Skip to content

aronszanto/Dynamic-Size-Bloom-Filter

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
# Dynamic Size Bloom Filter

## Research Abstract

A Bloom filter is a probabilistic data structure that stores elements with a constant bit/element ratio. Thus, a Bloom filter has several advantages: it has a nearly constant search time, and can store a large number inputs in a relatively small amount of memory. One of the disadvantages of traditional Bloom filters, however, is that the input size is required ahead of insertion.

In this work, we develop a scalable Bloom filter, inspired by a paper by Almeida et al., that can take in a stream of inputs, as opposed to requiring a a definite input size a priori. Testing on commodity hardware gives performance of 400K inserts/sec and 1M lookups/sec under 0.001% false positive tolerance.

About

Go implementation of probabilistic high-performance data structure allowing for unknown-size data or stream input.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages