

2021

Stock trading simulation

A-LEVEL COMPUTER SCIENCE COURSEWORK

ARTEM STRELTSOV

 1

Table of Contents

Analysis ... 3

Project definition ... 3

Identifying suitable stakeholders .. 4

Existing systems .. 4

Underpinning knowledge and calculations .. 8

Stakeholder and user needs ... 13

Identifying and explaining any limitations .. 14

Computational methods .. 14

Specifying software and hardware requirements .. 15

User requirements and measurable success criteria .. 15

Design ... 17

Breaking the problem down systematically... 17

Explanation of each module ... 19

Interfaces .. 20

Validation of inputs ... 21

External files ... 22

Data structures .. 22

Algorithms .. 25

Test data for development ... 36

Test data for post-development ... 38

Development ... 40

Project setup ... 40

Milestone №1 – creating the main interfaces ... 40

Milestone №2 – selecting a level .. 50

Milestone №3 - displaying the wallet and level requirements for each stock ... 51

Milestone №4 – drawing a candlestick chart ... 55

Milestone №5 – drawing a moving average chart ... 58

Meeting with stakeholders .. 63

Milestone №6 - highlighting and annotating candlestick patterns.. 63

Milestone №7 – highlighting and annotating intersections of moving averages...................................... 68

Milestone №8 – allow the user to trade the chosen stock ... 73

Milestone №9 - allow the user to hide/show candlestick patterns ... 76

Milestone №10 - allow the user to stop the simulation and view results .. 78

Milestone №11 – allow the user to change the type of moving average and its parameters 80

Meeting with stakeholders .. 83

Evaluation ... 84

Post-development testing .. 84

 2

Evidence for post-development testing .. 85

Success criteria evaluation ... 99

Usability features .. 100

Limitations and improvements ... 100

Maintenance ... 102

Code listings .. 103

Bibliography .. 124

 3

Analysis

Project definition
Inflation is a rise in the price level in an economy over some time. The standard annual inflation rate is
considered to be 2-3% (Amadeo, 2021). It means that every year the purchasing power of the money in your
bank account decreases if not invested.

Firstly, due to high inflation rates, many people are interested in investing their savings in the stock market
and making a profit. However, they are afraid to lose money due to inexperience in using trading strategies. As
a result, people incorrectly make decisions whether to buy or sell a particular stock and lose money.

Secondly, in most countries people under 18 are not allowed to enter the stock market by the law (Konchar,
2018). In countries that allow children to enter the stock market, this process is usually complicated and
involves agreement of parents. However, many economics students are interested in the stock market and
want to gain some experience. Therefore, they use simulations on the Internet that are too complicated for
beginners and end up not understanding how trading works.

Thirdly, the average annual return in the stock market is considered to be 9.2 - 13.6% (Knueven, 2020). This
number shows that the stock market expects traders to wait for a long time to make a significant profit.
However, this makes learning experience not as efficient as it could be. Waiting for months until realisation
that the used strategy is wrong wastes valuable time.

I intend to create a stock market simulation with a selection of stocks. The aim of the simulation will be to
make as much profit as possible while learning how to use different trading strategies. The simulation will be
speeded up to ensure the most efficient learning experience. Actual historical stocks prices will be stored in
appropriate data structures and retrieved when needed. All stocks data will be downloaded from the Yahoo
Finance website: https://uk.finance.yahoo.com.

The key features of the simulation will allow the user to:

1. Choose a level from the selection with different difficulties
2. View wallet, that will include available money, owned stocks and profit
3. View level requirements, that will include initial capital and required profit
4. Buy and sell a number of stocks if the budget is sufficient
5. View a candlestick chart plotted with actual historical data of the selected stock
6. View and learn candlestick patterns that will be highlighted with their names annotated on the

candlestick chart
7. View a moving average chart and change its type and parameters if needed
8. View intersection points of two moving averages that will be highlighted with an annotation

suggesting whether to buy or sell the stock
9. Change the visibility of candlestick patterns
10. Stop the simulation at any time and view results

The first option is to trade the chosen stock based on candlestick patterns. The program will find and highlight
them on the candlestick chart with an annotation indicating their names and suggesting whether to buy or to
sell the chosen stock. The user will benefit from using this approach because they will be able to learn some
basic candlestick patterns that usually correctly predict the future direction of the price and apply this
knowledge in the real stock market to potentially gain profit.

The second option is to trade the chosen stock based on intersections of short-term and long-term moving
averages. The type of the intersection, which is either Golden Cross or Death Cross, is likely to predict the
future price direction of the stock. The user will benefit from using this approach because they will be able to
learn types of intersections of moving averages to correctly predict the future direction of the price of a stock
in the real stock market and potentially gain profit.

The solution is needed for beginners to easily start with trading in a format similar to a game. They will learn
how to use trading strategies in practice, gain experience much faster than in other simulations and reduce

https://uk.finance.yahoo.com/

 4

future risks in the real stock market. In addition, the simulation will be helpful for economics teachers as a
practical and entertaining way of explaining trading strategies.

Identifying suitable stakeholders
The first and the most important group of stakeholders is economics students. Many of them are interested in
trading, which is not explained in detail at school. Due to the interest, students try online trading simulations,
but they are too complicated for beginners to understand. As a result, most of the students waste their time
and do not understand how to trade. Misunderstandings and the lack of practice often leads to significant
loses of money in the future in the real stock market. However, my stock market simulation will be aimed at
beginners and will be simple to use and learn trading strategies. In addition, students will practice the
knowledge gained in economics lessons, which will only make understanding of the subject better.

The second group of stakeholders that might consider using my simulation is economics teachers. In particular,
the head of the economics department at my school, Mr. Moore. ‘Even though trading strategies are not
included in the school curriculum, it is a popular topic in extension classes and a good simulation is essential to
explain the topic’ – Mr. Moore says. There is no better way to explain trading than by showing it in practice.
However, the most of online trading simulations are too complicated to get started with. My simulation can be
used to explain some of the most popular trading strategies in an engaging and practical way. Moreover, due
to the fact that my simulation will be speeded up, patterns and trends can be found more quickly, which will
make the learning process even more efficient.

The last group of stakeholders is people who want to enter the stock market and invest their savings but are
too afraid to lose money due to the lack of practice and experience. My simulation will be helpful because
getting some practice with a recently learnt trading strategy is a good idea before applying it in the real stock
market. Also, with the use of virtual wallet my simulation will not involve any risk of losing money, making
learning not stressful at all. Finally, due to carefully selected features aimed at beginners, the simulation will
be much easier to use than the most of modern online trading simulations.

Throughout the project, I will keep contact with my friend Alex, who is an economics student, as well as with
Mr Moore, the head of the Economics department at my school. They will be able to point out disadvantages
and suggest improvements to my program.

Existing systems

Student Stock Trader
Student Stock Trader is a trading simulation, where the user gets $50,000.00 at the start and can buy and sell
many different stocks, which prices and graphs are displayed. Even though the system shows price fluctuations
on the graph for each stock, the usability is not great, because the graph is in an image format, so the user has
no way of interacting with it. Furthermore, the graph of price fluctuations is shown from the past, so there is
no way to know what changes to the price have occurred recently. The price fluctuations graph that Student
Stock Trader provides is illustrated in Figure 1.

 5

Figure 1

In my simulation, I want to allow the user to interact with the graph. The main interactions I want to
implement will include:

• Using different colours for bullish and bearish candlesticks.

• Ability to hover over a candle with a mouse to see full information about it.

• Highlighting a selection of candlestick patterns.

The given simulation has many valuable features, such as buying and selling stocks using virtual money.
Therefore, there is no risk of losing real money, and it is an excellent chance to practice trading skills before
entering the real stock market. The use of virtual money is one of the features I want to include in my
simulation. The user’s wallet in my simulation is likely to look similar to the one that Student Stock Trader has
created, illustrated in Figure 2.

Figure 2

Also, as the stocks' prices are displayed in real-time, the simulation becomes tedious, as the user has to wait
for a long time period until some action happens. The average annual return in the stock market is considered
to be 9.2 - 13.6% (Knueven, 2020). Waiting time in the simulation could be used to trade real stocks and make
a profit, so speeding up the simulation might be a great idea to save time.

 6

Moreover, the learning experience becomes not as efficient as it could be. Waiting for months to realise that
the chosen strategy is incorrect wastes valuable time. Therefore, I want to speed up my simulation to make it
more dynamic, learning more efficient, and save valuable time. With this feature, I would not be able to use
real-time stocks prices, but this is not essential for my simulation. Instead, I will use the actual historical data
of stocks prices from around 2017-2020.

Trading View
Trading View is a professional trading analytics platform where the user can get a full analysis of any stock,
track candlestick patterns, use their custom Python script to analyse extra data features, etc. The given
simulation has a lot of features that I will not be able to implement in the given time, however it gives a lot of
ideas what to include in my simulation.

The given simulation has an exceptional candlestick chart-plotting system, which will be essential for my
simulation. An example of such a chart is illustrated in Figure 3. The chart has time labels on the horizontal axis
and price labels on the vertical axis. A helpful feature is that the graph displays different colours for bearish
and bullish candlesticks. Also, it allows the user to change the time frame, the scale of the chart and highlight
any candles they find interesting. Besides, the simulation can highlight candlestick patterns, and many more.

Figure 3

Moreover, the given system has such a complex feature as adding a custom Python script to analyse and
predict future trends. I will not include this feature in my simulation. Firstly, beginner traders, the target
audience of my simulation, generally do not know how to write custom Python scripts to analyse prices of
stocks. Secondly, this is a very complex functionality that I most likely will not be able to implement.

Furthermore, Trading View allows displaying the stock's price in many different chart formats, illustrated in
Figure 4. My simulation will include only Candles, as it is the most popular choice traders use and is generally
the easiest to start with. Also, other types of charts do not display more information; it is just a different way
of visualising the same information. Therefore, it is not worth spending traders' time learning how these charts
work and developer's time implementing them.

 7

Figure 4

Capital
Capital is a professional trading platform, where the user can use both real and demo accounts to trade stocks.
However, as the system is aimed at advanced traders, it is not very accessible for beginners. It has way too
many advanced features and information that are not essential for a beginner trader.

A valuable feature in the given simulation is the ability to add £10,000 to the demo wallet from the account
menu dropdown, illustrated in Figure 5. It is helpful because the user does not have to start the simulation
again if they go bankrupt. However, the simulation should not allow the user to add an infinite sum of money
to their account since it will be impossible to lose and learn on mistakes. Therefore, I am considering adding a
one-time ability to top up the wallet by £10,000 as a ‘second chance’.

 8

Figure 5

Underpinning knowledge and calculations

Candlestick charts
A candlestick chart is a financial chart style used to describe stock price movements and must be well
understood to trade stocks.

A candlestick is a part of a chart that displays the high, low, open, and closing prices of a stock for a specific
period, eg one day. Two types of candlesticks are shown in Figure 6 (Forex Trading 200, 2018).

Figure 6

The wide part of the candlestick is called the ‘real body’ and tells traders whether the closing price was higher
or lower than the opening price (red if the stock closed lower, green if the stock closed higher). The
candlestick's shadows, which are the thin lines above and below the real body, show the day's high and low
and how they compare to the open and close. A candlestick's shape varies based on the relationship between
the day's high, low, opening and closing prices (Hayes, 2020).

 9

The horizontal axis of a candlestick chart represents time, and the vertical axis represents a price. A candlestick
chart consists of many candlesticks and shows the size of price movements over time. An example of a
candlestick chart is shown in Figure 7 (Matange, 2014).

Figure 7

Candlestick patterns
One or more candles can form recognisable patterns that can tell what happened to demand, supply and
predict the future direction of the stock's price movement. I will provide several popular candlestick patterns
with their descriptions below. I have not decided which candlestick patterns will be included in my simulation
yet.

The hammer candlestick, illustrated in Figure 8, consists of a short body with a much longer lower shadow. As
a rule, you will find it at the bottom of a downtrend. The pattern indicates that the price was pushed back up.
While there may be hammer patterns with both green and red candles, the former pointing to a stronger
uptrend than red hammers (Bybit Learn, 2020).

Figure 8

 10

The inverted hammer, illustrated in Figure 9, is quite similar to the previously described pattern. It is different
from the standard hammer in that it has a much longer upper shadow while the lower shadow is very short.
The pattern suggests the price will be pushed higher (Bybit Learn, 2020).

Figure 9

Unlike the previous two patterns, bullish engulfing, illustrated in Figure 10, comprises two candlesticks. The
first candle should be a short red body engulfed by a green candle, which is more extensive. While the second
candle opens lower than the previous red one, the buying pressure increases, leading to a reversal of the
downtrend (Bybit Learn, 2020).

Figure 10

Another two-candlestick pattern is the piercing line, illustrated in Figure 11, which may show up at the bottom
of a downtrend. The pattern consists of a long red candle that is followed by a long green candle. This pattern's
critical aspect is that there is a significant gap between the red candle's closing price and the green candle's
open price. The fact that the green candle opens much higher points to buying pressure (Bybit Learn, 2020).

 11

Figure 11

Moving averages
The moving average is a technical indicator used by traders to spot emerging and common trends in markets.
It is a mathematical equation for finding averages, trends and smoothes out price action by filtering out ‘noise’
from random fluctuations (Mahony, 2019). There are two main types of moving averages: weighted moving
average and simple moving average.

The weighted moving average is calculated by placing greater weight on the most recent data points. Because
of this, weighted moving averages react significantly to the most recent price changes. (Mahony, 2019)

The simple moving average is calculated by taking the average closing price of the candles over any period
desired. To find simple moving average for a specific period, the total closing price is divided by the number of
periods (Mahony, 2019). Example of a simple moving average is shown in Figure 12 by a thin blue line.

Figure 12

 12

Crossover
The crossover is a point on the trading chart in which two indicators cross. Crossovers are used to estimate the
performance of a financial instrument and to predict coming changes in trend (Chen, 2020).

The golden cross is a chart pattern that is a bullish signal in which a relatively short-term moving average
crosses above a long-term moving average. An example of such a crossover is illustrated in Figure 13.

The death cross is a chart pattern that is a bearish signal in which a relatively short-term moving average
crosses below a long-term moving average. An example of such a crossover is illustrated in Figure 14.

In both figures, the green line is a 15-day, and the blue line is a 50-day simple moving average.

Figure 13

Figure 14

 13

Pattern recognition
Pattern recognition allows traders to find candlestick patterns and predict the likely future trend of the stock.
Candlestick patterns can be recognised by humans or computers. As my simulation is designed for beginner
traders, they will not be able to recognise any candlestick patterns. Therefore, searching for candlestick
patterns with a computer and highlighting patterns for the user will allow them to easily learn the most
popular candlestick patterns and apply them later in the real stock market.

Stakeholder and user needs
Having had a discussion with Alex and Mr Moore, I pointed out the key user needs for my simulation, which
are listed as a summary below.

What are the main problems my program is trying to solve?

• Allow the users to practice trading strategies without the risk of losing money

• Make the program easy to use for beginner traders

• Make learning process as efficient as possible by speeding up the simulation

What are the stages of the process?

• Select a level

• Choose moving average type and set its parameters

• Look for intersections and identify the type of crossover

• View and learn candlestick patterns

• Make decisions about buying and selling the stock based on crossovers and patterns

• View results and make conclusions

What happens at each stage?

• There will be three levels to choose from with requirements and descriptions

• The user will be able to choose moving average type from a selection and change its parameters at
any time throughout the simulation

• Parameters will have a default value

• Candlestick patterns will be highlighted on a candlestick chart and annotated with the name of the
pattern and a suggestion whether to buy or sell the stock

• The program will highlight crossovers of moving averages and annotate a suggestion whether to buy
or sell the stock

• The user will be able to enter how many stocks they want to buy or sell

• The profit will be calculated constantly and when the required profit is achieved, the level is passed

What input and output screens will be required?

• There will be a couple of input fields for the moving average parameters and the number of stocks to
buy or sell

• An output screen to display a candlestick chart, a moving average chart, a virtual wallet and the
requirements of the chosen level

Are there any specific requirements for the graphical interface?

• A candlestick chart where the user can interact with it by hovering over with their mouse

• A moving average chart where the user can easily spot intersections of moving averages

How will the user interact with the product?

• A keyboard will be used to enter required parameters, number of stocks, etc.

• A mouse will be used to interact with the simulation and charts

• A monitor will be used to display the charts, virtual wallet and other information

What data needs to be input into the system and how will this happen?

• Parameters such as what type of moving average the user wants to use

• Number of stocks to buy or sell

 14

• Stock data which will be stored in a separate file and retrieved when needed

What data needs to be output from the system and in what format?

• A candlestick chart with highlighted and annotated candlestick patterns

• A moving average chart with highlighted and annotated intersections
• A virtual wallet, level requirements and the results at the end of the simulation

Identifying and explaining any limitations
As discussed in the existing systems, professional trading platforms have a lot of advanced features that are
not essential for beginners. One of such features is allowing users to write custom Python script to analyse
fluctuations in the price of a stock and predict the future trend. This requires the user to know Python very
well and the developer to know how to implement the feature. As the target audience of my simulation is
beginners, it is not likely that they know how to analyse stocks with Python. I will not be able to implement
such a complex feature, because I do not have the required skills and it is difficult if not impossible to do in the
available time. Therefore, allowing the user to write custom Python script is one of the limitations of my
simulation.

Secondly, Trading View allows its users to use many different charts to display information about stocks. They
include Line, Area, Baseline, Bars, Candles, Hollow candles and Heikin Ashi. Using a different type of chart does
not benefit the user, it is just a different way of visualising the same data. Furthermore, beginner traders do
not have to know all types of charts to start trading. Moreover, I will not be able to add several types of charts
in the available time, so displaying several types of charts for the user is another limitation of my simulation.

Finally, Trading View and Capital can search for hundreds of complex candlestick patterns and allow the user
to add hundreds of indicators, similar to the Simple Moving Average. Even though it benefits a professional
trader, who makes a living by trading stocks, many beginners will be confused. In addition, I will not be able to
implement hundreds of complex algorithms in the time available. Therefore, my simulation will only be able to
search for some of the main candlestick patterns and allow the user to add the main and the most important
indicators. Number of technical indicators and candlestick patterns is another limitation of my simulation.

Computational methods
Firstly, in my simulation, a lot of algorithms have to be followed and calculations to be done in order to
correctly predict the future trend of a stock. For instance, calculating Simple Moving Average, finding
crossovers and plotting a chart takes a long time to do for a human being, but a computer can do it almost
instantaneously. Computers become especially helpful when the number of calculations is huge, which is
exactly what will happen in my simulation. The chance of human making a mistake is large, which might lead
to incorrect outcome with a loss of money. Therefore, using computational approach is crucial in trading, as it
saves a lot of time and eliminates human calculation errors.

Secondly, my program will use pattern recognition to predict the future trend of stocks. This involves
comparing stocks data to the known candlestick patterns and deciding if they are similar. While a human can
instantaneously find some obvious patterns, it might be difficult to find patterns that are well hidden in the
data. However, a computer is able to make millions of comparisons each second and is not likely to miss a
pattern if it exists in the data. Therefore, the use of a computer to find candlestick patterns in my simulation is
essential to eliminate even more human mistakes.

Thirdly, my simulation will output a candlestick chart so that the user could visualise information in a graphical
way, as it is more intuitive than raw numbers. Plotting a chart for every stock by hand takes a lot of
calculations and time and does not prevent any errors. As computers can perform calculations without any
mistakes and much quicker than humans, plotting charts is another task that computers do much better than
humans. Hence, computational power of a computer should be used in my simulation to plot candlestick and
moving average charts quickly and correctly.

 15

Specifying software and hardware requirements
Criteria Requirement Justification

Programming

language

JavaScript I want my simulation to run on as many devices as

possible, so it will be browser-based. My simulation will

be programmed in JavaScript, because every browser

can execute it.

Integrated

Development

Environment

JavaScript, HTML, CSS

support

As the logic of the simulation will be written in

JavaScript, the content in HTML and the styles in CSS,

the IDE must support all of them. Visual Studio Code is

the IDE that I will use.

Libraries Plotly Plotly is a chart-plotting JavaScript library that will help

me to display candlestick charts as part of my

simulation. This library is needed because I will not be

able to implement a chart-plotting system myself, but

the feature is necessary for the simulation.

Operating system Browser support As my simulation is browser-based, an operating

system must have a browser support. Windows, MacOS

and Linux can be used to run the simulation, but I will

be using MacOS.

Browser Send HTTP requests and

execute JavaScript

As my program is written in JavaScript, a browser must

be able to execute it. All data will be stored on a server,

so a browser must be able to send HTTP requests to

retrieve necessary pieces of information. I will be using

Chrome, because it has a modern JavaScript engine.

Monitor At least 720px wide Way of viewing the simulation. There will be charts, so

a wider monitor will benefit the user.

Keyboard Any Way of entering required parameters.

Mouse Any Way of interacting with the simulation.

User requirements and measurable success criteria
№ Success criteria Justification

1 The user can see the starting screen
when they enter the address of the
website into a browser

The user needs to know what website they just entered. The
starting screen should contain the name of the simulation
and a button to proceed to selecting a level.

2 The user can see the screen with a
selection of levels after pressing a
button on the starting screen

The user should be able to choose a level to complete. In the
selection there has to be some basic information about each
level.

3 The stock data is successfully sent
from a server and received by the user

Stock data will be stored on a server, so it has to be retrieved
after the user chooses a level.

4 The user should be able to see the
virtual wallet and requirements of the
level they chose

Vurtual wallet is needed to keep track of the budget, take
action in case budget is running extremely low and see if the
chosen trading strategy works. Level requirement will act as
an aim. It will show what profit a professional trader is likely
to make.

5 The user can see a candlestick chart
for the chosen stock

A candlestick chart is required to spot candlestick patterns,
as well as fluctuations in the price of the stock.

 16

6 The user can hover over a candle to
see information about a specific
candle at a particular time

Professional traders always go back and view historical
fluctuations of stocks. It might tell the user if the stock will
go up or down in price. Hovering over with a mouse allows
to see full information about a specific candle at a particular
time.

7 The user can see two line graphs:
short-term and long-term

Moving averages is one of the indicators to predict the
future trend of stocks. Therefore, the user should have an
ability to view line graphs of the short and long-term moving
averages.

8 The user can see spots where moving
averages intersect with a suggestion
whether to buy or sell the stock

Crossovers are needed to show the user the best spots to
buy or sell stocks. These spots should be highlighted and
annotated for the best usability.

9 The program highlights and annotates
candlestick patterns in the data of a
particular stock

Pattern recognition is another way of predicting the future
trend of stocks, so teaching the users to find them is one of
the problems my simulation is trying to solve. Highlighting
and annotating patterns will ensure the best user
experience.

10 The user can change parameters and
moving average type at any time

The user will not necessarily choose the right strategy from
the first time, so they should be able to change it any time
they want.

11 The user can buy and sell the chosen
stocks if they have enough funds or
stocks

The user should be able to trade the chosen stock and
actually make profit or lose money. This is the best way to
learn trading strategies, which is the aim of my simulation.

12 The user can stop the simulation at
any time and view results

The user will not necessarily wait until the level is finished
and might decide to leave the simulation sooner. Therefore,
there should be a button to stop the simulation at any time.

13 The user can see how much they
earned or lost during the simulation

Statistics is needed to show how well the user performed in
the chosen level and to make conclusions about the trading
strategy used.

 17

Design

Breaking the problem down systematically
The use of top-down design helps me identify the structure of my program and break it down systematically
into smaller parts. By doing this, I will be able to structure my code more efficiently and develop the solution
quicker. Also, I will identify which inputs and outputs each part of my program needs, and therefore, suitable
validation checks. Moreover, it will be easier for me to identify data structures and algorithms needed in each
part of my simulation.

 18

Figure 15

 19

Explanation of each module

Start simulation

• Display selection of levels. This function is needed to allow the user see which levels are available in
the simulation. Levels will show requirements, initial capital and will have different colour depending
on the difficulty of the level. It will display information about each level in a separate box.

• Select a level. This function is needed to allow the user select a level from the selection and start
practicing trading algorithms and pattern recognition. It will allow the user to click a level they want
and they will be redirected to the main screen of the simulation, where they would be able to trade
the chosen stock.

• Draw Candlestick Chart for the chosen level. This function will be responsible for drawing a
candlestick chart for the chosen stock and updating it regularly. In order to update it, I will create an
interval and set the time period to be around 1-2 seconds.

Pattern recognition

• Search for patterns. The program will analyse the stock data and check if there are any patterns. It
will take two candles at one time and check if the two candles form a pattern.

• Highlight patterns. If the program has found any candlestick patterns in the data, they will be
highlighted on the candlestick chart. This function will highlight the pattern depending on the dates of
the candles which form the pattern.

• Annotate patterns with suggestions. The program will display the name of the found patterns and
suggestion whether to buy or sell the stock depending on the pattern.

• Hide/Show annotations and highlights. The user will have a choice whether to hide or show
highlights and annotations of candlestick patterns.

Moving averages

• Preset parameters to default values. There will be default values in parameters of moving averages
at the beginning of the simulation. The user will have a choice to change or keep them.

• Display Moving Average chart. After the simulation received all required inputs from the user or the
default values, a chart can be drawn and displayed using a chart-plotting library. The chart will be
constantly updated every 1-2 seconds to add new data points to it.

• Find crossovers, highlight and annotate them. After the chart has been displayed, the program will
find where the two moving averages cross and identify whether it is a golden or death cross to predict
the future price direction of the stock. Also, the program will highlight the intersection points and
suggest whether to buy or sell the stock by using annotations on the moving average chart.

Buy / Sell

• Enter number of stocks. The user will be able to buy and sell stocks regardless of what the simulation
suggested about the future trend of the price. However, in order to buy and sell stocks, the user will
need to enter the number of stocks that they want to buy.

• Display an error message or update wallet. If the number of stocks entered does not pass the
validation check, an error message will be displayed. Otherwise, the transaction will happen and the
wallet will be updated.

Stop simulation

• Stop updating candlestick and moving average charts. This function will stop the interval created to
update both charts so that they stop updating.

• Calculate and display results. This function will be responsible for calculating and displaying overall
profit after the user presses the stop button. Also, it will output the results to the screen so that the
user could make conclusions about the strategy used.

 20

Interfaces
Firstly, my simulation will have a starting screen, which will have a text ‘Trading simulation’ in the centre of the
screen and a button ‘Start trading’. The prototype of the starting page is shown in Figure 16.

Figure 16

Secondly, my simulation will have a screen, where the user will have to choose level they want to play. There
will be 3 levels with information about each one. Levels with easy difficulty will have a green colour, while
levels with a medium difficulty will have an orange colour. The prototype of the screen with levels is shown in
Figure 17.

Figure 17

The main screen that my simulation will have is shown in Figure 18. It has the stock name displayed at the top
of the screen, because the user needs to be clear which stock they are trading. Also, various charts will be
shown on the left side of the screen with the minimum width of 500px to ensure the user can easily see all

 21

features of the charts. On the right hand side there will be virtual wallet, information about the chosen level,
input fields to buy/sell stocks, input fields for moving averages parameters and checkbox to show/hide pattern
recognition. All of the above information should fit on one screen to improve usability so that the user did not
have to scroll to find whatever information they need.

Figure 18

Validation of inputs
In my simulation, validation will be needed to prevent users from spending money they do not own, resulting
in a negative virtual wallet balance. The program will calculate the price user has to pay for the entered
number of stocks. If the price is higher than the available money, the transaction will not happen and the user
will see a message saying ‘not enough funds’. If the price is less than or equal to the available money, the
transaction will happen, available money will decrease by the price and owned stocks will increase by the
number of stocks the user entered. If this validation check did not exist, the user would be able to buy an
infinite number of stocks despite insufficient funds.

Also, the program needs to eliminate the case, when the user wants to sell more stocks than they own. The
entered number of stocks will be compared to the number of owned stocks. If the number of stocks the user
owns is greater than or equal to the number of stocks they want to sell, the transaction will happen, the
owned stocks will decrease by the number of stocks entered and the available money will increase by the
number of stocks multiplied by the currect stock price. However, if the number of owned stocks is less than
the number of stocks entered, then the user will see an error message saying ‘not enough stocks’. If this
validation check did not exist, the user would be able to sell millions of stocks that they do not own and
become a billionaire.

Moreover, the moving average parameter must be an integer, because it shows how many data points are
taken into account when calculating an average. It has to be positive, as it is impossible to have a negative
number of data points. Furthermore, traders usually set the short-term moving average between 5 and 14 and
the long-term moving average between 15 and 50. I chose the same ranges, so that my simulation was as
professional and close to the real life as possible. There will be some presets: short-term moving average will
be set to 5 and the long-term one will be set to 15 at the beginning of the simulation. The user will be able to
change those values during the simulation if needed. Also, the type of the moving average will be set to Simple
Moving Average, but the user will be able to choose Weighted Moving Average during the simulation if
needed. The choice of moving average type does not require validation, as the user will only be able to set the
moving average type by clicking one of the options from the dropdown box, that I will create.

 22

Input Validation check
Short-term moving average Integer in range 5-14 days

Long-term moving average Integer in range 15-50 days

Number of stocks • Integer greater than zero

• Number of stocks to buy multiplied by the current stock price
must be less than or equal to the available money

• Number of stocks to sell must be less than or equal to the
owned stocks

External files
As discussed earlier, the stock data for each level will be stored in separate JSON files in a different directory
called ‘json’. Names of JSON files will be in format ‘stockID.json’. Each JSON file will contain an array of objects
and those objects will have the following attributes:

Attribute Data type Purpose and justification

open number This attribute represents the open price of the stock.

high number This attribute represents the highest price of the stock.

low number This attribute represents the lowest price of the stock.

close number This attribute represents the close price of the stock.

date string This attribute represents the date when the stock had the
above prices. The format will be yyyy-mm-dd.

All of those attributes are needed to plot a candlestick chart, perform calculations to find candlestick patterns,
calculating Simple and Weighted Moving Averages. Stock data in these files is essential for my simulation to
work.

Data structures

stock
This object will store all information related to the chosen stock and it will contain the following attributes:

Attribute Data type Purpose and justification

id string This attribute will hold the id of the chosen stock. It will be
needed to create a valid url to the stock data, as well as to
display the id to the user so they know which stock they are
trading.

url string This attribute will hold the url to the stock data in a different
directory. It will be needed to retrieve correct stock data for the
chosen stock.

data array This attribute will hold stock data for the chosen stock. It will be
needed to plot candlestick and moving average charts, as well
as to trade the chosen stock.

price number This attribute will hold the price of the chosen stock. It will be
needed to calculate the current profit, as well as to trade the
chosen stock.

count number This attribute will hold the number of days passed since the
start of the simulation. It is needed to access correct data inside
various arrays.

 23

wallet
This object will store all information related to the virtual wallet and it will contain the following attributes:

Attribute Data type Purpose and justificaiton

money_available number This attribute will hold the available money that the user can
use to buy more stocks. It is needed to not let the user buy
more stocks than they can afford.

owned_stocks number This attribute will hold the number of stocks the user owns. It is
needed to calculate the current profit, as well as to show the
user how many stocks they can sell.

profit number This attribute will hold the current profit. It is needed to
determine if the user has passed or failed the chosen level and
to show the user how efficient their trading strategy is.

levels
This array will contain three objects, which are three different levels for my simulation. Each of those objects
will contain the following attributes:

Attribute Data type Purpose and justificaiton

name string This attribute will hold the name of the chosen stock. It is
needed to let the user know which stock they will trade if they
select a particular level.

id string This attribute will hold the id of the chosen stock. It is needed
to fetch stock data from a correct JSON file.

initial_capital number This attribute will hold the initial capital for the level. It is
needed to let the user know how much money they will have
at the beginning of the level.

required_profit number This attribute will hold the required profit for the level. It is
needed to let the user know how much profit they need to
make in order to pass the level.

difficulty string This attribute will hold the difficulty of the level. It is needed to
correctly set the background colour for the level and to let the
user choose the difficulty they want.

level
This object will store all information related to the chosen level and it will contain the following attributes:

Attribute Data type Purpose and justification

initial_capital number This attribute will hold the initial capital for the chosen level. It
is needed to set the value of the ‘money_available’ variable at
the beginning of the level.

required_profit number This attribute will hold the required profit for the chosen level.
It is needed to display the required profit to the user so that
they know how much profit they need to make in order to pass
the level.

candlestick
This object will store all information related to the candlestick chart and will contain the following attributes:

Attribute Data type Purpose and justification

 24

container string This attribute will hold the name of the HTML element where
the candlestick chart will be displayed. It is needed to display
the candlestick chart in a correct place to allow the user see it
clearly.

data array This attribute will hold the data for the candlestick chart. It will
be an array that contains one object. It would be impossible to
plot a candlestick chart without this attribute.

layout object This attribute will hold the configuration settings for the
candlestick chart. It is needed to modify the appearance of the
candlestick chart to highlight patterns and annotate their
names and suggestions whether to buy or sell a stock.

The data array will contain an object that will hold the actual data to plot the candlestick chart. The object will
contain the following attributes:

Attribute Data type Purpose and justification

x array This attribute will hold dates when the stock was available to
trade. It is needed to annotate the x-axis of the candlestick
chart correctly.

open array This attribute will hold the opening prices of the stock. It is
needed to correctly plot the candlestick chart.

high array This attribute will hold the highest prices of the stock every day
it was available to trade. It is needed to correctly plot the
candlestick chart.

low array This attribute will hold the lowest prices of the stock every day
it was available to trade. It is needed to correctly plot the
candlestick chart.

close array This attribute will hold the closing prices of the stock. It is
needed to correctly plot the candlestick chart.

type string This attribute will hold the type of the chart. In this case, its
value will be set to ‘candlestick’, as we are aiming to plot a
candlestick chart.

The layout object will contain several attributes as well. The most important ones will be shapes and
annotations, which are both arrays of objects, and they will be used to highlight and annotate candlestick
patterns. Other attributes are related to the appearance of the candlestick chart and I will decide what they
will be during the development stage while creating prototypes.

moving_average
This object will store all information related to the moving average chart and will contain the following
attributes:

Attribute Data type Purpose and justification

container string This attribute will hold the name of the HTML element where
the moving average chart will be displayed. It is needed to
display the moving average chart in a correct place to allow the
user see it clearly.

data array This attribute will hold the data for the moving average chart. It
will be an array that contains two objects. It would be
impossible to plot a moving average chart without this
attribute.

layout object This attribute will hold the configuration settings for the
moving average chart. It is needed to modify the appearance of
the moving average chart to highlight intersections and

 25

annotate the type of the intersection and suggestions whether
to buy or sell a stock.

The data array will contain two objects: one for short-term moving average and one for long-term moving
average. Each of them will contain the following attributes:

Attribute Data type Purpose and justificaiton

x array This attribute will hold dates when the stock was available to
trade. It is needed to correctly annotate the x-axis on the
moving average chart.

y array This attribute will hold the y-values for both line graphs. Y-
values will depend on the type of the moving average selected.
They are needed to correctly plot the moving average chart.

type string This attribute will hold the type of the graph we want to
display, which is ‘scatter’ graph in this case.

mode string This attribute will hold the mode of the graph we want to
display, which is ‘lines’ in this case.

name string This attribute will hold the name for each of the moving
averages. It will be one of the following: ‘Short-term SMA’,
‘Long-term SMA’, ‘Short-term WMA’, ‘Long-term WMA’.

The layout object will contain several attributes as well. The most important ones will be shapes and
annotations, which are both arrays of objects, and they will be used to highlight and annotate the intersections
of the moving averages. Other attributes are related to the appearance of the moving average chart and I will
decide what they will be during the development stage while creating prototypes.

Pattern
This object will store all information related to candlestick patterns and contain the following attributes:

Attribute Data type Purpose and justificaiton

show boolean This attribute will hold ‘true’ if the user wants to see
highlighted and annotated candlestick patterns and ‘false’
otherwise.

prev object This attribute will hold the candlestick data for the previous
day when the stock was available to trade. It is needed to find
patterns in the stock data.

curr object This attribute will hold the candlestick data for the current day
of trading the stock. It is needed to find patterns in the stock
data.

name string This attribute will hold the name of the last candlestick pattern
found. It is needed to annotate the candlestick chart correctly.

The prev and curr objects will represent current and previous day and contain such data as close, high, low,
open and date for the stock. They are needed to find candlestick patterns in the stock data.

Algorithms

Getting id of the chosen stock from the url
The ‘choose-level.html’ page will insert the id of the chosen stock into the search bar of the browser as a
parameter. This algorithm will get all parameters from the search bar of the browser, look for the parameter
called ‘stock_id’ and return it. This algorithm is needed because without it the program will not know which
stock the user has chosen.

 26

Fetching stock data
There will be three JSON files with stock data in a directory called ‘json’. The files will have names in the format
‘stockId.json’, and in order to fetch the correct file with stock data, the program will need to concatenate the
path to the JSON directory, the correct stock id and the file extension. For example, ‘./json/APPL.json’ will be a
valid path to the Apple stock data. This algorithm will fetch stock data from a correct file using the id of the
chosen stock, convert JSON into a Javascript array and return the array with stock data. This algorithm is
needed because without it the program will not have access to the stock data of the chosen stock.

 27

Displaying id of the chosen stock
This algorithm will select the correct HTML element and set its ‘textContent’ property to be the stock Id. This
algorithm is needed for the user to know which stock they are trading.

Getting current price of the chosen stock
As explained in the data structures section, there will be an object called ‘stock’ that will have several
attributes. Some of the attributes will need to be constantly updated. For example, the price of the stock will
change every day. In order to keep track of how many days have passed, there will be a counter. This

 28

algorithm will get the current close price of the stock using the counter. This algorithm is needed to calculate
profit that the user has made.

FUNCTION getStockPrice
 return stock.data[stock.count].close
ENDFUNCTION

Updating the counter
This algorithm will update the counter and will be called with a constant frequency by a different function in
the main part of the program. This algorithm is needed to keep track of how many days have passed since the
start of the simulation.

FUNCTION updateStockCounter
 stock.count = stock.count + 1
ENDFUNCTION

Storing stock data
This algorithm will call some of the above functions and store their returns in appropriate variables. This
function will be called once at the beginning of the simulation and some of its attributes will change
throughout the simulation. For example, the price of the stock will be updated every day.

FUNCTION getStockData
 stock.id = getStockId()
 stock.url = ‘./json/’ + stock.id + ‘.json’
 stock.data = fetchStockData()
 stock.price = getStockPrice()
ENDFUNCTION

Display available money
This algorithm will select the correct HTML element and set its ‘textContent’ property to be the money
available. This algorithm is needed for the user to know how much money they have.

Displaying owned stocks
This algorithm will select the correct HTML element and set its ‘textContent’ property to be the owned stocks.
This algorithm is needed for the user to know how many stocks they own.

 29

Calculating current profit
This algorithm will calculate current profit by taking into account initial capital, money available, owned stocks
and the current price of the stock. This function is needed to find out if the user has met the requirements of
the level.

FUNCTION
 return wallet.money_available + wallet.owned_stocks * stock.price – level.initial_capital
ENDFUNCTION

Displaying current profit
This algorithm will select the correct HTML element and set its ‘textContent’ property to be the current profit.
This algorithm is needed for the user to know how much profit they made and if they met the requriements of
the level.

 30

Getting required profit for the level
As discussed in the data structures section, there will be two objects related to completing the level. The
‘levels’ array will contain information about all levels. The ‘level’ object will contain information about the
current level. This algorithm will set the ‘required_profit’ attribute of the ‘level’ object to the correct value
depending on the id of the chosen stock by looping through the ‘levels’ array. This algorithm is needed
because it is easier to save level settings once but in a different object than loop through the ‘levels’ array
every time the program needs to get some information about the chosen level.

FUNCTION getRequiredProfit
 FOR i IN RANGE FROM 0 TO length(levels)
 IF stock.id == levels[i].id
 level.required_profit = levels[i].required_profit
 ENDIF
 ENDFOR
ENDFUNCTION

Displaying required profit for the level
The user should know how much profit they need to make to pass the level. Therefore, this algorithm will
select an appropriate HTML element and set its ‘textContent’ property to be equal to the ‘required_profit’
attribute of the ‘level’ object.

Getting initial capital for the level
As discussed in the data structures section, there will be two objects related to completing the level. The
‘levels’ array will contain information about all levels. The ‘level’ object will contain information about the
current level. This algorithm will set the ‘initial_capital’ attribute of the ‘level’ object to the correct value
depending on the id of the chosen stock by looping through the ‘levels’ array. This algorithm is needed
because it is easier to save level settings once but in a different object than loop through the ‘levels’ array
every time the program needs to get some information about the chosen level.

FUNCTION getInitialCapital
 FOR i IN RANGE FROM 0 TO length(levels)
 IF stock.id == levels[i].id
 level.initial_capital = levels[i].initial_capital
 ENDIF
 ENDFOR
ENDFUNCTION

 31

Drawing a new chart
Using an official Plotly.js documentation (https://plotly.com/javascript/), I found a method that creats a plot
that takes in 3 parameters: container, data and layout. The name of the method is newPlot. The container is
just an HTML element that will wrap the whole chart. The data is an array containing an object with various
attributes. The layout is configuration options of the plot. At this stage of the design, I am not sure which
layout options I will choose. The algorithm for creating a new plot is essential to my simulation, as I will need
to have two plots: candlestick and moving average charts. However, the pseudocode for this algorithm is the
following:

FUNCTION drawNewPlot
 Plotly.newPlot(container, data, layout)
ENDFUNCTION

Extending candlestick chart
Having created a new plot for the candlestick chart, I will need to add new data to it every few seconds to
extend it throughout the simulation. In this algorithm, I will select various attributes, which are all arrays, and
append some new data to their ends. As discussed in the data structures section, candlestick charts have five
attributes: x, which is date, open, high, low and close.

FUNCTION extendCandlestickChart
 candlestick.data[0].x.append(stock.data[stock.count].date)
 candlestick.data[0].open.append(stock.data[stock.count].open)
 candlestick.data[0].high.append(stock.data[stock.count].high)
 candlestick.data[0].low.append(stock.data[stock.count].low)
 candlestick.data[0].close.append(stock.data[stock.count].close)
ENDFUNCTION

Extending moving average chart
Having created a new plot for the moving average chart, I will need to add new data to it every few seconds to
extend it throughout the simulation. In this algorithm, I will select various attributes, which are all arrays, and
append some new data to their ends. According to the documentation, in order to create a line graph, objects
in the data array will need to have two main attributes: x and y. The first object in the data array will represent
the short-term moving average and the second object will represent the long-term moving average. Later, I
will create a getSimpleMovingAverage(day) function that will take in one parameter, which is the time period
in days. Finally, I will create a getWeightedMovingAverage(day) function if the user decides to use another
type of moving average. X-coordinates will represent dates. In order to set y-coordinates, the program will call
one of those functions depending on the type of moving average the user chooses.

FUNCTION extendMovingAverageChart
 moving_average.data[0].x.append(stock.data[stock.count].date)
 moving_average.data[0].y.append(getSimpleMovingAverage(day_short))
 moving_average.data[1].x.append(stock.data[stock.count].date)
 moving_average.data[1].y.append(getSimpleMovingAverage(day_long))
ENDFUNCTION

Updating a chart
Having created a prototype where I extend candlestick and moving average charts, I encountered a problem:
the charts would not update. Then, having checked some examples from the documentation, I realised that I
need to update those charts. It turns out, there is a method in the library that does exactly what I need. The
method is called ‘update’ and it takes in three parameters: container, data and layout. With this method, I was
able to make the charts update as soon as I add a new piece of data.

FUNCTION updatePlot
 Plotly.update(container, data, layout)
ENDFUNCTION

https://plotly.com/javascript/

 32

Calculating simple moving average
In order to plot a moving average chart, I will need to get y-coordinates for the line graphs. If the user selects
Simple Moving Average in the settings, I will need to call a function called getSimpleMovingAverage and set y-
coordinate of the line graph to be equal to the return of that function. The function will take in one parameter
which is a time period in days. Other variables will be global and will not change, so there will be no need to
pass them to the function as parameters.

FUNCTION getSimpleMovingAverage(day)
 sum = 0
 average = 0

 FOR i IN RANGE FROM stock.count – day + 1 TO stock.count
 sum = sum + stock.data[i].close
 ENDFOR

 average = sum / day
 return average
ENDFUNCTION

Calculating weighted moving average
If the user selects Weighted Moving Average in the settings, I will need to call a function called
getWeightedMovingAverage and set y-coordinate of the line graph to be equal to the return of that function.
The function will take in one parameter which is a time period in days. Other variables will be global and will
not change, so there will be no need to pass them to the function as parameters.

FUNCTION getWeightedMovingAverage(day)
 sum = 0
 average = 0
 weight = 0
 total_weight = 0

 FOR i IN RANGE FROM stock.count – day + 1 TO stock.count
 weight = weight + 1
 sum = sum + weight * stock.data[i].close
 total_weight = total_weight + weight
 ENDFOR

 average = sum / total_weight
 return average
ENDFUNCTION

Calculating slope of a line
At some point, the program will need to calculate slopes of lines to find out if the intersection is a golden cross
or a death cross. The function will take in four parameters, which are four points and calculate the gradient. If
the x-coordinates are the same, it is impossible to calculate the gradient, as we will be dividing by 0.

FUNCTION getSlope(x1, y1, x2, y2)
 IF x1 != x2
 return (y2 – y1) / (x2 – x1)
 ENDIF

 return false
ENDFUNCTION

Checking if two lines intersect given two points for each line
In order to detemine whether to buy or sell a stock, the program will need to search for intersections of
moving averages. Every time there is a new piece of data added to the moving average chart, I will check if line
segments intersect by taking in the coordinates of four points. Those points will be the two new added pieces
of data to each line graph and the ones before them. The algorithm for this is the following:

FUNCTION doIntersect(x1, y1, x2, y2, x3, y3, x4, y4)
 a1 = y2 - y1
 b1 = x1 - x2

 33

 c1 = x2 * y1 - x1 * y2

 r3 = a1 * x3 + b1 * y3 + c1
 r4 = a1 * x4 + b1 * y4 + c1

 IF r3 != 0 AND r4 != 0 AND isSameSign(r3, r4)
 return false
 ENDIF

 a2 = y4 - y3
 b2 = x3 - x4
 c2 = x4 * y3 - x3 * y4

 r1 = a2 * x1 + b2 * y1 + c2
 r2 = a2 * x2 + b2 * y2 + c2

 IF r1 != 0 AND r2 != 0 AND isSameSign(r1, r2)
 return false
 ENDIF

 denominator = a1 * b2 - a2 * b1

 IF denominator == 0
 return true
 ENDIF

 return true
ENDFUNCTION

Checking if intersection is a Golden Cross or Death Cross
In order to make a prediction about the direction of the price of a stock, the program will need to compare
gradients of the two line graphs if there is an intersection. This algorithm will return ‘true’ if the intersection is
a Golden Cross and ‘false’ if the intersection is a Death Cross.

FUNCTION isGoldenCross(slope_short, slope_long)
 return slope_short > slope_long
ENDFUNCTION

Checking if two numbers have the same sign
The program will need to check if two gradients have the same sign and in order to do so, I will use a built-in
Math library. It has a method called ‘sign’ that I will use in the following way:

FUNCTION isSameSign(a, b)
 return Math.sign(a) == Math.sign(b)
ENDFUNCTION

Checking if two candles form a Bearish Kicker pattern
In order to predict the direction of the price of a stock, the program will need to check if there is a pattern in
the two newest pieces of data in the candlestick chart. The algorithm to check if there is a Bearish Kicker
pattern is the following:

FUNCTION isBearishKicker
 return pattern.prev.open < pattern.prev.close AND
 pattern.curr.open > pattern.curr.close AND
 pattern.prev.open > pattern.curr.open
ENDFUNCTION

Checking if two candles form a Bullish Kicker pattern
The algorithm to check if there is a Bullish Kicker pattern is the following:

FUNCTION isBullishKicker
 return pattern.prev.open > pattern.prev.close AND
 pattern.curr.open < pattern.curr.close AND

 34

 pattern.prev.open < pattern.curr.open
ENDFUNCTION

Checking if two candles form a Shooting Star pattern
The algorithm to check if there is a Shooting Star pattern is the following:

FUNCTION isShootingStar
 return pattern.prev.open < pattern.prev.close AND
 pattern.curr.open > pattern.curr.close AND
 pattern.prev.close < pattern.curr.close AND
 pattern.curr.high - pattern.curr.close > 2 * (pattern.curr.open - pattern.curr.close)
AND
 pattern.curr.open - pattern.curr.close > pattern.curr.close - pattern.curr.low
ENDFUNCTION

Updating pattern data
The ‘pattern’ object will need to be updated every time there is a new piece of data added to the candlestick
chart. Its attributes, ‘curr’ and ‘prev’ will be set to different values, as the stock count updates every few
seconds.

FUNCTION updatePatternData
 pattern.prev = stock.data[stock.count - 1]
 pattern.curr = stock.data[stock.count]
ENDFUNCTION

Buying a stock
The user should be able to buy stocks if they have enough money available. The program will check what
number the user put into the ‘number of stocks’ input field, check if the user has enough funds and make the
transaction if the validation check is passed. The algorithm for this is the following:

FUNCTION buy
 number = value in the ‘number of stocks’ input field
 total_price = number * stock.price

 IF total_price < wallet.money_available
 wallet.owned_stocks = wallet.owned_stocks + number
 wallet.money_available = wallet.money_available – total_price
 ELSE
 display an error message saying the user does not have enough funds
 ENDIF

 update the wallet
ENDFUNCTION

Selling a stock
The user should be able to sell stocks if they own any. The program will check what number the user put into
the ‘number of stocks’ input field, check if the user has enough stocks and make the transaction if the
validation check is passed. The algorithm for this is the following:

FUNCTION sell
 number = value in the ‘number of stocks’ input field
 total_price = number * stock.price

 IF wallet.owned_stocks >= number
 wallet.owned_stocks = wallet.owned_stocks – number
 wallet.money_available = wallet.money_available – total_price
 ELSE
 display an error message saying the user does not have enough stocks
 ENDIF
ENDFUNCTION

 35

Highlighting candlestick patterns
The program will need to highlight candlestick patterns. In order to do so, there will be a ‘shapes’ array in the
‘layout’ object of the ‘candlestick’ object. This algorithm will just append an object with several attributes to
the ‘shapes’ array. Values for the attributes were found in the documentation of Plotly.js.

FUNCTION updateCandlestickShapes
 IF isBearishKicker OR isBullishKicker OR isShootingStar
 candlestick.layout.shapes.append({
 type: 'rect',
 xref: 'x',
 yref: 'paper',
 x0: pattern.prev.date,
 y0: 0,
 x1: pattern.curr.date,
 y1: 1,
 fillcolor: '#ffff00',
 opacity: 0.4,
 line: { width: 0 }
 })
 ENDIF
ENDFUNCTION

Annotating candlestick patterns
The program will need to annotate candlestick patterns. In order to do so, there will be an ‘annotations’ array
in the ‘layout’ object of the ‘candlestick’ object. This algorithm will just append an object with several atributes
to the ‘annotations’ array. Values for the attributes were found in the documentation of Plotly.js.

FUNCTION updateCandlestickAnnotations
 IF isBearishKicker THEN text = ‘Bearish Kicker’
 ELSE IF isBullishKicker THEN text = ‘Bullish Kicker’
 ELSE IF isShootingStar THEN text = ‘Shooting Star’

 IF isBearishKicker OR isBullishKicker OR isShootingStar
 candlestick.layout.annotations.append({
 x: pattern.prev.date,
 y: 1,
 xref: 'x',
 yref: 'paper',
 text: text,
 font: { color: 'black', size: 10 },
 showarrow: false,
 xanchor: 'left',
 ax: 0,
 ay: 0
 })
 ENDIF
ENDFUNCTION

Highlighting moving average intersections
The program will need to highlight intersections of moving averages. In order to do so, there will be a ‘shapes’
array in the ‘layout’ object of the ‘moving_average’ object. This algorithm will just append an object with
several attributes to the ‘shapes’ array. Values for the attributes were found in the documentation of Plotly.js.

FUNCTION updateMovingAverageShapes
 IF doIntersect
 moving_average.layout.shapes.append({
 type: 'rect',
 xref: 'x',
 yref: 'paper',
 x0: pattern.prev.date,
 y0: 0,
 x1: pattern.curr.date,
 y1: 1,
 fillcolor: '#ffff00',
 opacity: 0.4,
 line: { width: 0 }
 })

 36

 ENDIF
ENDFUNCTION

Annotating moving average intersections
The program will need to annotate moving average intersections. In order to do so, there will be an
‘annotations’ array in the ‘layout’ object of the ‘moving_average’ object. This algorithm will just append an
object with several atributes to the ‘annotations’ array. Values for the attributes were found in the
documentation of Plotly.js.

FUNCTION updateMovingAverageAnnotations
 IF doIntersect
 IF isGoldenCross THEN suggestion = ‘BUY’
 ELSE suggestion = ‘SELL’

 moving_average.layout.annotations.append({
 x: pattern.prev.date,
 y: 1,
 xref: 'x',
 yref: 'paper',
 text: suggestion,
 font: { color: 'black', size: 10 },
 showarrow: false,
 xanchor: 'left',
 ax: 0,
 ay: 0
 })
 ENDIF
ENDFUNCTION

Test data for development

Milestones that my program needs to achieve
1. Creating the main interfaces
2. Selecting a level
3. Displaying the wallet and level requirements for each stock
4. Drawing a candlestick chart
5. Drawing a moving average chart
6. Highlighting and annotating candlestick patterns
7. Highlighting and annotating intersections of moving averages
8. Allow the user to trade the chosen stock
9. Allow the user to hide/show candlestick patterns
10. Allow the user to stop the simulation and view results
11. Allow the user to change the type of moving average and its parameters

Milestone №1

Test № Test and input Output

1 The user can see the starting screen of the
simulation, screen with a selection of levels
and the main screen of the simulation.

The user can see all screens clearly and all
information that needs to be visible is visible.

Milestone №2

Test № Test and input Output

1 The user can select one of three levels and
they will be redirected to the correct web
page.

The three levels are displayed to a user with
some information about them and each of
them redirects the user to a correct web page.

 37

Milestone №3

Test № Test and input Output
1 When the user is redirected to the main

screen of the simulation, they can see the
virtual wallet and level requirements for each
stock.

When the user selects a level, they are
redirected to the main screen of the
simulation, that displays the virtual wallet and
level requirements for the chosen level.

Milestone №4
Test № Test and input Output

1 The user can see the candlestick chart with
stock data on the main screen of the
simulation.

The user can see the candlestick chart with
stock data, as well as interact with the chart
with their mouse on the main screen of the
simulation.

Milestone №5

Test № Test and input Output

1 The user can see the moving average chart
with correctly calculated values.

The user can clearly see the moving average
chart and hover over each data point with
their mouse to see exact values.

Milestone №6

Test № Test and input Output

1 Candlestick patterns are highlighted and
annotated on the candlestick chart with a
suggestion whether to buy or sell the stock.

The user can see various highglighted
candlestick patterns on the candlestick chart
with annotations and suggestion whether to
buy or sell the stock.

Milestone №7

Test № Test and input Output

1 Intersection points of the moving averages
are highlighted and annotated with a
suggestion whether to buy or sell the stock.

The user can clearly see the highlighted
intersection points of the moving averages
with an annotation suggesting whether to buy
or sell the stock.

Milestone №8

Test № Test and input Output

1 The user can input how many stocks they
want to buy or sell and if the validation
checks are passed, the transaction will
happen and the wallet will be updated.

The user can input the number of stocks they
want to buy or sell. Then, if the validation
checks are passed, ie the user has enough
funds to buy the stock or enough stocks to sell,
the transaction will take place and the user’s
wallet will be updated.

2 The validation checks were described in the
Validation of inputs section and the test data
is presented below.

If the validation of inputs is not passed, the
user receives an error message saying exactly
what is wrong. If the validation checks are
passed, the transaction happens and the user’s
wallet is updated.

3 money_available: $1000
stocks_owned: 5
stock.price: $100

Valid inputs for buying stocks: 0 – 10

If 0 is inputted, nothing will happed, so we can
consider it as a valid input.

 38

Valid inputs for selling stocks: 0 - 5 In this case, the user can only buy maximum of
10 stocks, as 10 * $100 = $1000, which is how
much money the user has.

In this case, the user can only sell up to 5
stocks, as they own only 5 stocks and they are
not allowed to sell more stocks than they own.

Milestone №9

Test № Test and input Output

1 The user can choose whether to show or hide
candlestick patterns. If they choose to hide
them, no highlights, annotations and
suggestions will be displayed on the
candlestick chart. However, if the user
chooses to show candlestick patterns, they
can see highglights, annotations and
suggestions as usual.

The user can hide or show candlestick patterns
and the candlestick chart is updated according
to the option chosen by the user.

Milestone №10
Test № Test and input Output

1 The user can stop the simulation at any
moment and view the results.

When the user presses the ‘Stop simulation’
button, they are redirected to a different page
where the results of the simulation are shown.

Milestone №11
Test № Test and input Output

1 The user can change the type of moving
average and its parameters

When the user changes the type of moving
average or parameters, the program deletes all
the previous data from the moving average
chart and new data points are being added.

 Test data for post-development

Integration testing

№ Test and input Expected output
1 Enter the url in the search bar of the browser The starting screen of the simulation can be seen

2 Press the ‘start trading’ button The user is redirected to a different page where they
can see a selection of levels

3 Select the first level The user is redirected to the main screen of the
simulation. They can see the charts being updated,
virtual wallet, level requirements, boxes for entering
parameters and changing settings and all the
elements of the interface

4 Candlestick patterns are highlighted and
annotated

The user can see highlighted and annotated
candlestick patterns

5 Moving average intersections are highlighted
and annotated

The user can see highglighted and annotated
intersections of moving averages

6 Try buying the stock with the following cases:
1. valid number of stocks and the user has

enough funds

1. money available decreases by the total price and
owned stocks increases by the number of stocks

2. error message ‘not enough funds’

 39

2. valid number of stocks and the user does
not have enough funds

3. invalid number of stocks and the user has
enough funds

4. invalid number of stocks and the user
does not have enough funds

3. error message ‘must be an integer greater than
zero’

4. error message ‘must be an integer greater than
zero’, if resolved then ‘not enough funds’

7 Try selling the stock with the following cases:
1. valid number of stocks and the user has

enough stocks
2. valid number of stocks and the user does

not have enough stocks
3. invalid number of stocks and the user has

enough stocks
4. invalid number of stocks and the user

does not have enough stocks

1. money available is increased by the total price
and owned stocks is decreased by the number of
stocks

2. error message ‘not enough stocks’
3. error message ‘must be an integer greater than

zero’
4. error message ‘must be an integer greater than

zero’, if resolved then ‘not enough stocks’

8 Try changing moving average parameters
with the following cases:
1. Only type
2. Only short-term average
3. Only long-term average
4. Both averages
5. Type and both averages

In all cases, the data from the moving average chart
must be deleted.
1. Values are calculated using a formula for the

chosen type of the moving average
2. Short-term average values will be calculated

using more or less data points depending on the
input

3. Long-term average will be calculated using more
or less data points depending on the input

4. Both averages will be calculated using more or
less data points depending on the inputs

5. Both averages will be calculated using a formula
for the chosen type of the moving avreage and
both will be calculated using more or less data
points depending on the inputs

9 Check the pattern recognition checkbox The user can see highlighted and annotated
candlestick patterns

10 Uncheck the pattern recognition checkbox The user no longer can see highlighted and annotated
candlestick patterns

11 Profit is calculated correctly 1. Take the current price of the stock
2. Multiply it by the number of stocks owned
3. Add money available
4. Subtract initial capital
5. Round to the whole number
6. Check is the value the program calculates is the

same

12 Press the ‘stop simulation’ button The user is redirected to a different page and they can
see their results calculated correctly. If their profit is
less than the required profit, the level is not passed. If
their profit is greater than the required profit, the
level is passed.

Alpha testing
Having tested the program myself, I will present the complete solution to my stakeholders, who will test the
program by verifying that each success criteria from the Analysis section is complete.

 40

Development

Project setup
I decided to use Visual Studio Code as my IDE, because it supports HTML, CSS, JavaScript code, I am familiar
with the IDE and I have it installed on my computer. Then, I created a folder trading-simulation and opened it
in the IDE.

Firstly, I created three HTML files:

• index.html – the starting page of my simulation

• choose-level.html – the page where the user would select a level

• trade-stock.html – the page where the user would trade the chosen stock

Secondly, I created a CSS file style.css, where I will write code for styling my project.

Thirdly, I created a JavaScript file app.js, where I will write only the main logic for my project, and a folder
modules, where I will create additional JavaScript files with various functions to keep the code structured and
more readable.

Finally, I created a folder json and pasted all the JSON files with stock data:

• APPL.json - Apple

• TSLA.json - Tesla
• NKE.json – Nike

A problem I encountered while downloading stock data is that YAHOO Finance only allowed me to download
stock data in csv format. I solved this problem by using a csv to json converter.

Milestone №1 – creating the main interfaces
In this milestone, I will create the main interfaces of my project. I will try to make them similar to what I
planned in the design section, but they may deviate a little bit.

Code listing
index.html

<!DOCTYPE html>

<html>

 <head>

 <title>Trading simulation</title>

 <link rel="preconnect" href="https://fonts.googleapis.com">

 <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>

 <link href="https://fonts.googleapis.com/css2?family=Roboto:wght@400;600&display=swap" rel="stylesheet">

 <link rel="stylesheet" href="./style.css">

 </head>

 <body>

 <div id="index">

 <h1>Trading simulation</h1>

 <button id="start-trading-btn">start trading</button>

 </div>

 </body>

</html>

 41

choose-level.html

<!DOCTYPE html>

<html>

 <head>

 <title>Choose level</title>

 <link rel="preconnect" href="https://fonts.googleapis.com">

 <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>

 <link href="https://fonts.googleapis.com/css2?family=Roboto:wght@400;600&display=swap" rel="stylesheet">

 <link rel="stylesheet" href="./style.css">

 </head>

 <body>

 <div id="choose-level">

 <h1>Choose a level</h1>

 <div id="levels"></div>

 </div>

 </body>

 <script type="module">

 import { levels } from './modules/level.js'

 (function() {

 let levels_html = ``

 for (let i = 0; i < levels.length; i++) {

 let name = levels[i].name

 let id = levels[i].id

 let initial_capital = levels[i].initial_capital

 let required_profit = levels[i].required_profit

 let difficulty = levels[i].difficulty

 let level_html = `

 <h2>${name} (${id})</h2>

 <h3>Initial capital: $${initial_capital}</h3>

 <h3>Required profit: $${required_profit}</h3>

 <h3>Difficulty: ${difficulty}</h3>

 `

 levels_html = levels_html + level_html

 }

 document.getElementById('levels').innerHTML = levels_html

 })()

 </script>

</html>

trade-stock.html

<!DOCTYPE html>

<html>

 <head>

 42

 <title>Trade stock</title>

 <link rel="preconnect" href="https://fonts.googleapis.com">

 <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>

 <link href="https://fonts.googleapis.com/css2?family=Roboto:wght@400;600&display=swap" rel="stylesheet">

 <link rel="stylesheet" href="./style.css">

 </head>

 <body>

 <div id="trade-stock">

 <div id="charts">

 <div id="candlestick-chart"></div>

 <div id="moving-average-chart"></div>

 </div>

 <div id="information">

 <h1 id="stock-id"></h1>

 <div>

 <h2>Wallet</h2>

 <h3 id="money-available"></h3>

 <h3 id="owned-stocks"></h3>

 </div>

 <div>

 <h2>Level</h2>

 <h3 id="required-profit"></h3>

 <h3 id="profit"></h3>

 </div>

 <div>

 <h2>Buy / Sell</h2>

 <div class="input-container">

 <label for="number-of-stocks">Number of stocks</label>

 <input type="number" id="number-of-stocks" required>

 </div>

 <button id="buy-btn">BUY</button>

 <button id="sell-btn">SELL</button>

 <p id="error-message"></p>

 </div>

 <div>

 <h2>Settings</h2>

 <div class="input-container">

 <label for="short-term-input">Short-term input</label>

 <input type="number" id="short-term-input" value="5">

 </div>

 <div class="input-container">

 <label for="long-term-input">Long-term input</label>

 <input type="number" id="long-term-input" value="15">

 </div>

 <select id="options">

 <option value="sma">Simple Moving Average</option>

 <option value="wma">Weighted Moving Average</option>

 </select>

 <button id="change-settings-btn">APPLY</button>

 43

 </div>

 <div>

 <h2>Pattern Recognition</h2>

 <div class="checkbox-container">

 <input type="checkbox" id="pattern-recognition-checkbox" checked>

 <label for="pattern-recognition-checkbox">show</label>

 </div>

 </div>

 <div>

 <button id="stop-simulation-btn">Stop simulation</button>

 </div>

 </div>

 </div>

 </body>

 <script src='https://cdn.plot.ly/plotly-latest.min.js'></script>

 <script src="app.js" type="module"></script>

</html>

style.css

* {

 margin: 0;

 padding: 0;

}

h1 {

 font-family: 'Roboto';

 font-weight: 600;

 font-size: 48px;

 line-height: 52px;

 color: #000;

}

h2 {

 font-family: 'Roboto';

 font-weight: 400;

 font-size: 24px;

 line-height: 28px;

 color: #000;

}

h3 {

 font-family: 'Roboto';

 font-weight: 400;

 font-size: 16px;

 line-height: 20px;

 color: #000;

}

button {

 margin-top: 7px;

 44

 padding: 5px 10px;

 border: 1px solid #000;

 border-radius: 5px;

 font-family: 'Roboto';

 font-size: 14px;

 font-weight: 400;

 color: #000;

}

button:hover {

 cursor: pointer;

}

/* INDEX */

#index {

 position: absolute;

 top: 50%;

 left: 50%;

 transform: translate(-50%, -50%);

 display: flex;

 flex-direction: column;

 align-items: center;

}

#index button {

 margin-top: 25px;

 padding: 10px 15px;

 font-size: 20px;

 background-color: rgb(80, 202, 80);

}

/* CHOOSE-LEVEL */

#choose-level {

 position: absolute;

 top: 50%;

 left: 50%;

 transform: translate(-50%, -50%);

 display: flex;

 flex-direction: column;

 align-items: center;

}

#levels {

 display: flex;

}

.level {

 margin: 10px;

 padding: 15px;

 border: 1px solid #000;

 border-radius: 10px;

 text-decoration: none;

 45

 color: #000;

}

.level h2 {

 margin-bottom: 15px;

}

.level:hover {

 cursor: pointer;

}

.easy {

 background-color: rgb(80, 202, 80);

}

.medium {

 background-color: orange;

}

/* TRADE-STOCK */

#stock-id {

 margin-bottom: 10px;

 text-align: center;

}

#trade-stock {

 display: flex;

}

#charts {

 width: calc(100% - 350px);

 max-width: 1000px;

}

#information {

 padding: 5px 20px;

 position: fixed;

 top: 0;

 right: 0;

 width: 300px;

 height: 100vh;

 background-color: rgb(239, 239, 239);

}

#information > div {

 margin-bottom: 15px;

}

input {

 width: 100%;

}

.checkbox-container {

 display: flex;

 46

 justify-content: flex-start;

 align-items: center;

}

#pattern-recognition-checkbox {

 margin-right: 5px;

 width: fit-content;

}

level.js

export const levels = [

 {

 name: 'Apple',

 id: 'APPL',

 initial_capital: 1000,

 required_profit: 100,

 difficulty: 'easy'

 },

 {

 name: 'Tesla',

 id: 'TSLA',

 initial_capital: 1000,

 required_profit: 200,

 difficulty: 'easy'

 },

 {

 name: 'Nike',

 id: 'NKE',

 initial_capital: 10000,

 required_profit: 5000,

 difficulty: 'medium'

 }

]

candlestick.js

export let candlestick = {

 container: 'candlestick-chart',

 data: [{

 x: [],

 open: [],

 high: [],

 low: [],

 close: [],

 type: 'candlestick'

 }],

 layout: {

 dragmode: 'zoom',

 title: 'Candlestick Chart',

 shapes: [],

 annotations: [],

 xaxis: {

 autorange: true,

 type: 'date',

 rangeslider: { visible: false }

 47

 },

 yaxis: {

 autorange: true,

 type: 'linear',

 title: 'Price($)'

 }

 }

}

moving-average.js

export let moving_average = {

 day_short: 5,

 day_long: 15,

 type: 'sma',

 container: 'moving-average-chart',

 data: [

 {

 x: [],

 y: [],

 type: 'scatter',

 mode: 'lines',

 name: 'Short-term SMA'

 },

 {

 x: [],

 y: [],

 type: 'scatter',

 mode: 'lines',

 name: 'Long-term SMA'

 }

],

 layout: {

 dragmode: 'zoom',

 title: 'Moving Average Chart',

 shapes: [],

 annotations: [],

 xaxis: {

 autorange: true,

 type: 'date',

 rangeslider: { visible: false },

 },

 yaxis: {

 autorange: true,

 type: 'linear',

 title: 'Price($)'

 }

 }

}

plot.js

export function drawNewPlot(plot) {

 Plotly.newPlot(plot.container, plot.data, plot.layout);

}

 48

app.js

import { candlestick } from './modules/charts/candlestick.js'

import { moving_average } from './modules/charts/moving-average.js'

import { drawNewPlot } from './modules/charts/plot.js'

(async () => {

 // charts

 drawNewPlot(candlestick)

 drawNewPlot(moving_average)

})()

Explanation of the code
Firstly, I created three HTML files index.html, choose-level.html and trade-stock.html. Then, I created the CSS
file style.css and linked it to all of the HTML files so that I can style those pages. Also, I connected some
external fonts from Google Fonts (https://fonts.google.com/) to all of the HTML pages. After that I filled those
pages with content by referring to DevDocs documentation (https://devdocs.io/).

Initially, in the choose-level.html file I had all the levels listed as HTML code, but all the information about the
levels was hard-coded, which I did not like. Therefore, I wrote some code to solve this problem. I created a
level.js file inside the modules folder and created an array called levels. The structure of the array is the same
as described in the Data Scructures section. Then, in the choose-level.html file I wrote some code that iterates
through the levels array and inserts the same HTML code as before into the HTML element with id=”levels”.
After writing this code, I had the same result as before, when I just used HTML, but the information about the
levels is now not hard-coded. It means that if I ever want to change some level requirements, I only need to
change the levels array, which improves the usability of the code.

Also, I used the Plotly.js documentation (https://plotly.com/javascript/) to create empty charts for the
candlestick and moving average charts. I created a folder charts and two files candlestick.js and moving-
average.js inside the folder.

Inside the candlestick.js file, I created an object called candlestick. Inside the moving-average.js file, I created
an object moving-average. They both have a lot of attributes which I found in the documentation. The only
attribute I added to both objects is the name of the HTML elements inside which I want the charts to appear.

In the plot.js file, I created a function drawNewPlot, which calles a method newPlot that I found in the
documentation. It takes in three parameters, which are container, data, layout and displays the chart to the
screen.

In the app.js file, I imported the candlestick and moving_average objects, as well as the drawNewPlot function.
Then, I created an immediately invoked function expression, that would execute automatically as soon as the
file loads. Inside it, I called the drawNewPlot function twice to display both charts to the screen.

Finally, I linked the app.js file as well as the link to code that Plotly.js requires in the trade-stock.html file.

Testing
I tested my code by manually adding some data to the trade-stock.html file. Other files had all the required
data. I got the following results:

index.html

https://fonts.google.com/
https://devdocs.io/
https://plotly.com/javascript/

 49

choose-level.html

trade-stock.html

 50

The interfaces look very similar to those in the Design section. However, in the Design section, I forgot to add
the ‘stop simulation’ button at the right bottom corner of the screen. I will have a meeting with my
stakeholders in a couple of days, when I will ask for their opinion on the design of the main interfaces.

Reflection
While creating the interfaces, I tried to be as close as possible to the interfaces I created in the Design section.
Also, I improved the usability of the code by importing the information about the levels to the choose-
level.html file from the levels array. By doing that, adding new levels in the future will be much easier and the
program will be more maintainable.

Milestone №2 – selecting a level
In this milestone, I will implement page redirections and selecting a level. There is one redirection from
index.html to choose-level.html and another one from choose-level.html to trade-stock.html.

Code listing
index.html

<script>

 document.getElementById('start-trading-btn').addEventListener('click', () => { window.open('choose-

level.html', '_self') })

</script>

choose-level.html

let links = document.getElementsByTagName('a')

for (let i = 0; i < links.length; i++) {

 links[i].addEventListener('click', () => { window.open(`trade-stock.html?stock_id=${links[i].id}`, '_self')

})

}

 51

Explanation of the code
In order to redirect the user from index.html to choose-level.html, I added an event listener to the button on
the starting screen of the simulation. When the button is clicked, a function window.open() will redirect the
user to the choose-level.html page.

In order to redirect the user from choose-level.html to trade-stock.html, I selected all <a> elements on the
choose-level.html page and stored them inside the links array. Then, I iterated through the array and added an
event listener to each of the elements. Since the program needs to pass which level the user has selected, I
decided to pass this information as a parameter in the url. The program will know which level the user has
selected, because each <a> element has an id, which is unique to each stock.

Testing
I tested the first redirection by simply clicking the start trading button on the starting screen and I was
correctly redirected to the choose-level.html page.

I tested the second redirection by clicking all the levels one by one and looking at the url. Each time I was
correctly redirected to the page trade-stock.html, but there was also a parameter in the url, such as
stock_id=APPL. The evidence of this is shown below:

Reflection
At first, I was planning to add an additional attribute each level in the levels array, where I would store a link.
However, I thought it would not be necessary, as the only thing that changes is the parameter in the url and it
is the same as the id of the stock. So I came up with the idea of adding a link to each level using JavaScript.

Milestone №3 - displaying the wallet and level requirements for each stock
In this milestone, I will make sure that the correct information is shown for each level, such as the wallet and
level requirements.

Code listing
stock.js

export let stock = {

 id: '',

 url: '',

 data: [],

 price: 0,

 count: 0,

 getId: function() {

 let queryString = window.location.search

 let urlParams = new URLSearchParams(queryString)

 this.id = urlParams.get('stock_id')

 },

 displayId: function() {

 52

 document.getElementById('stock-id').textContent = this.id

 },

 getUrl: function() {

 this.url = './json/' + this.id + '.json'

 },

 getData: async function() {

 let response = await fetch(stock.url)

 this.data = await response.json()

 },

 getPrice: function() {

 this.price = this.data[this.count].close

 }

}

level.js

import { stock } from './stock.js'

export let level = {

 initial_capital: 0,

 required_profit: 0,

 getInitialCapital: function() {

 for (let i = 0; i < levels.length; i++) {

 if (stock.id === levels[i].id) {

 this.initial_capital = levels[i].initial_capital

 }

 }

 },

 getRequiredProfit: function() {

 for (let i = 0; i < levels.length; i++) {

 if (stock.id === levels[i].id) {

 this.required_profit = levels[i].required_profit

 }

 }

 },

 displayRequiredProfit: function() {

 document.getElementById('required-profit').textContent = 'Required profit: ' + this.required_profit

 }

}

wallet.js

import { stock } from "./stock.js"

import { level } from "./level.js"

export let wallet = {

 money_available: 0,

 owned_stocks: 0,

 profit: 0,

 setMoneyAvailable: function() {

 this.money_available = level.initial_capital

 },

 displayMoneyAvailable: function() {

 document.getElementById('money-available').textContent = 'Money available: ' +

Math.round(this.money_available)

 },

 53

 displayOwnedStocks: function() {

 document.getElementById('owned-stocks').textContent = 'Stocks owned: ' + this.owned_stocks

 },

 getProfit: function() {

 this.profit = Math.round(this.money_available + this.owned_stocks * stock.price - level.initial_capital)

 },

 displayProfit: function() {

 document.getElementById('profit').textContent = 'Profit: ' + this.profit

 },

 update: function() {

 this.displayMoneyAvailable()

 this.displayOwnedStocks()

 this.getProfit()

 this.displayProfit()

 }

}

app.js

...

import { stock } from './modules/stock.js'

import { level } from './modules/level.js'

import { wallet } from './modules/wallet.js

(async () => {

 // stock.js

 stock.getId()

 stock.displayId()

 stock.getUrl()

 stock.getData()

 .then(() => { stock.getPrice() })

 // level.js

 level.getInitialCapital()

 level.getRequiredProfit()

 level.displayRequiredProfit()

 // wallet.js

 wallet.setMoneyAvailable()

 wallet.update()

 ...

})()

Explanation of the code

• stock.js – as discussed in the Data sctructures section, I created the stock object. It has the same
attributes as I planned in the Design section. However, instead of writing functions outside the object,
I decided to write them as methods of the stock object. In this file, I used the getStockId,
fetchStockData, displayStockId, getStockPrice, getStockData algorithms from the Algorithms section,
slightly modified and renamed them. However, the functionality of those algorithms did not change
significantly. The method getId would get the id of the chosen stock from the url and store it in the id
attribute of the stock object. The displayId method would paste the id of the stock into the
appropriate HTML element. The getUrl method would simply concetenate the path to the json folder,
the id of the stock and the file extension to get a valid path to the file that stores the data for the
chosen stock and store it in the url attribute. The getData method would store the stock data from

 54

the correct file in the data attribute. The getPrice method would return the current price of the
chosen stock by accessing the correct element in the data array. I had some problems implementing
the getData method, but I was able to resolve them after reading the MDN documentation about the
fetch function (https://developer.mozilla.org/en-US/docs/Web/API/fetch).

• level.js – firstly, I created the level object with the same attributes as discussed in the Data Sctructures
section. Then, I wrote the getInitialCapital, getRequiredProfit, displayRequiredProfit methods by
referring to the corresponding functions in the Algorithms section. The getInitialCapital and
getRequiredProfit functions iterate through the levels array and search for an object with the same id
as the id of the chosen stock. When they find such an object, they copy the values of the
initial_capital and required_profit attributes to the level object.

• wallet.js – firstly, I imported stock and level variables into the wallet.js file, as I will need to use some
information from those variables. Then, I created the wallet object, as intended in the Data Structures
section. The setMoneyAvailable method will be called once at the beginning of the simulation to set
money_available to the same value as the initial_capital. The getProfit method calculates the current
profit and the displayMoneyAvailable, displayOwnedStocks and displayProfit methods display
information into appropriate HTML elements. The update method simply updates all attributes of the
wallet object. I will need to update the wallet frequently, so I decided to create this function to save
some lines of code and decrease the chance of encountering a bug.

• app.js – I imported the stock, level, wallet objects. Then, I called their methods in the specific order:
methods that do not depend on other objects are called first. For example, as I import the stock
object into the level.js file, the methods of the level object are called after the methods of the stock
object.

Testing
Firstly, I checked what would happen if I intentionally passed an incorrect stock_id in the url and got the
following result in the browser console:

Now, as a developer, I would know when an incorrect stock_id is passed in the url, which can save me time
during debugging in the future.

Secondly, I ran the code again with the correct stock_id=TSLA and got the following result:

https://developer.mozilla.org/en-US/docs/Web/API/fetch

 55

I checked that all information is correct for each of the stocks.

Thirdly, I checked that the JSON data is fetching correctly by outputting it to the browser console:

After expanding the data attribute, I checked that all of the JSON data matches the stock data in the
corresponding file, which means all data is fetched correctly.

Reflection
While designing the program, I did not think that fetching stock data might take some time. Due to that
reason, I encountered a problem that the program would throw an error, because it was trying to get the price
of the stock and the data has not been received yet. Therefore, I had to use asynchronous JavaScript, which
means I can control in which order functions execute. To solve the problem I encountered, I had to get the
price of the stock only when the stock data has been fetched by the program with the use of then() method.

Milestone №4 – drawing a candlestick chart
In this milestone, I will implement drawing and updating the candlestick chart with the correct stock data.

 56

Code listing
stock.js

export let stock = {

 ...

 incrementCount: function() {

 this.count = this.count + 1

 }

}

candlestick.js

import { stock } from "../stock.js"

export let candlestick = {

 ...

 extend: function() {

 if (this.data[0].x.length >= 12) {

 this.data[0].x.shift()

 this.data[0].open.shift()

 this.data[0].high.shift()

 this.data[0].low.shift()

 this.data[0].close.shift()

 }

 this.data[0].x.push(stock.data[stock.count].date)

 this.data[0].open.push(stock.data[stock.count].open)

 this.data[0].high.push(stock.data[stock.count].high)

 this.data[0].low.push(stock.data[stock.count].low)

 this.data[0].close.push(stock.data[stock.count].close)

 }

}

plot.js

export function updatePlot(plot) {

 Plotly.update(plot.container, plot.data, plot.layout)

}

app.js

...

import { updatePlot } from './modules/charts/plot.js'

(async () => {

 ...

 let interval_constant = 1000

 let interval = setInterval(() => {

 // update stock price

 stock.getPrice()

 // update candlestick chart

 candlestick.extend()

 updatePlot(candlestick)

 // update stock count

 stock.incrementCount()

 }, interval_constant)

 57

})()

Explanation of the code
Firstly, as discussed in the Algorithms section, I created a method that would update the counter and called it
incrementCount.

Secondly, in the candlestick.js file, I imported the stock object and created a new method called extend. Thid
method would control the number of candles that is shown on the graph and append new candles to it by
appending and removing items to and from the data array.

Thirdly, in the plot.js file, I created a new function that would update a chart and called it updatePlot.

Finally, in the app.js file, I imported the new updatePlot function. Then, I created an interval, which is a code
block that executes with a constant rate. To control the rate, I created a variable called interval_constant and
set its value to 1Hz (1 execution per second). Inside the interval, I update the price of the stock, append new
data to the candlestick chart, update the candlestick chart and increment the counter.

I tried implementing x, close, open, high, low arrays as queues, but it did not work and I am not sure why. I will
try to come back to this improvement later if I have time.

Testing
I ran the code and got the following result:

 58

The candlestick chart works as intended and when the number of candles is greater than or equal to 12, the
first candle is deleted, keeping the chart clean. Also, I checked the dates and values of several candles and they
match the contents of the TSLA.json file, which means the data is appended correctly and the chart is updated
correctly as well. I repeated the same procedure for each level and everything seems to work correctly.

Reflection
Even though in the Design section I planned to use built-in JavaScript arrays to store the stock data, during the
development I came up with an idea to use queues, as it would be a more efficient solution. However, I did not
manage to implement queues and I will try to make this improvement at the end of the development process
if I will have any remaining time.

Milestone №5 – drawing a moving average chart
In this milestone, I will implement drawing and updating the moving average chart with the correct stock data.

Code listing
average.js

import { stock } from '../stock.js'

export function getSimpleMovingAverage(day) {

 let sum = 0

 let average = 0

 for (let i = stock.count - day + 1; i <= stock.count; i++) {

 sum = sum + stock.data[i].close

 }

 average = sum / day

 59

 return average

}

export function getWeightedMovingAverage(day) {

 let sum = 0

 let average = 0

 let weight = 0

 let total_weight = 0

 for (let i = stock.count - day + 1; i <= stock.count; i++) {

 weight++

 sum = sum + weight * stock.data[i].close

 total_weight = total_weight + weight

 }

 average = sum / total_weight

 return average

}

moving-average.js

import { stock } from "../stock.js"

import { getSimpleMovingAverage, getWeightedMovingAverage } from './average.js'

export let moving_average = {

 ...

 extendShortMovingAverage: function() {

 if (this.data[0].x.length >= 14) {

 this.data[0].x.shift()

 this.data[0].y.shift()

 }

 if (stock.count >= this.day_short) {

 this.data[0].x.push(stock.data[stock.count].date)

 let y = (this.type === 'sma')

 ? getSimpleMovingAverage(this.day_short)

 : getWeightedMovingAverage(this.day_short)

 this.data[0].y.push(y)

 }

 },

 extendLongMovingAverage: function() {

 if (this.data[1].x.length >= 14) {

 this.data[1].x.shift()

 this.data[1].y.shift()

 }

 if (stock.count >= this.day_long) {

 this.data[1].x.push(stock.data[stock.count].date)

 let y = (this.type === 'sma')

 ? getSimpleMovingAverage(this.day_long)

 : getWeightedMovingAverage(this.day_long)

 60

 this.data[1].y.push(y)

 }

 }

}

app.js

...

(async () => {

 ...

 let interval = setInterval(() => {

 ...

 // update moving average chart

 moving_average.extendShortMovingAverage()

 moving_average.extendLongMovingAverage()

 updatePlot(moving_average)

 ...

 }, interval_constant)

})()

Explanation of the code
First of all, I created the functions getSimpleMovingAverage and getWeightedMovingAverage. Each of these
functions take in a parameter day. I found the steps for calculating simple moving average and weighted
moving average on Trading View (https://www.tradingview.com/):

https://www.tradingview.com/

 61

Then, I created the methods extendShortMovingAverage and extendLongMovingAverage. Those functions
delete points from the graph if the number of points is greater than or equal to 12 to keep the chart clean and
readable. Then, they append new points to the chart for both short-term and long-term moving averages,
taking into account which type of moving average the user has selected.

Finally, in the app.js, I imported extendShortMovingAverage and extendLongMovingAverage, called them
inside the interval and after that added a line that would update the moving average chart.

Testing
After I ran the code I got the following result:

 62

In the screenshot, a simple moving average is selected and seems to be working correctly. I checked the first
few values for the simple moving average and they match the values on the chart. However, to test the
milestone fully, I need a way of changing the type of moving average. I do not have such a functionality yet,
but I changed the type of moving average in the code to wma:

After I ran the code again, I got the following result:

 63

This time I got a different graph for the moving average. Having manually calculated the first few values for the
weighted moving average, the values on the graph matched the calculated values, which means all the
functions work correctly.

Reflection
For this milestone, I also wanted to make a use of queues. However, as it did not work in the previous
milestone, I decided that I will not waste time now, as it might not work again, and will try to make this
improvement at the end of the development process.

Meeting with stakeholders
Having completed half of the milestones, I decided to meet with my stakeholders to tell them about the
progress that has been made and ask for their opinion on the finished features. Firstly, they like how the
interfaces look: ‘very similar to the ones we agreed on in the Design section’. Secondly, they like the way the
charts are drawn and being updated. Also, they do not seem to dislike anything so far and are looking forward
to seeing the rest of the features. However, they pointed out that the charts are being updated too quickly and
it is difficult to keeep up with the pace. Therefore, I decided to increase the interval_constant from 1 second to
2 seconds. They seemed to like the idea. We agreed on having another meeting when I finish all the features.

Milestone №6 - highlighting and annotating candlestick patterns
In this milestone, I will implement highlighting and annotating candlestick patterns on the candlestick chart.

Code listing
candlestick-patterns.js

export function isBearishKicker(prev, curr) {

 return prev.open < prev.close &&

 64

 curr.open > curr.close &&

 prev.open > curr.open

}

export function isBullishKicker(prev, curr) {

 return prev.open > prev.close &&

 curr.open < curr.close &&

 prev.open < curr.open

}

export function isShootingStar(prev, curr) {

 return prev.open < prev.close &&

 curr.open > curr.close &&

 prev.close < curr.close &&

 curr.high - curr.close > 2 * (curr.open - curr.close) &&

 curr.open - curr.close > curr.close - curr.low

}

new-annotation.js

export function newAnnotation(startDate, text) {

 return {

 x: startDate,

 y: 1,

 xref: 'x',

 yref: 'paper',

 text: text,

 font: { color: 'black', size: 8 },

 showarrow: false,

 xanchor: 'left',

 ax: 0,

 ay: 0

 }

}

new-shape.js

export function newShape(startDate, endDate) {

 return {

 type: 'rect',

 xref: 'x',

 yref: 'paper',

 x0: startDate,

 y0: 0,

 x1: endDate,

 y1: 1,

 fillcolor: '#ffff00',

 opacity: 0.4,

 line: { width: 0 }

 }

}

pattern.js

import { isBearishKicker, isBullishKicker, isShootingStar } from './candlestick-patterns.js'

import { stock } from '../stock.js'

 65

export let pattern = {

 show: true,

 prev: {},

 curr: {},

 name: '',

 updatePrev: function() {

 this.prev = stock.data[stock.count - 1]

 },

 updateCurr: function() {

 this.curr = stock.data[stock.count]

 },

 updateName: function() {

 if (isBearishKicker(this.prev, this.curr)) {

 this.name = 'Bearish Kicker'

 } else if (isBullishKicker(this.prev, this.curr)) {

 this.name = 'Bullish Kicker'

 } else if (isShootingStar(this.prev, this.curr)) {

 this.name = 'Shooting Star'

 } else {

 this.name = ''

 }

 }

}

candlestick.js

import { pattern } from '../pattern-recognition/pattern.js'

import { newShape } from '../new-layout/new-shape.js'

import { newAnnotation } from '../new-layout/new-annotation.js'

export let candlestick = {

 ...

 updateShapes: function() {

 if (this.layout.shapes.length > 12) this.layout.shapes.shift()

 let new_shape = pattern.name ? newShape(pattern.prev.date, pattern.curr.date) : null

 this.layout.shapes.push(new_shape)

 },

 updateAnnotations: function() {

 if (this.layout.annotations.length > 12) this.layout.annotations.shift()

 let new_annotation = pattern.name ? newAnnotation(pattern.prev.date, pattern.name) : null

 this.layout.annotations.push(new_annotation)

 }

}

app.js

...

import { pattern } from './modules/pattern-recognition/pattern.js'

(async () => {

 ...

 let interval = setInterval(() => {

 ...

 // update candlestick chart

 candlestick.extend()

 66

 if (stock.count > 1) {

 pattern.updatePrev()

 pattern.updateCurr()

 pattern.updateName()

 if (pattern.show) {

 candlestick.updateShapes()

 candlestick.updateAnnotations()

 }

 }

 updatePlot(candlestick)

 ...

 }, interval_constant)

})()

Explanation of the code
Firstly, I created the functions isBearishKicker, isBullishKicker, isShootingStar in the candlestick-pattern.js file.
These functions are needed to check whether there is a pattern in the two given data points. Each function
returns true if it has found a pattern and false otherwise.

Secondly, I created the functions newAnnotation and newShape. These functions return objects that should be
inserted in the shapes or annotations arrays of the layout object to highlight and annotate candlestick patterns
on the chart.

Thirdly, I created the pattern object in the pattern.js file. As discussed in the Data Structures section, it has four
attributes. It also has three methods. The updatePrev and updateCurr methods simply update the prev and
curr attributes depending on the counter. The updateName method updates the name attribute depending on
which function from the candlestick-patterns.js returns true.

Then, in the candlestick.js file, I imported the above objects and created two new methods updateShapes and
updateAnnotations. These methods delete the old highlights and annotations from the graph and append new
ones depending on the information in the pattern object.

Finally, in the app.js file, I update attributes of the pattern object and if the attribute show is true, then the
program calls the updateShapes and updateAnnotations methods of the candlestick object to update the
highlights and annotations on the chart. However, before updating attributes in the pattern object, I check
that the counter is greater than 1, because otherwise the prev attribute will not find the information it needs,
as there is no element with an index of -1 in any array, and an error will be thrown.

If no pattern were found then null will be added to the shapes and annotations arrays. I decided to add null
when no patterns were found just to keep track when to delete the old candlestick patterns. If I did not delete
old candlestick patterns, the chart would look like this and the yellow rectangle with text will never disappear
from the chart:

 67

Testing
I ran the code, waited until the program has found any patterns, and got the following result:

In order to test the feature, I used Trading View. I selected a stock called ‘Apple’ and scrolled until I found the
same date I have, which is 5/8/2020. Then, I selected which patterns I am looking for and Trading View found
the same patterns as my program, which means there is a high chance that the feature works correctly. In
order to fully test the feature, I will need to ask my stakeholders to check if my program finds all candlestick
patterns that it is searching for.

Reflection
I decided to slightly deviate from the design and break this problem down even further. I created two separate
functions newShape and newAnnotation, because the code was becoming unreadable. Other than that, I
followed the algorithms and data structured from the Design section.

 68

Milestone №7 – highlighting and annotating intersections of moving averages
In this milestone, I will implement highlighting and annotating intersections of moving averages on the moving
average chart.

Code listing
get-slope.js

export function getSlope(y1, y2) {

 return (y2 - y1)

}

is-golden-cross.js

export function isGoldenCross(slope_short, slope_long) {

 return slope_short > slope_long

}

is-same-sign.js

export function isSameSign(a, b) {

 return Math.sign(a) == Math.sign(b)

}

do-intersect.js

import { isSameSign } from './is-same-sign.js'

import { stock } from '../stock.js'

export function doIntersect(prev, curr) {

 let x1 = stock.count - 1, y1 = prev.short.y

 let x2 = stock.count, y2 = curr.short.y

 let x3 = stock.count - 1, y3 = prev.long.y

 let x4 = stock.count, y4 = curr.long.y

 let a1, b1, c1, a2, b2, c2

 let r1, r2, r3, r4

 let denom

 a1 = y2 - y1

 b1 = x1 - x2

 c1 = x2 * y1 - x1 * y2

 r3 = a1 * x3 + b1 * y3 + c1

 r4 = a1 * x4 + b1 * y4 + c1

 if (r3 !== 0 && r4 !== 0 && isSameSign(r3, r4)) return false

 a2 = y4 - y3

 b2 = x3 - x4

 c2 = x4 * y3 - x3 * y4

 r1 = a2 * x1 + b2 * y1 + c2

 r2 = a2 * x2 + b2 * y2 + c2

 if (r1 !== 0 && r2 !== 0 && isSameSign(r1, r2)) return false

 denom = a1 * b2 - a2 * b1

 69

 if (denom === 0) return true

 return true

}

point.js

import { doIntersect } from './do-intersect.js'

import { moving_average } from '../charts/moving-average.js'

export let point = {

 prev: {

 short: {},

 long: {}

 },

 curr: {

 short: {},

 long: {}

 },

 intersect: false,

 updatePrev: function() {

 this.prev.short = {

 x: moving_average.data[0].x[moving_average.data[0].x.length - 2],

 y: moving_average.data[0].y[moving_average.data[0].y.length - 2]

 }

 this.prev.long = {

 x: moving_average.data[1].x[moving_average.data[1].x.length - 2],

 y: moving_average.data[1].y[moving_average.data[1].y.length - 2]

 }

 },

 updateCurr: function() {

 this.curr.short = {

 x: moving_average.data[0].x[moving_average.data[0].x.length - 1],

 y: moving_average.data[0].y[moving_average.data[0].y.length - 1]

 }

 this.curr.long = {

 x: moving_average.data[1].x[moving_average.data[1].x.length - 1],

 y: moving_average.data[1].y[moving_average.data[1].y.length - 1]

 }

 },

 updateIntersect: function() {

 this.intersect = doIntersect(this.prev, this.curr)

 }

}

moving-average.js

import { newShape } from '../new-layout/new-shape.js'

import { newAnnotation } from '../new-layout/new-annotation.js'

import { point } from '../intersection/point.js'

import { getSlope } from '../intersection/get-slope.js'

import { isGoldenCross } from '../intersection/is-golden-cross.js'

export let moving_average = {

 ...

 updateShapes: function() {

 70

 if (this.layout.shapes.length > 12) this.layout.shapes.shift()

 let new_shape = point.intersect ? newShape(point.prev.short.x, point.curr.short.x) : null

 this.layout.shapes.push(new_shape)

 },

 updateAnnotations: function() {

 if (this.layout.annotations.length > 12) this.layout.annotations.shift()

 let slope_short = getSlope(point.prev.short.y, point.curr.short.y)

 let slope_long = getSlope(point.prev.long.y, point.curr.long.y)

 let text = isGoldenCross(slope_short, slope_long) ? 'Buy' : 'Sell'

 let new_annotation = point.intersect ? newAnnotation(point.prev.short.x, text) : null

 this.layout.annotations.push(new_annotation)

 }

}

app.js

...

import { point } from './modules/intersection/point.js'

(async () => {

 ...

 let interval = setInterval(() => {

 ...

 // update moving average chart

 moving_average.extendShortMovingAverage()

 moving_average.extendLongMovingAverage()

 if (moving_average.data[1].x.length > 1) {

 point.updatePrev()

 point.updateCurr()

 point.updateIntersect()

 moving_average.updateShapes()

 moving_average.updateAnnotations()

 }

 updatePlot(moving_average)

 ...

 }, interval_constant)

})()

Explanation of the code
The getSlope function calculates the slope between two points. There is no need to consider x-coordinates, as
the difference of x-coordinates for short and long moving averages is the same.

The isGoldenCross function returns true if the slope of the short-term moving average is greater than the slope
of the long-term moving average and false otherwise.

The isSameSign function returns true if the signs of the parameters are the same and false otherwise.

 71

The doIntersect function takes in two parameters: prev and curr. They are previous and current data points of
the moving average chart. The function finds the equation between two points of the short and long-term
moving averages. Then, it checks whether two lines intersect considering their Cartesian equations. If the
program finds that two lines intersect, it returns true. Otherwise, it returns false.

In the point.js file, I created an object called point. It has three attributes:

• prev stores the previous data point of the moving average chart.

• curr stores the current data point of the moving average chart

• intersect holds true if the two lines intersect and false otherwise

It also has the following methods:

• updatePrev updates the data for the previous data point of the moving average chart.

• updateCurr updates the data for the current data point of the moving average chart.

• updateIntersect updates the intersect attribute by checking if two lines constructed from prev and
curr intersect.

In the moving-average.js file, I created new methods updateShapes and updateAnnotations. The updateshapes
method deletes old highlights from the moving average chart. Then, it adds a new object in the shapes array to
highlight the intersection. If there is no intersection, null is added to the array to keep. track of the number of
highlights on the chart. The updateAnnotations method deletes old annotations from the. moving average
chart. Then, it calculates the slopes of the short and long term moving averages and checks if the intersection
if a golden or death cross. If the intersection is a golden cross, the annotation will say Buy and if it is a death
cross, the annotation will say Sell. finally, the functions updates the contents of the annotations array to add
the annotation to the chart.

In the app.js file, the program checks if there are at least two data points on the moving average chart, as it is
impossible to draw a line with just one point. Then, I update the curr and prev attributes of the point object by
calling updatePrev and updateCurr methods. After that, I check if the lines intersect by calling a
updateIntersect method. Finally, I update the shapes and annotations arrays to highglight and annotate
intersections on the moving average chart.

Testing
As it can be seen on the moving average chart, the program has highglighted the region of intersection and
anntated the intersection as ‘Sell’, because the slope of the long-term average is greater than the slope of the
short-term average:

 72

Also, when there is an intersection and the slope of the short-term average is greater than the long-term
average, the program highlights the intersection and annotated it as ‘Buy’:

Reflection
In the doIntersect function I used a mathematical formula and could not come up with reasonable variables
names, so the code for that function might not be readable to other developers. Therefore, I am planning to
add a few comments explaining the formula.

 73

Milestone №8 – allow the user to trade the chosen stock
In this milestone, I will implement buying and selling the chosen stock by the user.

Code listing
message.js

export let message = {

 message: '',

 displayMessage: function() {

 document.getElementById('error-message').textContent = this.message

 },

 notEnoughFunds: function() {

 this.message = 'Not enough funds.'

 this.displayMessage()

 },

 notEnoughStocks: function() {

 this.message = 'Not enough stocks.'

 this.displayMessage()

 },

 incorrectInput: function() {

 this.message = 'Must be an integer greater than 0.'

 this.displayMessage()

 },

 removeErrorMessage: function() {

 this.message = ''

 this.displayMessage()

 }

}

trade.js

import { stock } from "./stock.js"

import { wallet } from './wallet.js'

import { message } from './message.js'

export let trade = {

 number_of_stocks: 0,

 total_price: 0,

 getNumberOfStocks: function() {

 this.number_of_stocks = Number(document.getElementById('number-of-stocks').value)

 },

 isValidNumber: function() {

 return (this.number_of_stocks > 0 && Number.isInteger(this.number_of_stocks))

 },

 getTotalPrice: function() {

 this.total_price = this.number_of_stocks * stock.price

 },

 buyStock: function() {

 this.getNumberOfStocks()

 if (!this.isValidNumber()) return message.incorrectInput()

 this.getTotalPrice()

 if (this.total_price < wallet.money_available) {

 74

 wallet.owned_stocks += this.number_of_stocks

 wallet.money_available -= this.total_price

 message.removeErrorMessage()

 }

 else {

 message.notEnoughFunds()

 }

 wallet.update()

 },

 sellStock: function() {

 this.getNumberOfStocks()

 if (!this.isValidNumber()) return message.incorrectInput()

 this.getTotalPrice()

 if (wallet.owned_stocks >= this.number_of_stocks) {

 wallet.owned_stocks -= this.number_of_stocks

 wallet.money_available += this.total_price

 message.removeErrorMessage()

 }

 else {

 message.notEnoughStocks()

 }

 wallet.update()

 }

}

app.js

...

import { trade } from './modules/trade.js'

(async () => {

 ...

 // event listeners

 document.getElementById('buy-btn').addEventListener('click', () => { trade.buyStock() })

 document.getElementById('sell-btn').addEventListener('click', () => { trade.sellStock() })

 let interval = setInterval(() => {

 ...

 // update profit

 wallet.getProfit()

 wallet.displayProfit()

 ...

 }, interval_constant)

})()

Explanation of the code
In the message.js file, I created several methods for displaying error messages to the screen. I created an
attribute called message which holds the text of the message. The displayMessage method selects an HTML
element and sets its textContent property to be the same as the value of the message attribute. Other
methods change the value of the message attribute and call the displayMessage method.

In the trade.js file, I created two attributes: number_of_stocks and total_price. The getNumberOfStocks
method gets the value from the input field and stores it in the number_of_stocks attribute. The isValidNumber

 75

method checks if the entered number is in valid format, returns true if this is the case and false otherwise. The
getTotalPrice method calculates the total price of the transaction and stores it in the total_price attribute.

The buyStock method gets the number of stocks as the input from the user. If the input is invalid the error
message ‘Must be an integer greater than 0’ is displayed. If the input is valid, the total price of the transaction
is calculated. If the total price is less than or equal to the money available, the transaction takes place:

• owned_stocks is increased by the number of stocks inputted by the user

• money_available is decreased by the total price of the transaction

• error message is removed
If the total price is more than the money available, the error message ‘Not enough funds’ is displayed. Finally,
the wallet is updated at the end of the method.

The sellStock method gets the number of stocks as the input from the user. If the input is invalid the error
message ’Must be an integer greater than 0’ is displayed. If the input is valid, the total price of the transaction
is calculated. If the number of stocks inputted by the user is less than or equal to the owned_stocks, the
transaction takes place:

• owned_stocks is increased by the number of stocks inputted by the user

• money_available is decreased by the total price of the transaction

• error message is removed
If the number of stocks inputted by the user is greater than the owned_stocks, the error message ‘Not enough
stocks’ is displayed. Finally, the wallet is updated at the end of the method.

In the app.js file, I added two event listeners to the buttons named ‘buy’ and ‘sell’. When the ‘buy’ button is
clicked, the buyStock method is called. If the ‘sell’ button is clicked, the sellStock method is called. Finally,
inside the interval, I added two lines of code to get the current profit and display it to the screen.

Testing
Firstly, I tried buying too many stocks. The program should output ‘Not enough funds’:

Secondly, I tried buying a fraction of a stock. The program should output ‘Must be an integer greater than 0’:

Thirdly, I tried inputting a valid number and buying the stock. The program should allow it and update the
wallet:

 76

Then, I tried selling too many stocks. The program should ouput ‘Not enough stocks’:

Finally, I tried inputting a valid number and selling the stock. The program should allow it and update the
wallet:

Reflection
I did not design how error messages will be shown in the Deisgn section, but I managed to implement the
feature. Also, I had to change the algorithms for buying and selling a stock to include validation check and
getting the input from the user.

Milestone №9 - allow the user to hide/show candlestick patterns
In this milestone, I will write code that will allow the user to hide and show candlestick patterns

Code listing
pattern.js

...

import { candlestick } from '../charts/candlestick.js'

 77

export let pattern = {

 ...

 toggleShow: function() {

 this.show = !this.show

 candlestick.layout.shapes = []

 candlestick.layout.annotations = []

 }

}

app.js

...

(async () => {

 ...

 document.getElementById('pattern-recognition-checkbox').addEventListener('click', () => {

pattern.toggleShow() })

 ...

}

Explanation of the code
Firstly, I created a new method for the pattern object called toggleShow. This method changes the attribute
called show to its opposite value as it is a boolean data type. Also, this method removes all objects from
shapes and annotations arrays of the candlestick object.

Secondly, in the app.js file, I add an event listener to an element with an id of pattern-recognition-checkbox so
that when this element is clicked, the method toggleShow is called.

Testing
The program has found a Bearish Kicker pattern on the 3rd – 4th of January and the checkbox is checked:

Then, I clicked on the checkbox so its not checked and there were no patterns on the 3rd – 4th of January:

 78

After some time I made sure that no further patterns are highlighted and annotated on the chart when the
checkbox is not checked. Then, I clicked on the checkbox again and the program continued finding, highlighting
and annotating candlestick patterns on the chart.

Reflection
As planned in the Design section, I made use of the attribute show, which has a boolean data type, to show
and hide candlestick patterns. The only thing I did not think of in the Design section was to delete the old
highlights and annotations from the shapes and annotations arrays.

Milestone №10 - allow the user to stop the simulation and view results
In this milestone, I will wrote code to allow the user to stop the simulation and view their results

Code listing
result.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Results</title>

 <link rel="preconnect" href="https://fonts.googleapis.com">

 <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>

 <link href="https://fonts.googleapis.com/css2?family=Roboto:wght@400;600&display=swap" rel="stylesheet">

 <link rel="stylesheet" href="./style.css">

 </head>

 <body>

 <h1>Results</h1>

 <h2>Overall profit:</h2>

 <h3 id="results-profit"></h3>

 <h2>Required profit:</h2>

 <h3 id="results-required-profit"></h3>

 79

 <h2>Level passed:</h2>

 <h3 id="results-level-passed"></h3>

 <button onclick="window.open('index.html')">Play again</button>

 </body>

 <script type="text/javascript">

 (function() {

 let queryString = window.location.search

 let urlParams = new URLSearchParams(queryString)

 let profit = urlParams.get('profit')

 let required_profit = urlParams.get('required_profit')

 let isPassed = urlParams.get('isPassed')

 document.getElementById('results-profit').textContent = profit

 document.getElementById('results-required-profit').textContent = required_profit

 document.getElementById('results-level-passed').textContent = isPassed

 })()

 </script>

</html>

result.js

import { wallet } from './wallet.js'

import { level } from './level.js'

export function stopSimulation() {

 let isPassed = wallet.profit >= level.required_profit

 window.open(`

 result.html?profit=${wallet.profit}&required_profit=${level.required_profit}&isPassed=${isPassed}

 `, '_self')

}

app.js

...

import { stopSimulation } from './modules/result.js'

(async () => {

 ...

 document.getElementById('stop-simulation-btn').addEventListener('click', () => { stopSimulation() })

 ...

Explanation of the code
Firstly, I created a new HTML page called result.html. In there, I created some empty elements where I will
insert the results of the simulation. Also, I inserted some JavaScript code there. The code just gets parameters
from the url of the browser and displays them to the screen, so that the user could see their results.

Secondly, in the result.js file, I created a function stopSimulation. I created a variable isPassed, which is true
when profit is greater than the required profit and false otherwise. Then, it opens the result.html page with
several parameters in the url, such as profit, required_profit, isPassed.

 80

Finally, in the app.js file, I added an event listener to the button ‘stop simulation’ which would trigger the
function stopSimulation when clicked.

Testing
After I played the simulation and have completed the level, I pressed the ‘stop simulation’ button and got the
following result:

Then I intentionally made zero profit and pressed the button again:

Also, when I press the ‘play again’ button, I am being redirected to the starting screen of the simulation.

Reflection
In the design section I thought that the program would display the results on the main screen of the
simulation. However, I decided that there is too much information on that screen already. Therefore, I decided
to create a different page for this purpose.

Milestone №11 – allow the user to change the type of moving average and its parameters
In this milestone, I will write code to allow the user to change the type of moving average and its parameters.

 81

Code listing
moving-average.js

...

import { updatePlot } from './plot.js'

export let moving_average = {

 ...

 changeSettings: function() {

 let short_term_input = Number(document.getElementById('short-term-input').value)

 let long_term_input = Number(document.getElementById('long-term-input').value)

 let type_input = document.getElementById('options').value

 if (short_term_input > 15 || short_term_input < 1 || !Number.isInteger(short_term_input)) {

 alert('Short-term input must be an integer between 1 and 14')

 return this.resetInputs()

 }

 else if (long_term_input > 30 || long_term_input < 15 || !Number.isInteger(long_term_input)) {

 alert('Long-term input must be an integer between 15 and 30')

 return this.resetInputs()

 }

 this.data[0].x = []

 this.data[0].y = []

 this.data[0].name = 'Short-term ' + this.type.toUpperCase()

 this.data[1].x = []

 this.data[1].y = []

 this.data[1].name = 'Long-term ' + this.type.toUpperCase()

 this.layout.shapes = []

 this.layout.annotations = []

 updatePlot(this)

 },

 resetInputs: function() {

 document.getElementById('short-term-input').value = this.day_short

 document.getElementById('long-term-input').value = this.day_long

 document.getElementById('options').value = this.type

 }

}

app.js

...

(async () => {

 ...

 document.getElementById('change-settings-btn').addEventListener('click', () => {

moving_average.changeSettings() })

 ...

})()

 82

Explanation of the code
In the moving-average.js file, I added two methods to the moving_average object. The resetInputs method
sets the value of input fields related to the moving average to their current values. This method is needed to
reset the inputs in case the user enters invalid data. The changeSettings method gets the values of the input
fields and checks them for validity. If at least one of the inputs is not valid, the inputs are reseted to what they
were and the user will see an error message. Then, the method deletes all the data points from the moving
average chart and renames the labels of lines if the user has changed the type of the moving average. After
that, the method deletes all highglights and annotations from the moving average chart and upates the chart.

In the app.js file, I added an event listeners to the ‘apply’ button, which would call the changeSettings method
and if all the inputs are valid, the changes will apply.

Testing
Firstly, I tried changing the type of the moving average from simple moving average to weighted moving
average. After I applied the changes I got the following graphs:

I checked that the values on the moving average chart are calculated with the weighted moving average
formula by manually calculating several points. However, the labels for the graphs did not change.

Secondly, I changed inputs to invalid data and got the following error messages:

 83

Therefore, data validation works correctly. Also, as I checked, inputs are being reseted to their previous valid
values.

Then, I tried inputting valid values and not changing the type of the moving average. Having manually
calculated several points, I came to conclusion that it worked correctly. The same procedure was repeated
with changing the type of the moving average and changing parameters to valid, but different values.
Therefore, everything except for changing the labels of the graphs when changing the type of the moving
average works correctly.

Reflection
I will need to review the code and find out why the labels for the graphs would not change when the user
changes the type of the moving average. The next step is to meet with the stakeholders and continue
improving and debugging the program.

Meeting with stakeholders
Having completed all the milestones, even though with a few bugs, I decided to meet my stakeholders once
again to verify that the simulation looks similar to what they expected. Firstly, they said that the rate of
updating the charts has improved, as I increased the interval_constant by 1 second. Secondly, they liked that
error messages are displayed whenever incorrect data is inputted. Finally, they said that it would be great if I
could fix the bug where changing the type of the moving average does not change the labels on the graphs.
Other than that, they agreed to test my program by checking that all success criteria requirements are met.

 84

Evaluation

Post-development testing

Link to the simulation
https://pedantic-thompson-a9ffed.netlify.app/index.html

Testing table

№ Test and input Expected output Result

1 Enter the url in the search bar of the
browser

The starting screen of the simulation can be
seen

Pass

2 Press the ‘start trading’ button The user is redirected to a different page where
they can see a selection of levels

Pass

3 Select a level The user is redirected to the main screen of the
simulation. They can see the charts being
updated, virtual wallet, level requirements,
boxes for entering parameters and changing
settings and all the elements of the interface

Pass

4 Candlestick patterns are highlighted and
annotated

The user can see highlighted and annotated
candlestick patterns

Pass

5 Moving average intersections are
highlighted and annotated

The user can see highglighted and annotated
intersections of moving averages

Pass

6 Try buying the stock with the following
cases:
1. valid number of stocks and the user

has enough funds
2. valid number of stocks and the user

does not have enough funds
3. invalid number of stocks and the

user has enough funds
4. invalid number of stocks and the

user does not have enough funds

1. money available decreases by the total
price and owned stocks increases by the
number of stocks

2. error message ‘not enough funds’
3. error message ‘must be an integer greater

than zero’
4. error message ‘must be an integer greater

than zero’, if resolved then ‘not enough
funds’

Pass

7 Try selling the stock with the following
cases:
1. valid number of stocks and the user

has enough stocks
2. valid number of stocks and the user

does not have enough stocks
3. invalid number of stocks and the

user has enough stocks
4. invalid number of stocks and the

user does not have enough stocks

1. money available is increased by the total
price and owned stocks is decreased by the
number of stocks

2. error message ‘not enough stocks’
3. error message ‘must be an integer greater

than zero’
4. error message ‘must be an integer greater

than zero’, if resolved then ‘not enough
stocks’

Pass

8 Try changing moving average
parameters with the following cases:
1. Only type
2. Only short-term average
3. Only long-term average
4. Both averages
5. Type and both averages

In all cases, the data from the moving average
chart must be deleted.
1. Values are calculated using a formula for

the chosen type of the moving average
2. Short-term average values will be

calculated using more or less data points
depending on the input

3. Long-term average will be calculated using
more or less data points depending on the
input

Pass

https://pedantic-thompson-a9ffed.netlify.app/index.html

 85

4. Both averages will be calculated using
more or less data points depending on the
inputs

5. Both averages will be calculated using a
formula for the chosen type of the moving
avreage and both will be calculated using
more or less data points depending on the
inputs

9 Check the pattern recognition checkbox The user can see highlighted and annotated
candlestick patterns

Pass

10 Uncheck the pattern recognition
checkbox

The user no longer can see highlighted and
annotated candlestick patterns

Pass

11 Profit is calculated correctly 1. Take the current price of the stock
2. Multiply it by the number of stocks owned
3. Add money available
4. Subtract initial capital
5. Round to the whole number
6. Check is the value the program calculates is

the same

Pass

12 Press the ‘stop simulation’ button The user is redirected to a different page and
they can see their results calculated correctly. If
their profit is less than the required profit, the
level is not passed. If their profit is greater than
the required profit, the level is passed.

Pass

Evidence for post-development testing

Test №1
When the user enters the link to the simulation into the browser search bar and presses enter, they are
redirected to the following page, which is the starting page of the simulation:

 86

Test №2
When the user presses the ‘start trading’ button, they are redirected to the following page, which is the page
for choosing a level:

Test №3
When the user selects a level from the selection of levels, they are shown different information such as initial
parameters and different data in the charts depending on the level they have chosen:

 87

Test №4
As it can be seen from the following screenshots, the program identifies candlestick patterns and annotates
them correctly using a set of predefined formulas, which represent the general shapes of those candlestick
patterns:

 88

Test №5
As it can be seen from the following screenshots, the program identifies intersections of moving averages and
correctly annotated them as ‘buy’ when the slope of the short-term moving average is greater than the slope
of the long-term moving average and ‘sell’ when the slope of the long-term moving average is greater than the
slope of the short-term moving average:

 89

Test №6
When the user enters a valid number of stocks and has enough funds to buy them, the program allows it and
updates the money available and stocks owned:

When the user enters a valid number of stocks, but does not have enough funds to buy them, the transaction
is declined and the following error message is shown:

 90

When the user enters an invalid number of stocks and has enough funds to buy them, the transaction is
declined and the following error message is shown:

When the user enters an invalid number of stocks and does not have enough funds to buy them, the
transaction is declined and the following error message is shown:

Test №7
In all of the tests below the user starts with 10 stocks and the number in the box represents the number of
stocks the user wants to sell.

 91

When the user enters a valid number of stocks and has enough stocks to sell them, the program allows it and
updates the money available and stocks owned:

When the user enters a valid number of stocks, but does not have enough stocks to sell them, the transaction
is declined and the following error message is shown:

When the user enters an invalid number of stocks and has enough stocks to sell them, the transaction is
declined and the following error message is shown:

When the user enters an invalid number of stocks and does not have enough stocks to sell them, the
transaction is declined and the following error message is shown:

 92

Test №8
The default values for the moving average parameters, which I change during the tests:
type: ‘sma’
short-term-input: 5
long-term-input: 15

Changing the type of the moving average
In the following screenshot, a simple moving average is selected. The last five closing prices were: 97.272499,
97, 98.357498, 96.327499, 96.522499. According to the simple moving average formula, the 5-day average
should be 97.095999. The value shown on the graph is 97.096, which is the same value rounded to three
decimal places by the chart-plotting library.

In the following screenshot, a weighted moving average is selected. The last five closing prices were:
91.209999, 90.014999, 91.6325, 89.717499, 87.43. According to the weighted moving average formula, the 5-
day average should be 90.5248326. The value shown on the graph is 90.52483, which is the same value
rounded to five decimal places by the chart-plotting library.

 93

Also, the values of parameters that can be changed in the settings are shown in the console. When the type of
the moving average is changed to weighted, the type variable changes its value to ‘wma’, which stands for
weighted moving average. This test concludes that changing the type of the moving average works correctly
and values are being calculated using a correct formula. However, I still have not fixed the bug that prevents
labels from changing to ‘Short-term WMA’ and ‘Long-term WMA’.

Changing the short-term average
In this test, I changed the short-term-input to 7. According to the 7-day simple moving average formula, the
value should be 89.405. The value shown on the graph is 89.405, which is the same value. This test concludes
that changing the short-term average with all other parameters unchanged works correctly.

 94

Changing the long-term average
In this test, I changed the long-term-input to 17. According to the 17-day simple moving average formula, the
value should be 87.99426365. The value shown on the graph is 87.99426, which is the same value rounded to
five decimal places by the chart-plotting library. This test concludes that changing the long-term average with
all other parameters unchanged works correctly.

Changing both averages at the same time
In this test, I changed the short-term-input to 6. According to the 6-day simple moving average formula, the
value should be 89.65625. The value shown on the graph is 89.65625, which is the same value.

Also, I changed the long-term-input to 16. According to the 16-day simple moving average formula, the value
should be 86.83156163. The value shown on the graph is 86.83156, which is the same value rounded to five
decimal places by the chart-plotting library.

This test concludes that changing the short-term and long-term averages at the same time with all other
parameters unchanged works correctly.

 95

Changing both averages and the type at the same time
In this test, I changed the short-term-input to 8. According to the 8-day weighted moving average formula, the
value should be 90.53319. The value shown on the graph is 90.53319, which is the same value.

Also, I changed the long-term-input to 18. According to the 18-day weighted moving average formula, the
value should be 89.32534. The value shown on the graph is 89.32534, which is the same value.

Also, I changed the type of the moving average to ‘wma’, which is shown in the console.

This test concludes that changing all the parameters at the same time works correctly.

 96

All of the above tests conclude that by changing the type of the moving average, the program uses a correct
formula for calculating values. Also, by changing short-term and long-term inputs, the program takes it into
account and uses more data points to calculate a correct value, as it should be. Finally, changing all parameters
of the moving average at the same time works as intended as well.

Test №9 and test №10
In order to test this feature, I will firstly keep the checkbox checked to find a candlestick pattern and take a
screenshot of it. Then, I will reload the simulation, uncheck the checkbox and take a screenshot of the same
place where the candlestick pattern used to be. In order for the simulation to pass this test, the candlestick
from the first screenshot should not be visible in the second screenshot.

First screenshot:

Second screenshot:

 97

As it can be seen from the screenshots above, the Bearish Kicker candlestick pattern that was found between
the 3rd and 4th of January, disappeared when I unchecked the pattern recognition checkbox.

Test №11
Formula for calculating profit is the following:
profit = money available + number of stocks owned * current price of the stock – initial capital

Formula for calculating money available:
money available = money available – number of stocks * current price of the stock

The initial capital is $1000 and I had $1000 at the start of the test.

In order to test this feature, I bought 10 stocks at $80.835.

Money available became:
1000 – 10 * 80.835 = 191.65 (192 rounded to the whole number)

Stocks owned became 10.

Some time later, the stock price became 85.7475.

The current profit, according to the formula, should be:
191.65 + 10 * 85.7475 – 1000 = 49.125 (49 rounded to the whole number)

As shown in the following picture, the profit is calculated correctly by the program and is equal to $49 rounded
to the whole number:

 98

Test №12
When the user made a profit that is more than the required profit and presses the ‘stop simulation’ button,
they are redirected to the following screen and all required data from the simulation is passed to this page
through the url as parameters:

However, if the user did not manage to make enough profit to pass the level, they will see the following
screen. Again, all the data from the simulation is passed to this page through the url as parameters:

 99

Success criteria evaluation
№ Requirement Success Evaluation

1 The starting screen is shown
when the user enters the
address of the website into a
browser

Fully
met

When the user enters the address of the website into a
browser, they can see the starting screen of the
simulation.

2 A screen with a selection of
levels is shown after the user
presses a button on the starting
screen

Fully
met

When the user presses the ‘start trading’ button on the
starting screen of the simulation, they are redirected to
another page with a selection of levels.

3 The program retrieves data for
the chosen stock from a server

Fully
met

When the user chooses a level, the stock data for that
level is imported from the corresponding JSON file and
is stored in the stock object.

4 A screen with virtual wallet and
level requirements is shown

Fully
met

When the user chooses a level, they are redirected to
the main screen of the simulation and they can see
various information about their virtual wallet and level
requirements.

5 Display a candlestick chart for
the chosen stock

Fully
met

On the main screen of the simulation, the user can see
the candlestick chart being constantly updated with an
interval of 2 seconds.

6 Allow the user to interact with
the candlestick chart by
hovering over with their mouse

Fully
met

I managed to find a graph-plotting library with such
functionality and when the user hovers over a candle
with their mouse, they can see the full information
about that candle.

7 Display a moving average chart
for the chosen stock

Fully
met

On the main screen of the simulation, the user can see
the moving average chart with two line graphs of
moving averages, which is constantly updated every 2
seconds.

8 Highlight and annotate
crossovers between moving
averages

Fully
met

The program is constantly looking for intersections of
two moving averages and when it finds an intersection,
it highlights and annotates its name on the moving
average chart.

9 Highlight and annotate
candlestick patterns on the
candlestick chart

Fully
met

The program is constantly looking for candlestick
patterns in the data and when a pattern is found, it
highlights and annotates its name on the candlestick
chart.

 100

10 Ability to change parameters
and moving average type during
the simulation

Partially
met

The user can change the parameters of the moving
average during the simulation and the graph is updated
when the user presses the button ‘apply’. However, the
labels for the graphs would not change when the user
changes the type of the moving average.

11 Ability to buy and sell the
chosen stock

Fully
met

The user can enter the number of stocks they want to
buy or sell. The number entered is validated and if the
user has a sufficient amount of money or stocks, the
transaction takes place. Otherwise, they see an error
message saying what the problem is.

12 Ability to stop simulation at any
time

Fully
met

There is a button ‘stop simulation’ on the main screen
of the simulation and the user can press it any time
during the simulation. When they press the button,
they are redirected to a different page, where they can
view their results.

13 View results at the end of the
simulation

Fully
met

When the user presses the ‘stop simulation’ button,
they can view their results and the program will tell the
user if they have succcessfully completed the chosen
level.

Usability features
One example of a usability feature in my simulation is the use of h1-h6 HTML paragraphs. It is easy for a user
to find information on the screen because of the use of headings. For example, when they want to find how
much money is available, they can instantaneously see ‘Wallet’ heading and then look for the required
information in that section.

Another example of a usability feature is that charts are big enough for the user to see all the information they
need and the charts are labeled at the top. It makes it clear which chart the user is using and they are less
likely to miss a feature of a graph, as the charts are big enough to spot every single detail.

Also, all the input boxes have a label on the top and some of them have a placeholder, which is text inside the
text box which disappears as soon as you start typing in it. In my opinion, it is a good usability feature, as it is
very clear what information the user has to type in the input box. Furthermore, if they typed anything invalid,
they get an error message that explains what is wrong with their input.

In addition, highglighting candlestick patterns and intersections of moving averages will not allow the user to
miss a pattern or an intersection due to the contrast of the colours. I intentionally chose yellow colour, as this
colour is very easy to spot on white background.

Finally, responsive design is one of the features that could improve the usability of my simulation. It would
allow the users to use my simulation on mobile devices. Undoubtedly, responsive design would be a huge
improvement of my simulation as more users would be able to use it, but it would take way too much time
planning the new design and writing CSS code. Therefore, I decided not to add a respoonsive design and
consider it a limitation of my program.

Limitations and improvements
Firstly, keeping the old data points of the candlestick and moving average charts would be a great
improvement of my simulation, as users would be able to scroll the graphs horizontally. That would allow
them to view the whole picture of the graphs, find even more patterns that my simulation is not capable of
finding and earn even more profit. Therefore, the ability to view old parts of the charts is a limitation of my
simulation, which could be added if I had more time.

 101

Secondly, I planned on replacing built-in JavaScript arrays for highlights and annotations with abstract data
structures, such as queues. Queues would have solved the problem more efficiently and I would have written
less code. Even though I studied how to implement queues in JavaScript and wrote the code for it in one of the
milestones, it did not work. Since then, I thought that I would have another go after I complete the whole
program. However, I did not have enough time for that, as I had to complete the Evaluation section of the
coursework. Nevertheless, the simulation works correctly with the use of built-in arrays, but the
implementation of queues would have been an improvement of efficiency of the program.

Also, throughout the coursework, I did not think what would happen if the program runs out of stock data.
Therefore, as an improvement, I decided to add some code to stop the program when this happens. I added
the following code in the app.js file:

(async () => {

 ...

 let interval = setInterval(() => {

 ...

 if (stock.count === stock.data.length - 1) clearInterval(interval)

 ...

 }, interval_constant)

}

As the result of the above code, when the program runs out of stock data, the code inside the interval will stop
running, so there will be no more updates to the charts, current profit and the counter. The event listeners and
all buttons will still work, so the user will be able to stop the simulation by pressing the ‘stop simulation’
button.

In addition, I was not able to solve the problem with renaming labels for the graphs in the Development
section. It turned out to have a simple solution which I did not notice. When the user changed the type of the
moving average, I set the labels for the graphs to their previous values instead of the new values inputted by
the user. I changed the following lines of code to solve this problem:

export let moving_average = {

 ...

 changeSettings: function() {

 ...

 this.data[0].name = 'Short-term ' + type_input.toUpperCase()

 ...

 this.data[1].name = 'Long-term ' + type_input.toUpperCase()

 ...

 }

}

I tested the improvement by changing the type of the moving average to weighted moving average. As the
result, the labels for the graphs changed to WMA as well:

 102

Finally, my program is not capable of finding every single possible candlestick pattern that exists in the data.
Writing all the functions for finding various candlestick patterns would take way too much time and effort. I
decided that my simulation would look for three main candlestick patterns that consist of two candles, as the
simulation is aimed at beginners and they do not need to know all possible candlestick patterns. Therefore, the
number of candlestick patterns detected by the program is another limitation of my program, which could
have been a great improvement if I had more time for the Development stage.

Maintenance
After the user has completed the three levels, they might want to practise more. In order to add a new level to
the simulation, all I will need to do is download stock data from Yahoo Finance, convert it to JSON format and
add it to the ./json directory. After that, I will need to add properties of the new level, such as id, name, initial
capital, required profit, difficulty to the levels array. After that the new level should be available to the users.
Easy addition of new levels was one of the key factors I kept in mind while developing the program.

Other than adding new levels, users may want the program to detect more candlestick patterns. They can do it
by writing a function for detecting a pattern in the ./modules/pattern-recognition/candlestick-patterns.js file.
Then, they would need to slightly modify an if statement by adding one extra condition in the updateName
method in the ./modules/pattern-recognition/pattern.js file. After that, the added function should be used by
the program to detect even more patterns. The only limitation is that patterns must consist of two candles.

 103

Code listings

index.html

<!DOCTYPE html>

<html>

 <head>

 <title>Trading simulation</title>

 <link rel="preconnect" href="https://fonts.googleapis.com">

 <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>

 <link href="https://fonts.googleapis.com/css2?family=Roboto:wght@400;600&display=swap" rel="stylesheet">

 <link rel="stylesheet" href="./style.css">

 </head>

 <body>

 <div id="index">

 <h1>Trading simulation</h1>

 <button id="start-trading-btn">start trading</button>

 </div>

 </body>

 <script>

 document.getElementById('start-trading-btn').addEventListener('click', () => { window.open('choose-

level.html', '_self') })

 </script>

</html>

choose-level.html

<!DOCTYPE html>

<html>

 <head>

 <title>Choose level</title>

 <link rel="preconnect" href="https://fonts.googleapis.com">

 <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>

 <link href="https://fonts.googleapis.com/css2?family=Roboto:wght@400;600&display=swap" rel="stylesheet">

 <link rel="stylesheet" href="./style.css">

 </head>

 <body>

 <div id="choose-level">

 <h1>Choose a level</h1>

 <div id="levels"></div>

 </div>

 </body>

 <script type="module">

 import { levels } from './modules/level.js'

 (function() {

 let levels_html = ``

 104

 for (let i = 0; i < levels.length; i++) {

 let name = levels[i].name

 let id = levels[i].id

 let initial_capital = levels[i].initial_capital

 let required_profit = levels[i].required_profit

 let difficulty = levels[i].difficulty

 let level_html = `

 <h2>${name} (${id})</h2>

 <h3>Initial capital: $${initial_capital}</h3>

 <h3>Required profit: $${required_profit}</h3>

 <h3>Difficulty: ${difficulty}</h3>

 `

 levels_html = levels_html + level_html

 }

 document.getElementById('levels').innerHTML = levels_html

 })()

 let links = document.getElementsByTagName('a')

 for (let i = 0; i < links.length; i++) {

 links[i].addEventListener('click', () => { window.open(`trade-stock.html?stock_id=${links[i].id}`,

'_self') })

 }

 </script>

</html>

trade-stock.html

<!DOCTYPE html>

<html>

 <head>

 <title>Trade stock</title>

 <link rel="preconnect" href="https://fonts.googleapis.com">

 <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>

 <link href="https://fonts.googleapis.com/css2?family=Roboto:wght@400;600&display=swap" rel="stylesheet">

 <link rel="stylesheet" href="./style.css">

 </head>

 <body>

 <div id="trade-stock">

 <div id="charts">

 <div id="candlestick-chart"></div>

 <div id="moving-average-chart"></div>

 </div>

 <div id="information">

 <h1 id="stock-id"></h1>

 105

 <div>

 <h2>Wallet</h2>

 <h3 id="money-available"></h3>

 <h3 id="owned-stocks"></h3>

 </div>

 <div>

 <h2>Level</h2>

 <h3 id="required-profit"></h3>

 <h3 id="profit"></h3>

 </div>

 <div>

 <h2>Buy / Sell</h2>

 <div class="input-container">

 <label for="number-of-stocks">Number of stocks</label>

 <input type="number" id="number-of-stocks" required>

 </div>

 <button id="buy-btn">BUY</button>

 <button id="sell-btn">SELL</button>

 <p id="error-message"></p>

 </div>

 <div>

 <h2>Settings</h2>

 <div class="input-container">

 <label for="short-term-input">Short-term input</label>

 <input type="number" id="short-term-input" value="5">

 </div>

 <div class="input-container">

 <label for="long-term-input">Long-term input</label>

 <input type="number" id="long-term-input" value="15">

 </div>

 <select id="options">

 <option value="sma">Simple Moving Average</option>

 <option value="wma">Weighted Moving Average</option>

 </select>

 <button id="change-settings-btn">APPLY</button>

 </div>

 <div>

 <h2>Pattern Recognition</h2>

 <div class="checkbox-container">

 <input type="checkbox" id="pattern-recognition-checkbox" checked>

 <label for="pattern-recognition-checkbox">show</label>

 </div>

 </div>

 <div>

 <button id="stop-simulation-btn">Stop simulation</button>

 </div>

 </div>

 </div>

 </body>

 106

 <script src='https://cdn.plot.ly/plotly-latest.min.js'></script>

 <script src="app.js" type="module"></script>

</html>

result.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>Results</title>

 <link rel="preconnect" href="https://fonts.googleapis.com">

 <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>

 <link href="https://fonts.googleapis.com/css2?family=Roboto:wght@400;600&display=swap" rel="stylesheet">

 <link rel="stylesheet" href="./style.css">

 </head>

 <body>

 <h1>Results</h1>

 <h2>Overall profit:</h2>

 <h3 id="results-profit"></h3>

 <h2>Required profit:</h2>

 <h3 id="results-required-profit"></h3>

 <h2>Level passed:</h2>

 <h3 id="results-level-passed"></h3>

 <button onclick="window.open('index.html')">Play again</button>

 </body>

 <script type="text/javascript">

 (function() {

 let queryString = window.location.search

 let urlParams = new URLSearchParams(queryString)

 let profit = urlParams.get('profit')

 let required_profit = urlParams.get('required_profit')

 let isPassed = urlParams.get('isPassed')

 document.getElementById('results-profit').textContent = profit

 document.getElementById('results-required-profit').textContent = required_profit

 document.getElementById('results-level-passed').textContent = isPassed

 })()

 </script>

</html>

 107

style.css

* {

 margin: 0;

 padding: 0;

}

h1 {

 font-family: 'Roboto';

 font-weight: 600;

 font-size: 48px;

 line-height: 52px;

 color: #000;

}

h2 {

 font-family: 'Roboto';

 font-weight: 400;

 font-size: 24px;

 line-height: 28px;

 color: #000;

}

h3 {

 font-family: 'Roboto';

 font-weight: 400;

 font-size: 16px;

 line-height: 20px;

 color: #000;

}

button {

 margin-top: 7px;

 padding: 5px 10px;

 border: 1px solid #000;

 border-radius: 5px;

 font-family: 'Roboto';

 font-size: 14px;

 font-weight: 400;

 color: #000;

}

button:hover {

 cursor: pointer;

}

/* INDEX */

#index {

 position: absolute;

 top: 50%;

 left: 50%;

 transform: translate(-50%, -50%);

 display: flex;

 flex-direction: column;

 108

 align-items: center;

}

#index button {

 margin-top: 25px;

 padding: 10px 15px;

 font-size: 20px;

 background-color: rgb(80, 202, 80);

}

/* CHOOSE-LEVEL */

#choose-level {

 position: absolute;

 top: 50%;

 left: 50%;

 transform: translate(-50%, -50%);

 display: flex;

 flex-direction: column;

 align-items: center;

}

#levels {

 display: flex;

}

.level {

 margin: 10px;

 padding: 15px;

 border: 1px solid #000;

 border-radius: 10px;

 text-decoration: none;

 color: #000;

}

.level h2 {

 margin-bottom: 15px;

}

.level:hover {

 cursor: pointer;

}

.easy {

 background-color: rgb(80, 202, 80);

}

.medium {

 background-color: orange;

}

/* TRADE-STOCK */

#stock-id {

 margin-bottom: 10px;

 109

 text-align: center;

}

#trade-stock {

 display: flex;

}

#charts {

 width: calc(100% - 350px);

 max-width: 1000px;

}

#information {

 padding: 5px 20px;

 position: fixed;

 top: 0;

 right: 0;

 width: 300px;

 height: 100vh;

 background-color: rgb(239, 239, 239);

}

#information > div {

 margin-bottom: 15px;

}

input {

 width: 100%;

}

.checkbox-container {

 display: flex;

 justify-content: flex-start;

 align-items: center;

}

#pattern-recognition-checkbox {

 margin-right: 5px;

 width: fit-content;

}

app.js

import { stock } from './modules/stock.js'

import { level } from './modules/level.js'

import { wallet } from './modules/wallet.js'

import { candlestick } from './modules/charts/candlestick.js'

import { moving_average } from './modules/charts/moving-average.js'

import { drawNewPlot, updatePlot } from './modules/charts/plot.js'

import { pattern } from './modules/pattern-recognition/pattern.js'

import { point } from './modules/intersection/point.js'

import { trade } from './modules/trade.js'

import { stopSimulation } from './modules/result.js'

 110

(async () => {

 let interval_constant = 2000

 // stock.js

 stock.getId()

 stock.displayId()

 stock.getUrl()

 stock.getData()

 .then(() => { stock.getPrice() })

 // level.js

 level.getInitialCapital()

 level.getRequiredProfit()

 level.displayRequiredProfit()

 // wallet.js

 wallet.setMoneyAvailable()

 wallet.update()

 // charts

 drawNewPlot(candlestick)

 drawNewPlot(moving_average)

 // event listeners

 document.getElementById('buy-btn').addEventListener('click', () => { trade.buyStock() })

 document.getElementById('sell-btn').addEventListener('click', () => { trade.sellStock() })

 document.getElementById('change-settings-btn').addEventListener('click', () => {

moving_average.changeSettings() })

 document.getElementById('pattern-recognition-checkbox').addEventListener('click', () => {

pattern.toggleShow() })

 document.getElementById('stop-simulation-btn').addEventListener('click', () => { stopSimulation() })

 let interval = setInterval(() => {

 // clear interval

 if (stock.count === stock.data.length - 1) clearInterval(interval)

 // update stock price

 stock.getPrice()

 // update candlestick chart

 candlestick.extend()

 if (stock.count > 1) {

 pattern.updatePrev()

 pattern.updateCurr()

 pattern.updateName()

 if (pattern.show) {

 candlestick.updateShapes()

 candlestick.updateAnnotations()

 }

 }

 111

 updatePlot(candlestick)

 // update moving average chart

 moving_average.extendShortMovingAverage()

 moving_average.extendLongMovingAverage()

 if (moving_average.data[1].x.length > 1) {

 point.updatePrev()

 point.updateCurr()

 point.updateIntersect()

 moving_average.updateShapes()

 moving_average.updateAnnotations()

 }

 updatePlot(moving_average)

 // update profit

 wallet.getProfit()

 wallet.displayProfit()

 // update stock count

 stock.incrementCount()

 }, interval_constant)

})()

modules/stock.js

export let stock = {

 id: '',

 url: '',

 data: [],

 price: 0,

 count: 0,

 getId: function() {

 let queryString = window.location.search

 let urlParams = new URLSearchParams(queryString)

 this.id = urlParams.get('stock_id')

 },

 displayId: function() {

 document.getElementById('stock-id').textContent = this.id

 },

 getUrl: function() {

 this.url = './json/' + this.id + '.json'

 },

 getData: async function() {

 let response = await fetch(stock.url)

 this.data = await response.json()

 },

 getPrice: function() {

 this.price = this.data[this.count].close

 },

 incrementCount: function() {

 112

 this.count = this.count + 1

 }

}

modules/wallet.js

import { stock } from "./stock.js"

import { level } from "./level.js"

export let wallet = {

 money_available: 0,

 owned_stocks: 0,

 profit: 0,

 setMoneyAvailable: function() {

 this.money_available = level.initial_capital

 },

 displayMoneyAvailable: function() {

 document.getElementById('money-available').textContent = 'Money available: ' +

Math.round(this.money_available)

 },

 displayOwnedStocks: function() {

 document.getElementById('owned-stocks').textContent = 'Stocks owned: ' + this.owned_stocks

 },

 getProfit: function() {

 this.profit = Math.round(this.money_available + this.owned_stocks * stock.price - level.initial_capital)

 },

 displayProfit: function() {

 document.getElementById('profit').textContent = 'Profit: ' + this.profit

 },

 update: function() {

 this.displayMoneyAvailable()

 this.displayOwnedStocks()

 this.getProfit()

 this.displayProfit()

 }

}

modules/level.js

import { stock } from './stock.js'

export const levels = [

 {

 name: 'Apple',

 id: 'APPL',

 initial_capital: 1000,

 required_profit: 100,

 difficulty: 'easy'

 },

 {

 name: 'Tesla',

 id: 'TSLA',

 initial_capital: 1000,

 113

 required_profit: 200,

 difficulty: 'easy'

 },

 {

 name: 'Nike',

 id: 'NKE',

 initial_capital: 10000,

 required_profit: 5000,

 difficulty: 'medium'

 }

]

export let level = {

 initial_capital: 0,

 required_profit: 0,

 getInitialCapital: function() {

 for (let i = 0; i < levels.length; i++) {

 if (stock.id === levels[i].id) {

 this.initial_capital = levels[i].initial_capital

 }

 }

 },

 getRequiredProfit: function() {

 for (let i = 0; i < levels.length; i++) {

 if (stock.id === levels[i].id) {

 this.required_profit = levels[i].required_profit

 }

 }

 },

 displayRequiredProfit: function() {

 document.getElementById('required-profit').textContent = 'Required profit: ' + this.required_profit

 }

}

modules/message.js

export let message = {

 message: '',

 displayMessage: function() {

 document.getElementById('error-message').textContent = this.message

 },

 notEnoughFunds: function() {

 this.message = 'Not enough funds.'

 this.displayMessage()

 },

 notEnoughStocks: function() {

 this.message = 'Not enough stocks.'

 this.displayMessage()

 },

 incorrectInput: function() {

 this.message = 'Must be an integer greater than 0.'

 this.displayMessage()

 },

 removeErrorMessage: function() {

 114

 this.message = ''

 this.displayMessage()

 }

}

modules/trade.js

import { stock } from "./stock.js"

import { wallet } from './wallet.js'

import { message } from './message.js'

export let trade = {

 number_of_stocks: 0,

 total_price: 0,

 getNumberOfStocks: function() {

 this.number_of_stocks = Number(document.getElementById('number-of-stocks').value)

 },

 isValidNumber: function() {

 return (this.number_of_stocks > 0 && Number.isInteger(this.number_of_stocks))

 },

 getTotalPrice: function() {

 this.total_price = this.number_of_stocks * stock.price

 },

 buyStock: function() {

 this.getNumberOfStocks()

 if (!this.isValidNumber()) return message.incorrectInput()

 this.getTotalPrice()

 if (this.total_price < wallet.money_available) {

 wallet.owned_stocks += this.number_of_stocks

 wallet.money_available -= this.total_price

 message.removeErrorMessage()

 }

 else {

 message.notEnoughFunds()

 }

 wallet.update()

 },

 sellStock: function() {

 this.getNumberOfStocks()

 if (!this.isValidNumber()) return message.incorrectInput()

 this.getTotalPrice()

 if (wallet.owned_stocks >= this.number_of_stocks) {

 wallet.owned_stocks -= this.number_of_stocks

 wallet.money_available += this.total_price

 message.removeErrorMessage()

 }

 else {

 message.notEnoughStocks()

 }

 wallet.update()

 }

}

 115

modules/result.js

import { wallet } from './wallet.js'

import { level } from './level.js'

export function stopSimulation() {

 let isPassed = wallet.profit >= level.required_profit

window.open(`result.html?profit=${wallet.profit}&required_profit=${level.required_profit}&isPassed=${isPassed

}`, '_self')

}

modules/charts/average.js

import { stock } from '../stock.js'

export function getSimpleMovingAverage(day) {

 let sum = 0

 let average = 0

 for (let i = stock.count - day + 1; i <= stock.count; i++) {

 sum = sum + stock.data[i].close

 }

 average = sum / day

 return average

}

export function getWeightedMovingAverage(day) {

 let sum = 0

 let average = 0

 let weight = 0

 let total_weight = 0

 for (let i = stock.count - day + 1; i <= stock.count; i++) {

 weight++

 sum = sum + weight * stock.data[i].close

 total_weight = total_weight + weight

 }

 average = sum / total_weight

 return average

}

modules/charts/candlestick.js

import { stock } from "../stock.js"

import { pattern } from '../pattern-recognition/pattern.js'

import { newShape } from '../new-layout/new-shape.js'

import { newAnnotation } from '../new-layout/new-annotation.js'

 116

export let candlestick = {

 container: 'candlestick-chart',

 data: [{

 x: [],

 open: [],

 high: [],

 low: [],

 close: [],

 type: 'candlestick'

 }],

 layout: {

 dragmode: 'zoom',

 title: 'Candlestick Chart',

 shapes: [],

 annotations: [],

 xaxis: {

 autorange: true,

 type: 'date',

 rangeslider: { visible: false }

 },

 yaxis: {

 autorange: true,

 type: 'linear',

 title: 'Price($)'

 }

 },

 extend: function() {

 if (this.data[0].x.length >= 14) {

 this.data[0].x.shift()

 this.data[0].open.shift()

 this.data[0].high.shift()

 this.data[0].low.shift()

 this.data[0].close.shift()

 }

 this.data[0].x.push(stock.data[stock.count].date)

 this.data[0].open.push(stock.data[stock.count].open)

 this.data[0].high.push(stock.data[stock.count].high)

 this.data[0].low.push(stock.data[stock.count].low)

 this.data[0].close.push(stock.data[stock.count].close)

 },

 updateShapes: function() {

 if (this.layout.shapes.length > 12) this.layout.shapes.shift()

 let new_shape = pattern.name ? newShape(pattern.prev.date, pattern.curr.date) : null

 this.layout.shapes.push(new_shape)

 },

 updateAnnotations: function() {

 if (this.layout.annotations.length > 12) this.layout.annotations.shift()

 let new_annotation = pattern.name ? newAnnotation(pattern.prev.date, pattern.name) : null

 this.layout.annotations.push(new_annotation)

 }

}

 117

modules/charts/moving-average.js

import { stock } from "../stock.js"

import { getSimpleMovingAverage, getWeightedMovingAverage } from './average.js'

import { newShape } from '../new-layout/new-shape.js'

import { newAnnotation } from '../new-layout/new-annotation.js'

import { point } from '../intersection/point.js'

import { getSlope } from '../intersection/get-slope.js'

import { isGoldenCross } from '../intersection/is-golden-cross.js'

import { updatePlot } from './plot.js'

export let moving_average = {

 day_short: 5,

 day_long: 15,

 type: 'sma',

 container: 'moving-average-chart',

 data: [

 {

 x: [],

 y: [],

 type: 'scatter',

 mode: 'lines',

 name: 'Short-term SMA'

 },

 {

 x: [],

 y: [],

 type: 'scatter',

 mode: 'lines',

 name: 'Long-term SMA'

 }

],

 layout: {

 dragmode: 'zoom',

 title: 'Moving Average Chart',

 shapes: [],

 annotations: [],

 xaxis: {

 autorange: true,

 type: 'date',

 rangeslider: { visible: false },

 },

 yaxis: {

 autorange: true,

 type: 'linear',

 title: 'Price($)'

 }

 },

 extendShortMovingAverage: function() {

 if (this.data[0].x.length >= 14) {

 this.data[0].x.shift()

 this.data[0].y.shift()

 }

 if (stock.count >= this.day_short) {

 118

 this.data[0].x.push(stock.data[stock.count].date)

 let y = (this.type === 'sma')

 ? getSimpleMovingAverage(this.day_short)

 : getWeightedMovingAverage(this.day_short)

 this.data[0].y.push(y)

 }

 },

 extendLongMovingAverage: function() {

 if (this.data[1].x.length >= 14) {

 this.data[1].x.shift()

 this.data[1].y.shift()

 }

 if (stock.count >= this.day_long) {

 this.data[1].x.push(stock.data[stock.count].date)

 let y = (this.type === 'sma')

 ? getSimpleMovingAverage(this.day_long)

 : getWeightedMovingAverage(this.day_long)

 this.data[1].y.push(y)

 }

 },

 updateShapes: function() {

 if (this.layout.shapes.length > 12) this.layout.shapes.shift()

 let new_shape = point.intersect ? newShape(point.prev.short.x, point.curr.short.x) : null

 this.layout.shapes.push(new_shape)

 },

 updateAnnotations: function() {

 if (this.layout.annotations.length > 12) this.layout.annotations.shift()

 let slope_short = getSlope(point.prev.short.y, point.curr.short.y)

 let slope_long = getSlope(point.prev.long.y, point.curr.long.y)

 let text = isGoldenCross(slope_short, slope_long) ? 'Buy' : 'Sell'

 let new_annotation = point.intersect ? newAnnotation(point.prev.short.x, text) : null

 this.layout.annotations.push(new_annotation)

 },

 changeSettings: function() {

 let short_term_input = Number(document.getElementById('short-term-input').value)

 let long_term_input = Number(document.getElementById('long-term-input').value)

 let type_input = document.getElementById('options').value

 if (short_term_input > 15 || short_term_input < 1 || !Number.isInteger(short_term_input)) {

 alert('Short-term input must be an integer between 1 and 14')

 return this.resetInputs()

 }

 else if (long_term_input > 30 || long_term_input < 15 || !Number.isInteger(long_term_input)) {

 alert('Long-term input must be an integer between 15 and 30')

 119

 return this.resetInputs()

 }

 this.type = type_input

 this.data[0].x = []

 this.data[0].y = []

 this.data[0].name = 'Short-term ' + this.type.toUpperCase()

 this.data[1].x = []

 this.data[1].y = []

 this.data[1].name = 'Long-term ' + this.type.toUpperCase()

 this.layout.shapes = []

 this.layout.annotations = []

 updatePlot(this)

 },

 resetInputs: function() {

 document.getElementById('short-term-input').value = this.day_short

 document.getElementById('long-term-input').value = this.day_long

 document.getElementById('options').value = this.type

 }

}

modules/charts/plot.js

export function drawNewPlot(plot) {

 Plotly.newPlot(plot.container, plot.data, plot.layout);

}

export function updatePlot(plot) {

 Plotly.update(plot.container, plot.data, plot.layout)

}

modules/intersection/do-intersect.js

import { isSameSign } from './is-same-sign.js'

import { stock } from '../stock.js'

export function doIntersect(prev, curr) {

 let x1 = stock.count - 1, y1 = prev.short.y

 let x2 = stock.count, y2 = curr.short.y

 let x3 = stock.count - 1, y3 = prev.long.y

 let x4 = stock.count, y4 = curr.long.y

 let a1, b1, c1, a2, b2, c2

 let r1, r2, r3, r4

 let denom

 a1 = y2 - y1

 b1 = x1 - x2

 c1 = x2 * y1 - x1 * y2

 120

 r3 = a1 * x3 + b1 * y3 + c1

 r4 = a1 * x4 + b1 * y4 + c1

 if (r3 !== 0 && r4 !== 0 && isSameSign(r3, r4)) return false

 a2 = y4 - y3

 b2 = x3 - x4

 c2 = x4 * y3 - x3 * y4

 r1 = a2 * x1 + b2 * y1 + c2

 r2 = a2 * x2 + b2 * y2 + c2

 if (r1 !== 0 && r2 !== 0 && isSameSign(r1, r2)) return false

 denom = a1 * b2 - a2 * b1

 if (denom === 0) return true

 return true

}

modules/intersection/get-slope.js

export function getSlope(y1, y2) {

 return (y2 - y1)

}

modules/intersection/is-golden-cross.js

export function isGoldenCross(slope_short, slope_long) {

 return slope_short > slope_long

}

modules/intersection/is-same-sign.js

export function isSameSign(a, b) {

 return Math.sign(a) == Math.sign(b)

}

modules/intersection/point.js

import { doIntersect } from './do-intersect.js'

import { moving_average } from '../charts/moving-average.js'

export let point = {

 prev: {

 short: {},

 long: {}

 },

 curr: {

 short: {},

 long: {}

 },

 121

 intersect: false,

 updatePrev: function() {

 this.prev.short = {

 x: moving_average.data[0].x[moving_average.data[0].x.length - 2],

 y: moving_average.data[0].y[moving_average.data[0].y.length - 2]

 }

 this.prev.long = {

 x: moving_average.data[1].x[moving_average.data[1].x.length - 2],

 y: moving_average.data[1].y[moving_average.data[1].y.length - 2]

 }

 },

 updateCurr: function() {

 this.curr.short = {

 x: moving_average.data[0].x[moving_average.data[0].x.length - 1],

 y: moving_average.data[0].y[moving_average.data[0].y.length - 1]

 }

 this.curr.long = {

 x: moving_average.data[1].x[moving_average.data[1].x.length - 1],

 y: moving_average.data[1].y[moving_average.data[1].y.length - 1]

 }

 },

 updateIntersect: function() {

 this.intersect = doIntersect(this.prev, this.curr)

 }

}

modules/new-layout/new-annotation.js

export function newAnnotation(startDate, text) {

 return {

 x: startDate,

 y: 1,

 xref: 'x',

 yref: 'paper',

 text: text,

 font: { color: 'black', size: 8 },

 showarrow: false,

 xanchor: 'left',

 ax: 0,

 ay: 0

 }

}

modules/new-layout/new-shape.js

export function newShape(startDate, endDate) {

 return {

 type: 'rect',

 xref: 'x',

 yref: 'paper',

 x0: startDate,

 y0: 0,

 x1: endDate,

 122

 y1: 1,

 fillcolor: '#ffff00',

 opacity: 0.4,

 line: { width: 0 }

 }

}

modules/pattern-recognition/candlestick-patterns.js

export function isBearishKicker(prev, curr) {

 return prev.open < prev.close &&

 curr.open > curr.close &&

 prev.open > curr.open

}

export function isBullishKicker(prev, curr) {

 return prev.open > prev.close &&

 curr.open < curr.close &&

 prev.open < curr.open

}

export function isShootingStar(prev, curr) {

 return prev.open < prev.close &&

 curr.open > curr.close &&

 prev.close < curr.close &&

 curr.high - curr.close > 2 * (curr.open - curr.close) &&

 curr.open - curr.close > curr.close - curr.low

}

modules/pattern-recognition/pattern.js

import { isBearishKicker, isBullishKicker, isShootingStar } from './candlestick-patterns.js'

import { stock } from '../stock.js'

import { candlestick } from '../charts/candlestick.js'

export let pattern = {

 show: true,

 prev: {},

 curr: {},

 name: '',

 toggleShow: function() {

 this.show = !this.show

 candlestick.layout.shapes = []

 candlestick.layout.annotations = []

 },

 updatePrev: function() {

 this.prev = stock.data[stock.count - 1]

 },

 updateCurr: function() {

 this.curr = stock.data[stock.count]

 },

 updateName: function() {

 if (isBearishKicker(this.prev, this.curr)) {

 123

 this.name = 'Bearish Kicker'

 } else if (isBullishKicker(this.prev, this.curr)) {

 this.name = 'Bullish Kicker'

 } else if (isShootingStar(this.prev, this.curr)) {

 this.name = 'Shooting Star'

 } else {

 this.name = ''

 }

 }

}

 124

Bibliography
Amadeo, K., 2021. What is the ideal GDP growth rate?. [Online]
Available at: https://www.thebalance.com/what-is-the-ideal-gdp-growth-rate-3306017
[Accessed 1 March 2021].
Bybit Learn, 2020. 16 Must-Know Candlestick Patterns for a Successful Trade. [Online]
Available at: https://learn.bybit.com/trading/best-candlestick-patterns/
[Accessed 31 March 2021].
Chen, J., 2020. Crossover. [Online]
Available at: https://www.investopedia.com/terms/c/crossover.asp
[Accessed 8 April 2021].
Forex Trading 200, 2018. Candlestick Charts. [Online]
Available at: https://www.forextrading200.com/candlestick-chart/
[Accessed 31 March 2021].
Hayes, A., 2020. Candlestick Definition. [Online]
Available at: https://www.investopedia.com/terms/c/candlestick.asp
[Accessed 31 March 2021].
Knueven, L., 2020. The average stock market return over the past 10 years. [Online]
Available at: https://www.businessinsider.com/personal-finance/average-stock-market-return?op=1
[Accessed 1 March 2021].
Konchar, P., 2018. What is the legal age to trade Forex?. [Online]
Available at: https://mytradingskills.com/legal-age-to-trade
[Accessed 1 March 2021].
Mahony, J., 2019. A trader's guide to moving averages. [Online]
Available at: https://www.ig.com/uk/trading-strategies/moving-averages--how-to-calculate-them-and-use-
them-in-your-trad-181008
[Accessed 8 April 2021].
Matange, S., 2014. CandleStick Chart. [Online]
Available at: https://blogs.sas.com/content/graphicallyspeaking/2014/09/27/candlestick-chart/
[Accessed 31 March 2021].

	Analysis
	Project definition
	Identifying suitable stakeholders
	Existing systems
	Student Stock Trader
	Trading View
	Capital

	Underpinning knowledge and calculations
	Candlestick charts
	Candlestick patterns
	Moving averages
	Crossover
	Pattern recognition

	Stakeholder and user needs
	Identifying and explaining any limitations
	Computational methods
	Specifying software and hardware requirements
	User requirements and measurable success criteria

	Design
	Breaking the problem down systematically
	Explanation of each module
	Start simulation
	Pattern recognition
	Moving averages
	Buy / Sell
	Stop simulation

	Interfaces
	Validation of inputs
	External files
	Data structures
	stock
	wallet
	levels
	level
	candlestick
	moving_average
	Pattern

	Algorithms
	Getting id of the chosen stock from the url
	Fetching stock data
	Displaying id of the chosen stock
	Getting current price of the chosen stock
	Updating the counter
	Storing stock data
	Display available money
	Displaying owned stocks
	Calculating current profit
	Displaying current profit
	Getting required profit for the level
	Displaying required profit for the level
	Getting initial capital for the level
	Drawing a new chart
	Extending candlestick chart
	Extending moving average chart
	Updating a chart
	Calculating simple moving average
	Calculating weighted moving average
	Calculating slope of a line
	Checking if two lines intersect given two points for each line
	Checking if intersection is a Golden Cross or Death Cross
	Checking if two numbers have the same sign
	Checking if two candles form a Bearish Kicker pattern
	Checking if two candles form a Bullish Kicker pattern
	Checking if two candles form a Shooting Star pattern
	Updating pattern data
	Buying a stock
	Selling a stock
	Highlighting candlestick patterns
	Annotating candlestick patterns
	Highlighting moving average intersections
	Annotating moving average intersections

	Test data for development
	Milestones that my program needs to achieve
	Milestone №1
	Milestone №2
	Milestone №3
	Milestone №4
	Milestone №5
	Milestone №6
	Milestone №7
	Milestone №8
	Milestone №9
	Milestone №10
	Milestone №11

	Test data for post-development
	Integration testing
	Alpha testing

	Development
	Project setup
	Milestone №1 – creating the main interfaces
	Code listing
	Explanation of the code
	Testing
	Reflection

	Milestone №2 – selecting a level
	Code listing
	Explanation of the code
	Testing
	Reflection

	Milestone №3 - displaying the wallet and level requirements for each stock
	Code listing
	Explanation of the code
	Testing
	Reflection

	Milestone №4 – drawing a candlestick chart
	Code listing
	Explanation of the code
	Testing
	Reflection

	Milestone №5 – drawing a moving average chart
	Code listing
	Explanation of the code
	Testing
	Reflection

	Meeting with stakeholders
	Milestone №6 - highlighting and annotating candlestick patterns
	Code listing
	Explanation of the code
	Testing
	Reflection

	Milestone №7 – highlighting and annotating intersections of moving averages
	Code listing
	Explanation of the code
	Testing
	Reflection

	Milestone №8 – allow the user to trade the chosen stock
	Code listing
	Explanation of the code
	Testing
	Reflection

	Milestone №9 - allow the user to hide/show candlestick patterns
	Code listing
	Explanation of the code
	Testing
	Reflection

	Milestone №10 - allow the user to stop the simulation and view results
	Code listing
	Explanation of the code
	Testing
	Reflection

	Milestone №11 – allow the user to change the type of moving average and its parameters
	Code listing
	Explanation of the code
	Testing
	Reflection

	Meeting with stakeholders

	Evaluation
	Post-development testing
	Link to the simulation
	Testing table

	Evidence for post-development testing
	Test №1
	Test №2
	Test №3
	Test №4
	Test №5
	Test №6
	Test №7
	Test №8
	Changing the type of the moving average
	Changing the short-term average
	Changing the long-term average
	Changing both averages at the same time
	Changing both averages and the type at the same time

	Test №9 and test №10
	Test №11
	Test №12

	Success criteria evaluation
	Usability features
	Limitations and improvements
	Maintenance

	Code listings
	index.html
	choose-level.html
	trade-stock.html
	result.html
	style.css
	app.js
	modules/stock.js
	modules/wallet.js
	modules/level.js
	modules/message.js
	modules/trade.js
	modules/result.js
	modules/charts/average.js
	modules/charts/candlestick.js
	modules/charts/moving-average.js
	modules/charts/plot.js
	modules/intersection/do-intersect.js
	modules/intersection/get-slope.js
	modules/intersection/is-golden-cross.js
	modules/intersection/is-same-sign.js
	modules/intersection/point.js
	modules/new-layout/new-annotation.js
	modules/new-layout/new-shape.js
	modules/pattern-recognition/candlestick-patterns.js
	modules/pattern-recognition/pattern.js

	Bibliography

