Approach

In my approach to this project, | aimed for a user-friendly, versatile program. To start off, we
need to perform some preliminary setup in order to have the most accurate reading possible.
While this is going on, the red LED is lit up, to indicate that the user shouldn’t do anything yet.
The board should be lying motionless at this time because after setting up the gyroscope, we
take 100 samples right away to calculate the average noise in each axis that the gyro picks up
when not moving. After this is done, the red LED turns off and there is a 5-second delay to give
the user time to affix the board to their leg. The board should be affixed such that it only moves
along one axis, which is fairly easy to do. The green LED lights up when recording data for
distance measurement and turns off when the recording is done. The code uses the x-axis for
demonstration purposes, but this can easily be changed to the desired axis. 800 measurements
are taken over 12 seconds. The average noise is subtracted from each one and it is converted
to degrees per second (dps) using the following formula:

R, =SC=(R,, -R,)

where,
® R;is the true angular rate given in dps
® R, is the MEMS gyroscope measurement given in signed integer LSBs

® Ry is the zero-rate level given in signed integer LSBs (the gyroscope output when no
angular rate is applied)

® SCis the scale factor (or sensitivity) given in dps/LSB

SC is 0.0077 for our range of £250dps. Then, every 10 samples are averaged into one data
point. The resulting array of data is passed into the distance calculation function, along with the
user’s height in feet, inches. First, this function finds the number of strides taken by finding local
peaks in the array. This is done by finding consecutive decreasing values where both values are
still positive. Both values being positive ensures that we don’t count the leg going back as a
stride, because that’s already included in the stride equations. At the end, the number of strides
is multiplied by the average stride length in inches of the user’s height'. I've adjusted this
number based on my own observations. We also have to account for longer or shorter strides,
which happen while walking slowly or running, respectively. Since we have 80 data points for 12
seconds, each data point is 150ms apart. We can multiply the difference in indices of where
consecutive strides occur in the original array to find the length of that stride. Then we adjust the
distance covered accordingly, subtracting one inches per 100ms over the average stride time?
and adding two inches per 100ms under the average stride time. Once again, I've adjusted this
average number based on my own observations. The total distance is calculated using the
average string length and time. Finally, the distance covered in inches is returned.

' Stride Length
2 Appendix 1

https://doi.org/10.1016/B978-075068883-3.50013-1
https://www.verywellfit.com/set-pedometer-better-accuracy-3432895

Problems

Unfortunately, | was unable to test and demo my program because of some issues | was having
with my board. On the day before the due date, my board started giving me a hardfault
exception and crashing when | tried to run any SPI instructions or printf instructions. It was
working earlier that same day and I'm not sure what happened. The first error message is in this
pastebin. | opened a fresh new project and started with very basic instructions to see what
triggered the issue. | spent a few hours incrementally adding instructions and running them, until
it was the same as my original one. | found that there was one function call on a certain line,
which when included in the program, caused it to crash. This was the readAxes function call on
line 202. | replaced the function call with the actual code in the function and then my program
was able to run. Additionally, this function was called earlier in the program with no ill effects.
Other weird things broke my program too, such as adding printf statements for certain variables
and changing certain local variables to global. Also, printf didn’t work anymore at all, even when
it was called successfully, nothing appeared on my terminal. The most interesting part was that
using the debugger, | was able to see when my code crashed, and it always crashed at
spi.format() in the setupGyro() function, before it even got to the lines that were causing the
problem.

After being given some more time to work on it, as well as the information that my errors were
likely caused by too much memory usage, | was able to get it working. | removed some
unnecessary arrays to reduce memory usage and made some necessary adjustments to my
distance calculation. | was able to get my program working and measuring distance traveled
with an error of less than 10%.

Code

#tinclude <mbed.h>

#define NOISE_SAMPLE_SIZE 100
#define NUM_SAMPLES 800

SPI spi(PF_9, PF_8, PF_7);
DigitalOut recordLight(LED1);
DigitalOut setupLight(LED2);

https://pastebin.com/D3Hqf0E9

DigitalOut cs(PC_1);

void setupGyro(){

cs = 1;

spi.format(8, 3);
spi.frequency(

spi.write();

spi.write();

cs = 1;

void readAxes(uintl6_t index, intl6_t x_low[], intl6_t x_hi[]){

cs = 0;
spi.write()
X_low[index] = spi.write();

cs = 1;
wait_us(10);

cs = 0;

spi.write()
x_hi[index] = spi.write(

cs = 1;
wait_us(10);

cs = 0;

int calculateDistance(float values[], uintl6_t size, uint8 t feet, uint8_t
inches){

int distanceCovered = 0;

int strides[size];
int numStrides = 9;

for (int i = 3; 1 < size - 1; i++){

float prev = values[i];
float next = values[i + 1];

if (prev > next && prev > 0){
strides[numStrides] = i;
numStrides++;

int strideTime;

float extra = 0;

for (int i = 0; i < numStrides - 1; i++){

strideTime = (strides[i + 1] - strides[i]) *

if (strideTime <){
extra += 2 * ((- strideTime) /)

}

else if (strideTime >)
extra -= 1 * ((strideTime -) /)i

distanceCovered += extra;

distanceCovered += numStrides * (7 * feet + 1 * inches);

return distanceCovered;

int main(){

setupLight =

setupGyro();

intl6_t x noise low[NOISE SAMPLE SIZE];
intl6_t x_noise_hi[NOISE_SAMPLE_SIZE];

for (int i = @; i < NOISE_SAMPLE SIZE; i++){

readAxes(i, x_noise low, X _noise hi);

wait_us()

}

int16_t xNoise[NOISE_SAMPLE_SIZE];

intl6_t xAvgNoise = 0;

for (int i = @; i < NOISE_SAMPLE SIZE; i++){

xNoise[i] = (x_noise hi[i] << 8) + x_noise low[i];
xAvgNoise += xNoise[i];

xAvgNoise = xAvgNoise / NOISE_SAMPLE_SIZE;

int16_t x_low[NUM_SAMPLES];
int16_t x_hi[NUM_SAMPLES];

setupLight = 9;
while (1){

wait_us(

recordLight =

for (int i = @; i < NUM_SAMPLES;
readAxes(i, x_low, x _hi);

wait_us()
}
recordLight = 0;

intl6_t xValsRaw[NUM_SAMPLES];

for (int i = @; i < NUM_SAMPLES; i++){

xValsRaw[1i] (x_hi[i] << 8) + x_low[i];
xValsRaw[i] xValsRaw[i] - XxAvgNoise;

float xVals[NUM_ SAMPLES / 1;

int i = 9;
while(i<NUM_SAMPLES){

float xVal 5
for (int j = 0; j < 95 Jj++){
xVal += (float)xValsRaw[i + j];

}

xVal = xVal *
xVal = xval / 5
xVals[i /] = xVval;

uint8 t feet =
uint8_t inches

int distance = calculateDistance(xVals, (NUM_SAMPLES /), feet,
inches);

