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Introduction: 

A critical step when you create something nowadays is the promotion. The Internet has become 

the best w y to promote your product through soc    med   or m r et ng c mp  gn but  t’s very 

hard to know when, where and what to do for the promotion. Indeed, If you start your promotion 

too soon, peop e w    forget your product  f you don’t  eep the hype up. On the other end  f you 

start your promotion too late or at the wrong time, your product might go unnoticed 

 

The project goal is to help artists launch their music album in the best way possible. They will 

enter some information about their album like the launching date, the genre, the number of their 

Facebook followers etc, and the project will establish a timeline and tell them what to do. For 

ex mp e:  et’s s y th t you w nt to   unch   mus c   bum  n 6 months.  he project w    te   you 

to a first album announcement on a given date, to tweet about the album cover at another date, 

etc. 

 

Project organization 

For each task we identified either at the beginning or all along the project, we split the team in 

sub-teams, to avoid leaving anyone alone. We tried to mix the sub-teams every time, and were 

allocating people based on both the competencies they had and the ones they were willing to get. 

Our schedule was given in a Gantt chart, defining at the same time the responsibilities of each 

student. All along the project, we always tried to have the tightest deadlines possible, to give 

ourselves some buffers to solve unexpected issues, or manage unexpected results. For example, 

our last biggest milestone was set from the beginning one month before the end of the project. 

On the other hand, a weekly meeting with our TA was also scheduled to make sure we would 

identify upcoming issues in advance. 

 

The tasks were divided between the team members as follows: 
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Documentation on gathering data 
 Twitter Hajar + Mikael 

Spotify Arthur + Valentin 

iTunes Abdessalam + Amine 

Facebook Dana + Hind 

Paper reports 
 Detailed plan Dana + Abdessalam + Amine 

Data Gathering 
 Tweets by account Hajar + Mikael 

Freebase data extraction Dana + Hind 

Facebook Arthur + Valentin 

One million song Abdessalam + Amine 

Finalize data gathering Mikael + Arthur 

Data storing 
 

Server + DB 
Mikael +  
Valentin + arthur 

NLP Amine + Hajar + Dana + Arthur 

Implementation 
 Recommandation system Abdessalam + Valentin + Hind + Mikael 

Research 
 Implementation 
 Web frontend Valentin 

Enter basic data 
 Visualize timeline 
 Result refinement 
 NLP Hajar + Arthur + Dana 

Recommendation system Valentin 

Clustering Amine + Valentin 

Report 
 Final presentation Michaël + Abdessalam + Hind 

Report Everyone 

 

 

Architecture 

The final system is composed of several parts that are described below. Since we wanted to keep 

everything in one place, every program we used/built ran on icdatasrv4. We also configured Git 

to be able to easily get the latest updates of our programs on the server, directly from our Github 

repository. 
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Database: 

For stor ng our d t , we chose to use  ongoDB m  n y bec use  t’s sc   b e, f ex b e  nd   so 

because it made us learn something new. As scalability is important in a project related to big 

data, we d dn’t h ve to use mu t p e  ongoDB servers but  f,  t some po nt, the d t b se wou d 

have been too slow, it could easily have been scaled. Since MongoDB is document based, we 

were able to add fields as we needed without having to endlessly change a database schema. 

 ongoDB wou d h ve been   b d cho ce  f you needed jo ns but th t w sn’t   requ rement for 

what we built. 

 

Front-end 

The front-end is entirely built in HTML, CSS and Javascript. When the client receives the web 

page, his recommendation request is sent by his browser (using AJAX) to a small Java web 

server (that runs on port 8000 of icdatasrv4) that parses the request, launches an instance of the 

recommender and send the result back in JSON to the client which displays the timeline. The 

choice of using a small Java web server for handling the recommendation requests came from 

the fact that we needed to find a way to make our recommender communicate with the outside 

world and since our recommender was in Java, it was the simplest way. 

 

Data Gathering  

To be able to reach our goal through analysis of the data, we needed to identify at first what data 

were necessary and where we could get them from. 

 

1) Identification of the different sources 

As our tool aimed at providing insight on social medias, we knew we had to parse them. We 

didn't need to parse all publication in the world though, but just communication made by artists 

in order to promote their albums. We decided then to only get the publications (and comments 

from the public) made through their accounts, on Twitter and Facebook, as they are the most 

used ones and as we had chosen those two as an output of our system. 

In order to get data published by each artist on social medias, we needed to have their account 

information. We started to look where we could get such information, and found the Freebase 

from Google, a community fully accessible database, containing more than 100Gb of data on all 
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kind of subjects. We didn't need everything and therefore used their API to query the data we 

needed and fill our own database. 

As we couldn't assess the positive or negative impact of a marketing campaign (the basic 

question : "How can we separate the success of the album brought by marketing compared to the 

quality of the album in itself ?" cannot be answered), one of the first assumptions we made was 

that the popularity of an artists is strictly tied to its popularity on social medias. Therefore, a 

popular artist should be part of our training set. But as Freebase didn't have any information on 

the popularity of artists, we used the website EchoNest, a renowned company in the music 

domain, to provide us trend on the artists. 

 

2) Data Parsing 

With those four data sources, Echo Nest to provide us trendy artists, Freebase for the data on 

artists and albums, Twitter and Facebook for the social medias, we began to design our data 

parsers and then integrated them in a chained process. All our parsers were programmed in Java 

and were storing the intermediate results in our MongoDB database. As we knew Mongodb isn't 

designed to handle concurrent transactions, we ran the four jobs sequentially and not 

simultaneously. Because of rate limits, for example the most restrictive 150 queries per 15min of 

Twitter API, we requested several developer keys (8 in total) and designed our bots to change the 

keys when the rate limit was reached. 

 

3) Final data and limitations 

Within a few days of parsing, we reached the amount of 6k artists having a facebook or a twitter 

account, 20k albums, 7M tweets and 300k Facebook publications. 

During our data gathering, we already encountered several limitations inferred by the current 

context: 

- The usage of Facebook and Twitter for marketing purposes is quite recent. We therefore only 

considered album promotions from year 2010, which reduces the size of our dataset. 

- For privacy reasons, Twitter only gives access to 3500 tweets for each user. For some very 

active artists, this allows us to get only one or two years of tweets, which decreases again the 

exploitable size of our dataset. 

- Some artists (around 10%) didn't have a Facebook and a Twitter account. 
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4) Conclusion 

Data gathering took around 30% of our time on the project. We must not forget that this 

operation is really important and has to be executed carefully as it provides the data we will build 

our model on. Thanks to this work, we learnt that after each session of parsing, one must always 

challenge the data to try to find inconsistencies to then refine the parsers. For example this is 

how we decided to remove Spotify from our sources, or how we refined our parsers several times 

before reaching a good quality of data. 

 

 

Natural Language Processing (NLP) 

In this project, NLP is used in two phases for processing the social networks data available. It is 

first used in the event extraction step, and following that a sentiment analysis of user comments 

is done to assign scores (or weights) for the given events necessary for the recommendation 

process. 

 

Events Extraction 

From the Tweets and Facebook posts we collected, we needed to determine the ones that were 

relevant to our project, i.e. the posts relevant to promotional events. This list of events is as 

follows:  single release, CD release, press campaign, presale campaign, first tweet, first 

Facebook post, countdown, announcement, album cover, interview, video clip and teaser. 

Furthermore, we needed to keep only the posts about events of the artist, and get rid of events of 

artists different than the page owner. 

 

We first determined a list of events that we wanted to have in our promotional campaign.  This 

list was obtained from research about music album promotional campaigns. After determining 

the list of keywords relevant to those events, we used a stemmer to get the stems of the list of 

events and we used those stems to help us determine the relevance of the Tweets and Facebook 

posts. 
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We used Part-of-Speech Tagging to help us extract events that are relevant to the artist. Part-of-

Speech tagging marks up words in a text that correspond to a particular part of speech. We used 

the Maxent Tagger from the Stanford NLP library to tag the words and identify the cases where 

possessives are used. The tags were used to determine whether the posts or tweets about a certain 

event was really about the artist, or was a post or tweet about a different artist. Therefore, we 

specified rules about the possessive case to check if the artist was referring to himself/herself or 

not. The rules we set up for the possessive cases are as follows: 

 

  n c se of the occurrence of   possess ve s (‘s) , we check if the word right before  is a 

noun by checking the POS tag.   f  t  s   noun, we chec   f  t  s the   st word of the  rt st’s 

n me or the  rt st’s   bum n me, or  f occurs  n our   st of stems.  f so, we chec  the noun 

right after and if it occurs in our stem list or if it corresponds to the first word of the 

album name, we keep the message. (ex mp e:  o dp  y’s   bum re e se). 

  n the c se of possess ve pronouns,  f the pronoun  s “my” or “our”, we chec   f the next 

noun is our stem list or if it is the first word of the album name. If yes, we keep the 

message. (example: My latest album is finally available). If the possessive pronoun is 

d fferent th n “my”  nd “our”, we retr eve the prev ous noun  nd we chec   f  t cont  ns 

a stem or the last word of the album name. If yes, we keep the message (example: 

Coldplay released their album). 

  f the mess ge doesn’t cont  n possess ves, we  eep  t. 

The cases that are different from the ones listed are discarded. 

 

Sentiment Analysis: 

The approach used for the sentiment analysis of comments uses sentence level analysis and a 

sentiment dictionary, to assign scores of positivity and negativity of words extracted from each 

sentence. Stanford POS tagger[1] is used to tag sentences in order to extract descriptive words 

that can specify the score of the comment. 

 

The Stanford NLP library [2] is also used to determine the sentiment scores, 0 is negativity, 2 is 

neutral and 4 is objectivity for a sentence to define its sentiment thus allowing the classification 
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of comments as positive or negative oriented. Moreover, the extensive use of emoticons in social 

networks requires considering these for the scoring process as well. A list of common emoticons 

with predefined scores is used for this purpose. 

 

The scoring of each comment is used in a Map-Reduce algorithm to define the weights of events 

for recommendation. For each Facebook event we emit for each of the comments the tuple 

(event_id, comments). 

In the mapper we map each tuple to the sentiment analysis score associated to this comment. 

In the reducer we aggregate all the sentiments for each comment into one score between 0 and 1 

where 0 = negativity, 0.5 = neutral and 1 = positivity. 

 

Recommendation System:  

Our system aims at predicting a timeline of the promotion of an album to an artist. To do so, we 

used a content-based recommendation system adjusted to our specifications and needs. 

Users are artists about whom we gathered information from the different data sources as 

described in the previous sections, whereas items are the set of events that constitute the 

promotion campaign. 

 

Each artist has a profile that consists of: region, genre, number of albums released, number of 

Facebook followers and number of Twitter followers. Then each item is described with a set of 

features that indicates the number of days needed for each event to occur with respect to the 

release date. The events are : single release, CD release, press campaign, presale campaign, first 

tweet, first Facebook post, countdown, announcement, album cover, interview, video clip and 

teaser. 

 

An artist using our system to predict a promotion timeline is required to fill in the elements that 

make a user profile as described previously. Based on the profile, our system computes the 

similarity with stored  rt sts’ prof  es to get   set of  tem fe tures of the s m   r  rt sts.  ext, the 

similar item features are processed to give the user a final promotion timeline that will most 

likely result in a successful promotion campaign given our assumptions. 
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 he recommend t on m tr x  s hence m de of users’ prof  es - artists profiles-  nd  tems’ 

features - albums events- as shown in the figure below. 

 

Part 1: Artist profile 

 

Region Genre # of facebook followers # of twitter followers # of albums 

 

Part 2: Album features 
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Figure 1: Recommendation matrix structure 

 

1. Similarity computation between users profiles: 

Entries in the user profile are boolean to simplify our similarity computation. 

The similarity is computed using the 5 attributes that constitute an artist profile. A clustering is 

performed on 3 attributes: number of albums, number of facebook followers and number of 

twitter followers, so as to determine ranges of those attributes values to be used in the 

recommendation matrix.  Then, a cosine similarity is calculated for each attribute between the 

artist that is using our system and one artist from our database. The final value of the similarity 

between the two artists is obtained by performing a weighted sum using the weights assigned to 

each attribute. 

This similarity computation is calculated iteratively between the artist- the user of the system- 

and all the artists from our database. This step gives intermediate results containing a set of 

artists with a similarity value greater than the threshold we determined. 
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Clustering 

As we discussed earlier, in order to perform the cosine similarity in the recommender system, we 

needed to group the artists together and make sure the new artist belongs to one of the groups. 

For th s m tter, we dec ded to cre te c usters of  rt sts depend ng on the 3  ttr butes “f cebook 

   es”, “tw tter fo  owers”  nd “number of   bums”. 

 

The algorithm we used, which uses the three attributes as points coordinates for clustering, is a 

modified version of K- e ns c   ed “K- e ns++” (proposed by D v d  rthur  nd  erge  

Vassilvitskii in 2007) and available for use in an Apache Library. Like the normal K-Means, we 

have to specify the number of clusters. 

 

After we generate clusters, we identify them with their centers. We later assign to each artist -and 

hence, album- in our database the center of the matrix it belongs to. 

 

Thereafter, in the recommender, we assign the user to one of the clusters by choosing the closest 

c uster to  t.  n other words, we compute the d st nces between the user’s prov ded  ttr butes  nd 

the center of the clusters and choose the cluster that minimizes that distance (min(d(X,centeri) )). 

 

2. Aggregation of items features: 

The items corresponding to the resulting set of artists from similarity computation contain 

different values for the features. The purpose of this step is to aggregate the results so that they 

converge toward a single value that would be the output of the recommender system. This is 

performed by using a result of processing social media data described in previously. 
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