Connectivity toolbox
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
data
functional
fusion
ggm
mex
structural
utility
README.md
demo.m

README.md

BaConToolbox

Bayesian Connectomics toolbox

Estimate posterior distributions for

  • Structural connectivity, using probabilistic tractography count data.
    • Prior on network density or
    • Prior on clustering.
  • Functional connectivity using a structural estimate as constraint, using fMRI BOLD signal time series.
  • Functional connectivity using a dynamic constraint (i.e. learn conditional independence and partial correlation simultaneously), using fMRI BOLD signal time series.
  • Functional and structural connectivity simultaneously, using fMRI BOLD signal time series and probabilistic tractography count data.

See demo.m for working examples of all provided scripts.

Related literature

[1] Max Hinne, Tom Heskes, Christian Beckmann and Marcel van Gerven, 2013. Bayesian inference of structural brain networks. NeuroImage 66, pp. 543-552.

[2] Ronald Janssen, Max Hinne, Tom Heskes and Marcel van Gerven, 2014. Quantifying Uncertainty in Brain Network Measures using Bayesian Connectomics. Frontiers in Computational Neuroscience 8 (126).

[3] Max Hinne, Luca Ambrogioni, Ronald Janssen, Tom Heskes and Marcel van Gerven, 2014. Structurally-informed Bayesian functional connectivity analysis. NeuroImage 68, pp. 294-305.

[4] Max Hinne, Alex Lenkoski, Tom Heskes and Marcel van Gerven, 2014. Efficient sampling of Gaussian graphical models using conditional Bayes factors. Stat 3, pp. 326-336.

[5] Max Hinne, Matthias Ekman, Ronald Janssen, Tom Heskes and Marcel van Gerven, 2015. Probabilistic clustering of the human connectome identifies communities and hubs. PLoS ONE 10(1), pp. e0117179.

[6] Max Hinne, Ronald Janssen, Tom Heskes and Marcel van Gerven, 2015. Bayesian estimation of conditional independence graphs improves functional connectivity estimates. PLoS Computational Biology, 11(11), pp. e1004534.