula from

https://www.verywellfit.com/set-pedometer-better-accuracy-3432895

//Average stride time is 0.89s-1.32s from appendix 1 of this book

https://www.sciencedirect.com/book/9780750688833/gait-analysis

//I adjusted the values for average stride length and time based on my own

observations

int calculateDistance(float values[], uint16_t size, uint8_t feet, uint8_t

inches){

//Distance covered in inches

int distanceCovered = 0;

//We'll use this to find the number of strides and the amount of time

between them

int strides[size];

int numStrides = 0;

for (int i = 3; i < size - 1; i++){

//Compare consecutive values to see if we've hit a peak. A peak

(prev>next) signifies a stride

float prev = values[i];

float next = values[i + 1];

//We don't want to count when the leg is moving back so we make sure

both values are positive

if (prev > next && prev > 0){

strides[numStrides] = i;

numStrides++;

//After encountering a stride, we won't encounter another one for at

least half a second, so to

//ensure we don't measure noise as a stride, skip the next three

measurements

i += 3;

}

}

//Stride time in ms

int strideTime;



float extra = 0;

//We sample every 15ms but average 10 samples into one data point,

meaning each data point is 150ms apart

//We have 80 data points over a collection time of 12 seconds. We'll use

this information to tell if any

//strides are shorter or longer than average, and adjust the distance

covered accordingly

for (int i = 0; i < numStrides - 1; i++){

//Stride time in ms, found by multiplying the difference in indices of

consecutive strides by 150

strideTime = (strides[i + 1] - strides[i]) * 150;

//I adjusted the values for average stride length and time based on my

own observations

//Shorter stride time = shorter stride and less distance covered per

stride and vice versa

if (strideTime < 1500){

extra += 2 * ((1500 - strideTime) / 100); //Add 2 inches per 100ms

under the average range

}

else if (strideTime > 1500){

extra -= 1 * ((strideTime - 1500) / 100); //Subtract 1 inch per 100ms

over the average range

}

}

distanceCovered += extra;

//Average stride length is 5 inches per foot of height plus 0.5 inches

per extra inch

distanceCovered += numStrides * (7 * feet + 1 * inches);

return distanceCovered;

}

int main(){

//Indicator that setup is in progress and recording has not begun yet,

leave the board still to calibrate

setupLight = 1;



setupGyro();

int16_t x_noise_low[NOISE_SAMPLE_SIZE];

int16_t x_noise_hi[NOISE_SAMPLE_SIZE];

/* Removed to reduce memory usage

int y_noise_low[NOISE_SAMPLE_SIZE];

int y_noise_hi[NOISE_SAMPLE_SIZE];

int z_noise_low[NOISE_SAMPLE_SIZE];

int z_noise_hi[NOISE_SAMPLE_SIZE];

*/

for (int i = 0; i < NOISE_SAMPLE_SIZE; i++){

//These samples will be used to approximate the average noise the gyro

detects when still

readAxes(i, x_noise_low, x_noise_hi);

//The gyro updates every 10ms so we'll sample every 15ms.

wait_us(15000);

}

int16_t xNoise[NOISE_SAMPLE_SIZE];

//int16_t yNoise[NOISE_SAMPLE_SIZE];

//int16_t zNoise[NOISE_SAMPLE_SIZE];

int16_t xAvgNoise = 0;

//int16_t yAvgNoise = 0;

//int16_t zAvgNoise = 0;

for (int i = 0; i < NOISE_SAMPLE_SIZE; i++){

//Convert the two 8 bit register values into one 16 bit number

xNoise[i] = (x_noise_hi[i] << 8) + x_noise_low[i];

xAvgNoise += xNoise[i];

/* Removed to reduce memory usage

yNoise[i] = (y_noise_hi[i] << 8) + y_noise_low[i];

yAvgNoise += yNoise[i];

zNoise[i] = (z_noise_hi[i] << 8) + z_noise_low[i];

zAvgNoise += zNoise[i];

*/}

xAvgNoise = xAvgNoise / NOISE_SAMPLE_SIZE;

//yAvgNoise = yAvgNoise / NOISE_SAMPLE_SIZE;

//zAvgNoise = zAvgNoise / NOISE_SAMPLE_SIZE;



int16_t x_low[NUM_SAMPLES];

int16_t x_hi[NUM_SAMPLES];

/*Removed to reduce memory usage

int y_low[NUM_SAMPLES];

int y_hi[NUM_SAMPLES];

int z_low[NUM_SAMPLES];

int z_hi[NUM_SAMPLES];

*/

//Setup is done, recording will start in 5 seconds

setupLight = 0;

while (1){

wait_us(5000000);

//Recording begins

recordLight = 1;

for (int i = 0; i < NUM_SAMPLES; i++){

readAxes(i, x_low, x_hi);

//The gyro updates every 10ms so we'll sample 750 times, every 15ms.

wait_us(15000);

}

//Recording is done

recordLight = 0;

int16_t xValsRaw[NUM_SAMPLES];

//float yValsRaw[NUM_SAMPLES];

//float zValsRaw[NUM_SAMPLES];

for (int i = 0; i < NUM_SAMPLES; i++){

//Convert to 16 bit number and clean up the raw data by subtracting

the average noise

xValsRaw[i] = (x_hi[i] << 8) + x_low[i];

xValsRaw[i] = xValsRaw[i] - xAvgNoise;

/*

yValsRaw[i] = (y_hi[i] << 8) + y_low[i];

yValsRaw[i] = yValsRaw[i] - yAvgNoise;

yValsRaw[i] = yValsRaw[i] * 0.00875;



zValsRaw[i] = (z_hi[i] << 8) + z_low[i];

zValsRaw[i] = zValsRaw[i] - zAvgNoise;

zValsRaw[i] = zValsRaw[i] * 0.00875;

*/}

float xVals[NUM_SAMPLES / 10];

//float yVals[NUM_SAMPLES / 10];

//float zVals[NUM_SAMPLES / 10];

int i = 0;

while(i<NUM_SAMPLES){

//Take the average of every 10 samples and convert to dps

float xVal = 0;

for (int j = 0; j < 9; j++){

xVal += (float)xValsRaw[i + j];

}

xVal = xVal * 0.0077;

xVal = xVal / 10;

xVals[i / 10] = xVal;

/* Removed to reduce memory usage

float yVal = 0;

for (int j = 0; j < 9; j++){

yVal += yValsRaw[i + j];

}

yVal = yVal / 10;

yVals[i / 10] = yVal;

float zVal = 0;

for (int j = 0; j < 9; j++){

zVal += zValsRaw[i + j];

}

zVal = zVal / 10;

zVals[i / 10] = zVal;

*/

i = i + 10;

}

//This is my height, parameters can be customized



uint8_t feet = 6;

uint8_t inches = 0;

//Calculate the distance traveled in inches for a person of given

height

//Using only the x axis values because of the way I oriented my board

on my leg

int distance = calculateDistance(xVals, (NUM_SAMPLES / 10), feet,

inches);

}

}


