

CS-422: Big Data

Professor Christoph Koch

Final Report:

Assisted Music Promotion Tool

Team members:

ABBADI Hajar

BENABDELJALIL Amine

BENBIHI Hind

GIROUX Arthur

MATTER Valentin

NAOUS Dana

OUAAZKI Abdessalam

Supervised by:

Amir Shaikhha

20-05-2014

2

Introduction:

A critical step when you create something nowadays is the promotion. The Internet has become

the best w y to promote your product through soc med or m r et ng c mp gn but t’s very

hard to know when, where and what to do for the promotion. Indeed, If you start your promotion

too soon, peop e w forget your product f you don’t eep the hype up. On the other end f you

start your promotion too late or at the wrong time, your product might go unnoticed

The project goal is to help artists launch their music album in the best way possible. They will

enter some information about their album like the launching date, the genre, the number of their

Facebook followers etc, and the project will establish a timeline and tell them what to do. For

ex mp e: et’s s y th t you w nt to unch mus c bum n 6 months. he project w te you

to a first album announcement on a given date, to tweet about the album cover at another date,

etc.

Project organization

For each task we identified either at the beginning or all along the project, we split the team in

sub-teams, to avoid leaving anyone alone. We tried to mix the sub-teams every time, and were

allocating people based on both the competencies they had and the ones they were willing to get.

Our schedule was given in a Gantt chart, defining at the same time the responsibilities of each

student. All along the project, we always tried to have the tightest deadlines possible, to give

ourselves some buffers to solve unexpected issues, or manage unexpected results. For example,

our last biggest milestone was set from the beginning one month before the end of the project.

On the other hand, a weekly meeting with our TA was also scheduled to make sure we would

identify upcoming issues in advance.

The tasks were divided between the team members as follows:

3

Documentation on gathering data
 Twitter Hajar + Mikael

Spotify Arthur + Valentin

iTunes Abdessalam + Amine

Facebook Dana + Hind

Paper reports
 Detailed plan Dana + Abdessalam + Amine

Data Gathering
 Tweets by account Hajar + Mikael

Freebase data extraction Dana + Hind

Facebook Arthur + Valentin

One million song Abdessalam + Amine

Finalize data gathering Mikael + Arthur

Data storing

Server + DB
Mikael +
Valentin + arthur

NLP Amine + Hajar + Dana + Arthur

Implementation
 Recommandation system Abdessalam + Valentin + Hind + Mikael

Research
 Implementation
 Web frontend Valentin

Enter basic data
 Visualize timeline
 Result refinement
 NLP Hajar + Arthur + Dana

Recommendation system Valentin

Clustering Amine + Valentin

Report
 Final presentation Michaël + Abdessalam + Hind

Report Everyone

Architecture

The final system is composed of several parts that are described below. Since we wanted to keep

everything in one place, every program we used/built ran on icdatasrv4. We also configured Git

to be able to easily get the latest updates of our programs on the server, directly from our Github

repository.

4

Database:

For stor ng our d t , we chose to use ongoDB m n y bec use t’s sc b e, f ex b e nd so

because it made us learn something new. As scalability is important in a project related to big

data, we d dn’t h ve to use mu t p e ongoDB servers but f, t some po nt, the d t b se wou d

have been too slow, it could easily have been scaled. Since MongoDB is document based, we

were able to add fields as we needed without having to endlessly change a database schema.

 ongoDB wou d h ve been b d cho ce f you needed jo ns but th t w sn’t requ rement for

what we built.

Front-end

The front-end is entirely built in HTML, CSS and Javascript. When the client receives the web

page, his recommendation request is sent by his browser (using AJAX) to a small Java web

server (that runs on port 8000 of icdatasrv4) that parses the request, launches an instance of the

recommender and send the result back in JSON to the client which displays the timeline. The

choice of using a small Java web server for handling the recommendation requests came from

the fact that we needed to find a way to make our recommender communicate with the outside

world and since our recommender was in Java, it was the simplest way.

Data Gathering

To be able to reach our goal through analysis of the data, we needed to identify at first what data

were necessary and where we could get them from.

1) Identification of the different sources

As our tool aimed at providing insight on social medias, we knew we had to parse them. We

didn't need to parse all publication in the world though, but just communication made by artists

in order to promote their albums. We decided then to only get the publications (and comments

from the public) made through their accounts, on Twitter and Facebook, as they are the most

used ones and as we had chosen those two as an output of our system.

In order to get data published by each artist on social medias, we needed to have their account

information. We started to look where we could get such information, and found the Freebase

from Google, a community fully accessible database, containing more than 100Gb of data on all

5

kind of subjects. We didn't need everything and therefore used their API to query the data we

needed and fill our own database.

As we couldn't assess the positive or negative impact of a marketing campaign (the basic

question : "How can we separate the success of the album brought by marketing compared to the

quality of the album in itself ?" cannot be answered), one of the first assumptions we made was

that the popularity of an artists is strictly tied to its popularity on social medias. Therefore, a

popular artist should be part of our training set. But as Freebase didn't have any information on

the popularity of artists, we used the website EchoNest, a renowned company in the music

domain, to provide us trend on the artists.

2) Data Parsing

With those four data sources, Echo Nest to provide us trendy artists, Freebase for the data on

artists and albums, Twitter and Facebook for the social medias, we began to design our data

parsers and then integrated them in a chained process. All our parsers were programmed in Java

and were storing the intermediate results in our MongoDB database. As we knew Mongodb isn't

designed to handle concurrent transactions, we ran the four jobs sequentially and not

simultaneously. Because of rate limits, for example the most restrictive 150 queries per 15min of

Twitter API, we requested several developer keys (8 in total) and designed our bots to change the

keys when the rate limit was reached.

3) Final data and limitations

Within a few days of parsing, we reached the amount of 6k artists having a facebook or a twitter

account, 20k albums, 7M tweets and 300k Facebook publications.

During our data gathering, we already encountered several limitations inferred by the current

context:

- The usage of Facebook and Twitter for marketing purposes is quite recent. We therefore only

considered album promotions from year 2010, which reduces the size of our dataset.

- For privacy reasons, Twitter only gives access to 3500 tweets for each user. For some very

active artists, this allows us to get only one or two years of tweets, which decreases again the

exploitable size of our dataset.

- Some artists (around 10%) didn't have a Facebook and a Twitter account.

6

4) Conclusion

Data gathering took around 30% of our time on the project. We must not forget that this

operation is really important and has to be executed carefully as it provides the data we will build

our model on. Thanks to this work, we learnt that after each session of parsing, one must always

challenge the data to try to find inconsistencies to then refine the parsers. For example this is

how we decided to remove Spotify from our sources, or how we refined our parsers several times

before reaching a good quality of data.

Natural Language Processing (NLP)

In this project, NLP is used in two phases for processing the social networks data available. It is

first used in the event extraction step, and following that a sentiment analysis of user comments

is done to assign scores (or weights) for the given events necessary for the recommendation

process.

Events Extraction

From the Tweets and Facebook posts we collected, we needed to determine the ones that were

relevant to our project, i.e. the posts relevant to promotional events. This list of events is as

follows: single release, CD release, press campaign, presale campaign, first tweet, first

Facebook post, countdown, announcement, album cover, interview, video clip and teaser.

Furthermore, we needed to keep only the posts about events of the artist, and get rid of events of

artists different than the page owner.

We first determined a list of events that we wanted to have in our promotional campaign. This

list was obtained from research about music album promotional campaigns. After determining

the list of keywords relevant to those events, we used a stemmer to get the stems of the list of

events and we used those stems to help us determine the relevance of the Tweets and Facebook

posts.

7

We used Part-of-Speech Tagging to help us extract events that are relevant to the artist. Part-of-

Speech tagging marks up words in a text that correspond to a particular part of speech. We used

the Maxent Tagger from the Stanford NLP library to tag the words and identify the cases where

possessives are used. The tags were used to determine whether the posts or tweets about a certain

event was really about the artist, or was a post or tweet about a different artist. Therefore, we

specified rules about the possessive case to check if the artist was referring to himself/herself or

not. The rules we set up for the possessive cases are as follows:

 n c se of the occurrence of possess ve s (‘s) , we check if the word right before is a

noun by checking the POS tag. f t s noun, we chec f t s the st word of the rt st’s

n me or the rt st’s bum n me, or f occurs n our st of stems. f so, we chec the noun

right after and if it occurs in our stem list or if it corresponds to the first word of the

album name, we keep the message. (ex mp e: o dp y’s bum re e se).

 n the c se of possess ve pronouns, f the pronoun s “my” or “our”, we chec f the next

noun is our stem list or if it is the first word of the album name. If yes, we keep the

message. (example: My latest album is finally available). If the possessive pronoun is

d fferent th n “my” nd “our”, we retr eve the prev ous noun nd we chec f t cont ns

a stem or the last word of the album name. If yes, we keep the message (example:

Coldplay released their album).

 f the mess ge doesn’t cont n possess ves, we eep t.

The cases that are different from the ones listed are discarded.

Sentiment Analysis:

The approach used for the sentiment analysis of comments uses sentence level analysis and a

sentiment dictionary, to assign scores of positivity and negativity of words extracted from each

sentence. Stanford POS tagger[1] is used to tag sentences in order to extract descriptive words

that can specify the score of the comment.

The Stanford NLP library [2] is also used to determine the sentiment scores, 0 is negativity, 2 is

neutral and 4 is objectivity for a sentence to define its sentiment thus allowing the classification

8

of comments as positive or negative oriented. Moreover, the extensive use of emoticons in social

networks requires considering these for the scoring process as well. A list of common emoticons

with predefined scores is used for this purpose.

The scoring of each comment is used in a Map-Reduce algorithm to define the weights of events

for recommendation. For each Facebook event we emit for each of the comments the tuple

(event_id, comments).

In the mapper we map each tuple to the sentiment analysis score associated to this comment.

In the reducer we aggregate all the sentiments for each comment into one score between 0 and 1

where 0 = negativity, 0.5 = neutral and 1 = positivity.

Recommendation System:

Our system aims at predicting a timeline of the promotion of an album to an artist. To do so, we

used a content-based recommendation system adjusted to our specifications and needs.

Users are artists about whom we gathered information from the different data sources as

described in the previous sections, whereas items are the set of events that constitute the

promotion campaign.

Each artist has a profile that consists of: region, genre, number of albums released, number of

Facebook followers and number of Twitter followers. Then each item is described with a set of

features that indicates the number of days needed for each event to occur with respect to the

release date. The events are : single release, CD release, press campaign, presale campaign, first

tweet, first Facebook post, countdown, announcement, album cover, interview, video clip and

teaser.

An artist using our system to predict a promotion timeline is required to fill in the elements that

make a user profile as described previously. Based on the profile, our system computes the

similarity with stored rt sts’ prof es to get set of tem fe tures of the s m r rt sts. ext, the

similar item features are processed to give the user a final promotion timeline that will most

likely result in a successful promotion campaign given our assumptions.

9

 he recommend t on m tr x s hence m de of users’ prof es - artists profiles- nd tems’

features - albums events- as shown in the figure below.

Part 1: Artist profile

Region Genre # of facebook followers # of twitter followers # of albums

Part 2: Album features

single

releas

e

CD

releas

e

press

-

camp

-aign

presa

-le

camp

-aign

1st

Twitte

r post

1st

FB

pos

t

count

-

down

announc

-ement

albu

m

cover

intervie

w

vide

o

clip

tease

r

Figure 1: Recommendation matrix structure

1. Similarity computation between users profiles:

Entries in the user profile are boolean to simplify our similarity computation.

The similarity is computed using the 5 attributes that constitute an artist profile. A clustering is

performed on 3 attributes: number of albums, number of facebook followers and number of

twitter followers, so as to determine ranges of those attributes values to be used in the

recommendation matrix. Then, a cosine similarity is calculated for each attribute between the

artist that is using our system and one artist from our database. The final value of the similarity

between the two artists is obtained by performing a weighted sum using the weights assigned to

each attribute.

This similarity computation is calculated iteratively between the artist- the user of the system-

and all the artists from our database. This step gives intermediate results containing a set of

artists with a similarity value greater than the threshold we determined.

10

Clustering

As we discussed earlier, in order to perform the cosine similarity in the recommender system, we

needed to group the artists together and make sure the new artist belongs to one of the groups.

For th s m tter, we dec ded to cre te c usters of rt sts depend ng on the 3 ttr butes “f cebook

 es”, “tw tter fo owers” nd “number of bums”.

The algorithm we used, which uses the three attributes as points coordinates for clustering, is a

modified version of K- e ns c ed “K- e ns++” (proposed by D v d rthur nd erge

Vassilvitskii in 2007) and available for use in an Apache Library. Like the normal K-Means, we

have to specify the number of clusters.

After we generate clusters, we identify them with their centers. We later assign to each artist -and

hence, album- in our database the center of the matrix it belongs to.

Thereafter, in the recommender, we assign the user to one of the clusters by choosing the closest

c uster to t. n other words, we compute the d st nces between the user’s prov ded ttr butes nd

the center of the clusters and choose the cluster that minimizes that distance (min(d(X,centeri))).

2. Aggregation of items features:

The items corresponding to the resulting set of artists from similarity computation contain

different values for the features. The purpose of this step is to aggregate the results so that they

converge toward a single value that would be the output of the recommender system. This is

performed by using a result of processing social media data described in previously.

References:

[1] Stanford POS Tagger [online] Available: http://nlp.stanford.edu/software/tagger.shtml

[2] Stanford NLP Sentiment analysis: http://nlp.stanford.edu/sentiment/

http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/sentiment/

