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MAA ~ modelling aspects and solution schemes”

Krister Svanberg!

Abstract

This paper deals with modelling aspects and solution schemes when using the
Method of Moving Asymptotes (MMA) for solving different optimization problems.
First, a convenient and useful general form for inequality-constrained optimization
problemns is suggested and analyzed. After that, MMA for selving problems on this
general form iz dealt with, In particutar, a primal-dual interior point method for
solving the subproblems is developed. Further, an option for the user to provide
non-mixed second derivatives is described. Finally, an implementation of MMA in
Matlab is presented and illustrated on a simple example. The reader i3 invited to
obtain the Matlab-files free for academic usage.

1. Considered optimization problem.

Throughout this paper, optimization problems on the following form are considered,
where the variables are z == (21,...,2,)7 € B*, y = (yi,-. -, ym) € R™ and z € R,

minimize fo(e) + 24+ > (e + Sdiy?)

=1
subject to  fi(z) —a;z — y; <0, t=1,...,m
S <y < AT, i=1...n (1.1)
yi > 0, i=1,...,m

z >0,

Here, fy, fi,--., fm are given, continuously differentiable, real-valued functions.

I and pmes

g 71%% are given real numbers such that, for each j, «7" < &7

7 j
a;, ¢;and d; are given non-negative real numbers such that, for each ¢, ¢ 4+ > 0.

Motivations for considering problems on this particular form will be 2iven in the fol-
lowing sections.
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2. Some modelling aspects.

In this section, we give some examples of how the above formulation {1.1) can be used
in some particular cases which often appear in application.

2.1. Ordinary NLP problems.

Assume that one wants to solve a problem on the following “standard”™ form for non-
linear programming.

minimize fo{z)

subject to  fi(z) <0, i=1,...,m (2.1)
x?ingmjgm?““’, j=1,....n ‘

The parameters a;, ¢; and d; should then be chosen as follows in problem {1.1).

For each ¢, let ¢; = 0. Then z = 0 in any optimal solution of {(1.1). Further, for each
i, let d; = 0 and ¢; = “a large number”, g0 that the variables y; become “expensive”.
Then typically y; = 0 in any optimal solution of {(1.1), and the corresponding z is an
optimal solutior of (2.1).

It should be noted that the problem (1.1) always has feasible solutions, and in fact also
at least one optimal solution (see below). This holds even if the user’s problem (2.1)
does not have any feasible solutions, in which case some y; > 0 in the optimal solution
of (1.1). This is one advantage of the formulation (1.1) compared to the formulation
(2.1). Other advantages will be discussed later.

Now follows some practical considerations and recommendations concerning the above
situation.

In many structural optimization applications, the constraints are typically on the form
oi(z) < ol***, where o;(z) stands for e.g. a certain stress in the structure, while ¢%*
is the largest permitted value on this stress. This means that f;j(2) = oy(z) — %% (in
(1.1) as well asin (2.1}). The user should then preferably scale the constraints in such a
way that 1 < o™3% < 100 for each ¢ (and not e.g. 672% = 10%). The objective function
folz) should preferably be scaled such that 1 < fo(z) < 100 for reasonable values on
the variables. The variables should preferably be scaled such that typical values satisfy
0.1 < |e;] <100 for all j.

Concerning the “large numbers” above, the user should (for numerical reasons} try
to avoid very large values on the coefficients ¢; (like 10Y2). It is better to start with
“reagonably large” values and then, if it $urns out that not all iy = 0 in the opiimal
solution of (1.1), increase these ¢;-values by e.g. a factor 100 and solve the problem
again, ete. If the functions and the variables have been scaled according to above, then
“resonably large” values on the parameters ¢; could be, say, ¢; = 1000.

Finally, concerning the simple bonad constraints o7 < & < 7" it may sometimes
be the case that some variabies 2 do not have any prescribed noper and/or lower
i . 1



bounds. In that case, it is in practice always possible to choose “artificial” bounds

e and @™ such that every realistic solution x satisfies the corresponding bound
constraints. The user should then preferably avoid choosing ' — 27" unnecessarily

large. It is better to try some reasonable bounds and then, if it turns out that some
variable z; becomes equal to such an “artificial” bound in the optimal solution of (1.1},
change this bound and solve the problem again (starting from the recently obtained
solution), ete.

2.2. Least squares problems. (Minimum /;-norm problems.)

Assume that one wants to solve a constrained least squares problem on the form

P
minimize Y (hx{z))”
k=1
. 2.2
subject to  g;(z) <0, i=1,...,q (22)

TRIN . meaex M
el Lap <@l j=1,...,n

where h; and g; are given differentiable functions.

The functiona f; and the parameters a;, ¢; and d; should then be chosen as follows in
problem (1.1}.

= 2p-agq,
fD( ) = 0,

( ) - h’i(m)v 1= 11 - !p
fp.{.;( y = ——hi(:r), t=1,...,p
f2p+1( ) - gi(w)r ?‘-:11'--1‘?
a; = 0, Z—]., TN
d; = 2, i=1,...,2p
d2p+i = 0, i=1,...,q
C; = 0, t=1,...,2p
Copps = large number, 1=1,...,¢

2.8. Minimum /;-norm problems.

Assume that one wants to solve a minimum {-norm problem on the form

P
wininiize Z [ ()|
k=1

subject to gi(z) <0, iz=l,...,0
:L"g”m SayLalt j=1,...,n

where by and g; are given differentiable functions.



The functions f; and the parameters a;, ¢; and d; should then be chosen as follows in
problem (1.1).

m = 2p+yq,

flz) = 0,

filz) = hi(z), t=1,...,p
fp_l_g(:r -= —h,.i(l‘), 1= 1,...,p
f2p+i 41“) = gi(ﬂ:): t=1,...,9
a; = 0, t=1,...,m
f; = 0, i=1,...,m
C; = 1, i=1,...,2p
Copti = large number, i=1,...,¢q

2.4, Minimum [/..-norm problems.
Assume that one wants to solve an [ o-norm problem on the form
minimize  max {|hx(z)|}
k:l,..,p _
subject to  gi(z) < 0, i=1,....q (2.4)
opn <o <ape, j=l.m

where hy and g; are given differentiable functions.

The functions f; and the parameters a;, ¢; and d; should then be chosen as follows in
problem (1.1}.

m = 2p+4q,

fo(2) = 0

filz) = hi(z), t=1,...,p
fotrilz) = —hi(z), t=1,...,p
f2p+i('r) - gi(a:)a 1= 1,....q
a; = 1, i=1,...,2p
Qopti = 0, i=1,...,q
d; = 0, i=1,...,m
e = large number, i=1,...,m



3. Some theoretical properties of the considered problem.

In this section, some theoretical properties of the problem (1.1) will be proved.
To shorten the notation, let X = {z ¢ R" | :L"J”"'” <wy; <o, j=1,...,n}

First, we note the simple fact that there are always feasible solutions of problem (1.1).
This follows since for any # € X it is possible to find y and z such that (z,y,z) is a
feasible solution of (1.1}. One may take, e.g., z = 0 and y; = max{0, fi(z)}. A perhaps
less obvious fact is the following.

Proposition 3.1. There is always at least one optimal solution of the problem (1.1).

Proof. Since X is a compact set and f; is a continuous function for each %, it follows
from Weierstrass’ theorem that the numbers f; = max{fi(z) | ¢ € X}, i=1,...,m,
are well defined.

Let v =1+ max{0,f;} and Y ={ye R™ [0 < y; <y™*%, i=1,...,m}.

%

If (%, 9, 2) is an optimal solution of the problem (1.1) then §; < y™** for all 4, since if
™TmaT

any & > y™*® then f;{&) — a2 —§ < —1 < 0, and then a feasible solution with strictly
lower objective value would be obtained by simply decreasing y;.

Thus, no optimal solutions of the problem (1.1} are lost or introduced if the restriction
y € Y is included in the formulation.

Next,let Z={z€ R|0< z < ™"},

yipla:r

a;

where z™** =1if @y = ---= a,, = 0, while 2% = 1+ max{ | a; > 0} otherwise.
t

By similar arguments as above, it follows that no optimal solutions of the problem (1.1)
are lost or introduced if the restriction z € Z is included in the formulation.

The above discussion implies that {Z,§, £) is an optimal solution of the problem (1.1)
if and only if {,9, 2) is an optimal solution of the following problem.

minimize fo(z) + 2+ > (eiyi + 2diy?)

fes]
subject to  fi(z) — w2z —y; <0, i=1,...,m
wt <y <P g =1,..,n (3.1)
0 <y < yee, i=1,...,m

(} S = S ST'RRGCI

In this problem (3.13, the feasible szet is nonempty and compact while the objective
function is continuous. Thus, according to Weierstrass’ theorem, there i3 always at
least one optimal solution. But any such optimal solution of (3.1) is an optimal solution
also of the problem (1.1). 1

The next result deals with the Kuhn-Tuacker optimality conditions. In order to state
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these, we first form the Lagrange function for problem (1.1):

L{‘T:yrzw‘x:fnn*.ﬁ"'wg): fo( 7+Z 5y‘+ dy3)+
=1

+ Y Nlfil2) — @z —y) +
e

+Zgj(3;;?“'” —z;) + (3.2)
J =1

+ Z nj(w; = 27%) -

=1
m

- Z}"Liyi - CZ 7
=1
where ) = (Al,.-..,)\m)T, £ = (&1,...,§H)T, 7= {m,.. .,nn)T, = {p1,-. . ptm)T and
¢ are non-negative Lagrange multipliers for the different constraints in (1.1).

The Kuhn-Tucker conditions for problem (1.1), which are stated below, consist of 4
types of conditions, namely

~ Stationarity of the Lagrange function L with respect to (z,y, z).

~ Primal feasibility, which means that (z,y, z) should be a feasible point.

— Dual feasiblity, which means that the Lagrange multipliers should be non-negative.
— Complementary slackness, which means that Lagrange multipliers corresponding to
inactive constraints should be zero.

gf°+z,\ O ¢sm=0, j=1,....n (9L/dz;=0) (3.32)
z; o Oz
GHdiyi—N—p=0, i=1,...,m (0L/0y=0) {3.3b)
m
— > Na; =0, (OL/dz = () (3.3¢c)
filg) —aiz —y; <0, i=1,...,m (primal feasibility) (3.3d)
A(filg)—aiz~yi) =0, i=1,...,m (compl slackness) (3.3e)
{_’J(l'm?'n —z;)=0, j=1,...,n (compl slackness) (3.3f)
ni(z; =27y =0, j=1,...,n (complslacknessj (3.3g)
—uy; =0, i=1,...,m {(compl slackness} {3.1h)
~{z =10, {compl slackness)  (3.31)
rc?i'“ —z; <0 and z; — 2T <0, j=1,...,n (primal feasibility} (3.3})
—z <0 and —y <0, i=1,...,m (primal feasibility) (3.3k)
£, 20 and 4; 20, y=1,...,n (dual feasibility) (3.35
g >0 and p; >0, i=1,...,m (dual feasibility) (3.3m}
M >0 i=1 (dunal feasibility; (3.30}
The next proposition says that these Kuhn-Tucker conditions are in fact necessary
conditions far an optimal solution of problem {1.1].

i
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Proposition 3.2. If (&,9.2) is an optimal solution (local or global) of problem (1.1)
then there are Lagrange multipliers (A &, n, 1, ) which, together with {7, %), satisfy
the above conditions (3.5a)-(3.3n).

Proof. It is well known that if & is an optimal solution (local or global) of a problem
on the form
minimize fo(z)
subject to  fi(z) £0, i=1,...,m (3.4)
z e IRY,
and if there is a vector Az € IR™ such that V f;(#)T Az < 0 for all { such that f;(2) = 0
{i.e. the inner product of Az and the gradient vector of any active constraint in problem

(3.4} is strictly negative) then there are Lagrange multipliers X; which together with &
satisfy the Kuhn-Tucker conditions, which in this case are

dfo,. S .
£($)+ZA50;{j(w) =0, j=1,...,n (0L/0x;=20) (3.5a)
J i=1
filtg) <0, i=1,...,m (primal feasibility) (3.5b)
A >0, i=1,...,m (dual feasibility) (3.5¢)
Aifi(2) =10, i=1,...,m {compl slackness} (3.5d)

This result shall now be applied te problem (1.1).

Assume that (£,9, £) is an optimal solution of problem (1.1) and construct a corre-
sponding vector (Az, Ay, Az) as follows.

Forj=1,...,n,let Az;=1if&; = m?i”, Ag;=-1if &; = 27, Az; = 0 otherwise.
) n afz ) )
Fori=1,...,m,let Ay; =1+ Z | =—(Z)|. Firally, let Az = 1.
oyt dx;

Then it is easily checked that the inner product of (Az, Ay, Az) and the gradient vector,
calculated at (&, g, 2}, of any active constraint in problem (1.1) is strictly negative.
Thus, there are Lagrange multipliers which together with (&, §, 2) satisfy the Kuhn-
Tucker conditions (3.3a}~(3.3n). B

Corollary 3.1. If, in problem (1.1}, di =0 for alli < {1,...,m} and Y7L aic; < 1
then z = 0 in every optimal sofulflon.

Proof. (3.3b) implies that A; < ¢; for each 4. Together with (3.3¢) this implies that
¢ > b=>5";a;0; > 0. But then (3.31) implies that 2 =0. 4

Corollary 3.2. {f, in problem (1.1), a;e; > 1 for some ¢ € {1,...,m} then the corre-
sponding y; = 0 in every optimal solution.

Proof. {3.3¢) implies that A, < L for each ¢, Together with {3.3b) this implies that
oy 2o — 1> 0,50 that g > 0. But then (3.3h) implies that y; = 0. §



4. The MMA subproblem.

MMA is a method for solving problems on the form (1.1), using the following approach:
In each iteration, a current iteration point (x%}, yt%) =(5)} is given. Then an approx-

imating explicit subproblem is generated. In this subproblem, the functions f;(z) are

replaced by approximating convex functions fi(k)(rc). These approximations are based
mainly on gradient information at the current iteration point, but also (implicitly) on
information from previous iteration points. The subproblem is solved, and the unique
optimal solution becomes the next iteration point (w(5+1) y(k+1) E+1)) Then a new

subproblem is generated, etc.

The subproblem mentioned above looks as follows.

minimize fék)(z') +z4 Z(Ciyi + %diyf)

i=1

subject to f,-(k)(x) —a;iz—y <0, i=1,...,m
o <z < 51, i=1,...n
yi > 0, it=1,...,m

z >0

The approximating functions j:zm(r) are chosen as

™ n P g8 .
7 )(m):z {A-)LJ +— %) +rM, i=0,1,..,m,
L T —lj

i=1 ko
where
+
k k P i i
Pl = (i — 22 ((9—.(;7:“0)) + mﬁj’) ,
T
k L & d 2 ] - .
0 = (2 )_l§ ) *f_(-’v“”)) + m(j) ;
Az,
el (k) (A‘)
S (T D (R I -
rp e folat) Z ( & in + 0 _[U‘) ,
g==1 .’I.!J 'L_;[ :L_‘j' :
ol = max{am® 0,000 4 0.0 W),
A = minfaee 0,960 4 0.1}
Here,

2k z; di,

J;

)

s

0 : A T C) ;. L ) " o - 2 i ;
(—i{a”))) = max{0, %i:u(“)} and (i(,’)> = max{0, wiff'—.(rcl

(4.1)

32



The default rules for updating the lower asymptotes lgk) and the upper asymptotes ugk)

are as follows. The first two iterations, when k=1 and & = 2,

ff,vk) = a'sgk) = 0.5(x ] — 2T,

( )_1( )+00( mar_m}nin)_

In later iterations, when &k > 3,

19— o) _ 90 ey

'u§k) — ‘g-k)-i-'\/y")( (k—1) —:r:g-k_l)),
where
07 it (W -l ) <o,
77 =1 12 i @) el 2 Y) s,
k k- k— k—
Lo () - e ) o) =

(k)

In the original MMA, Kg-c) = 0 for all ¢ and j. Other values on «;;” appear in the

following two sections.

5. Non-mixed second derivatives in MMA
Sometimes the user might be able to calculate some of the non-mixed second derivatives

of some of the functions f;. In this section, it will be described how this additional
information can be utilized when generating the MMA subproblem.

First, the parameters p( ) and q{ ) are calculated as above with all mgf) =90, l.e.

+
(k) _. (ne { 8Fi 0 h) )
p; ; ‘_1" - a: 1

&) _ 0 e [ O gn Y
i = () - 1y (m( ))

Next, the following numbers 5 #) are calcnlated.

o K] ~ 1k
O(A\ Jgfz( Ak )~ — V‘BPS_';FJ B 2(1’1{"3') .
Y ()’ (té‘[f; _ :.':_{‘;[\1)-)3 (:L‘”\:) . [gk))ﬁ '

where it is assumed that the second derivatives have been calculated by the user.

i) {#)

NI k)
If r)E‘J < 0 then the above values on p>7 and ¢, are used to define ff s



It c)( ) > ( then instead the following values on p_(i?) and qg-c) are used to define ft-(k).

(aﬁ " .))+ Pt 010 S 0
dz; 2 E;k) lg-k)) :

. S CTRCRR IR
q(k) . (%) _ 1{_&))2 in(-r“‘)) N ‘)u)( T )(15 - 037)
ij 7 3 awj ’ 2(-u(k) 1 k)) ’
J

() _ (0 _
J

k
Py = (£))2

(
3

With these latter values on pg-"‘) and qg-‘") it holds that

3fi(k)

afi
(%) t
) =

o2 %) Pfi
5, __fz_w(m(k)) = 2 (¥

2 - 2
ij 8:1:3

L™y and

When all the pg-c) and q(;c ) have been calculated, the parameters rzgk)

" o & o ne

— f. d 2 ]

= 5@ - | et m_m )
up —zt oz =

are calculated as

Then it holds that 7 (2®) = f;(2).

it is possible for the user to calculate only some of the non-mixed second derivatives.
The ones that are not calculated should simply be set to zero, so that the corresponding
Jff ) become < 0. This implies that the original MMA approximations will be used for
these missing combinations of ¢ and j.

6. A globally convergent version of MMA.

The original MMA can be modified in such a way that a globally convergent version is
obtained. Again, the approximating functions ft-(k)(:t;) are chosen as

. n p(k) G’( ) i
fz( )(3,) Z (A)” . ”[(k} +"'-E ), P =0,1,....m,
£y e R

N J Aoy s g e

(%)

k
but now p;.” and q,gj) are chosen as




(1) _

where the parameters pgk} are chosen as follows. The first iteration, when & =1, p;
a “small” but strictly positive number for all 2 € {0,1,..., m}.

In later iterations, when & > 2, the parameters pgk} are updated according to

(k) 2P1k 1) ffkl(‘ )'<fz( )

i =plF it M) > i)

Further, if fz-(kﬂl){rc{k)) > fi(z®) for all ¢ € {0,1,...,m}, the asymptotes should now
instead be updated as _
00 _ ‘B(_k) (oY l(k—l))
J - i

J H

u“gk)_ (L)+( {k—1) gk—-l))_

Even though this leads to a globally convergent method, the practical experience is
that it in most cases converges slower than the original MMA (on problems where the
original MMA does converge). The reason for this is that since the parameters p( )
increased but never decreased, the approximations become increasingly consenatwe
This may eventually lead to very small steps in the iteration process.



7. An interior point method for solving the MMA subproblem.

To simplify the notations, we now skip the index & in the subproblem. Further, we let
b; = -r:(k} and we drop the constant ’"o &) from the objective function. Then the MMA

subproblem becomes

m
minimize Z (ciy + d Jz
subject to 1(1)—&@—%55” i=1,....m
a5 <5 < 5, i=1,m (7-1)
y‘izox £=1,,m

where

In the following sections, a primal-dual intericr point method for solving problems on
this form will be described.

7.1. Optimnality conditions for the subproblem.

Since the subproblem (7.1) is a convex problem, and since the Slater’s constraint qual-
ifications are fulfilled, the Kuhn-Tucker optimality conditions are both necessary and
sufficient for an optimal solution of (7.1). In order to state these conditions, we first
form the Lagrange function corresponding to (7.1).

Liz,y, 2, \&,mp,() = +2+Z (ciy: + Sdiy?) +
2=}
—1—2)\ z) —aiz — iy — bi) + (7.2)
S = ) e Z,u v ~Cz,
=
where A = (/\"11 <. m) v &= (& :frz)T = (7?1 - -17]’;1)T: o= {,Ml: Um) and
¢ are non- ncoatlw Laoiame multipliers for the different constraints in (?.l}.

Let

p(.r,,\}mgo(:r)LZA-m:Z( BN ol \3)
J

=1 G=p NMs TG o

m. m
here 5,0 = oy =3 Ay el 0= g+ S
{ 7
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Then the Lagrange function can be written

Liz,y,z, Aagvﬂ:H:C) =
m =t

+5 ey + 3diy? = Maiz — Ny —

=1

Aibi — piyi) s

iz, A+ i(fj(@j —y e - 3N+ (1 -0z +

(7.3)

and then the Kuhn-Tucker optimality conditions for the subproblem (7.1) become as

follows.
%—Ej—i—ﬁjzm Jj=1,
€+ diyi — A —pui =0, i=1,
1-¢-Ma=0,
gi{z) —az —yi —b; <0, i=1,.
Ailgi(z) —aiz—yi— b)) =0, i=1,
&Glaj—w;) =0, j=1,.
ni(z; - B) =0, j=1,.
—piths =0, i=1,
_CZ-:O:
a;—x; <0 and ;- 3; <0, j=1,
~2<0 and —y; <0, i=1,.
§ >0 and 7, 20, j=1,
(>0 and p; >0, i=1,.
AN>0, i=1,.
where
v pi(A) g; (A)

Jz; ~ (wy—z)?  {z;-1)?

coon (0L/0x; = 10)
,m (QL/dy; = 0)

dL/dz = 0)
primal feasibility)
compl slackness)
compl slackness)

compl slackness)

compl slackness)
primal feasibility)
primal feasibility)
dual feasiBility)
dual feasibility)

(

(

(

(

(

(compl slackness)
(

(

(

(

(

(dual feasibility)

m
and Ala = Z Aa;.

=1

7.2. The “z-relaxed” optimality conditions for the subproblem

When a primal-dual interior point method is used [or solving the subproblem (7.1}, the
zeros in right hand sides of the complementary slackness conditions (7.4e}—(7.-H) are

{

replaced by the negative of a
introduced for the constraints (7.4d}.

The “s-relaxed” optimality conditions then become

i

dy

G =0,

Oz

crdiys — M= =10,

1-¢-AMa=0.

13

‘small” parameter = > 0. Purther, slack variables s; are
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gi(z) —aiz—yi+s-b;=0, i=1,...,m (7.5d)
Silaj—ay)—e=0, j=1,...n (7.5€)
(3 —2;)—<=0, j=1,...,n (7.5f)
wyi—e=0, i=1,...,m (7.5g)

Cz—e =0, (7.5h)

Aigi—e=0, i=1,...,m (7.51)

z;—oa; >0 and £ >0, j=1,...,n (7.5j)
3;—x; >0 and ; >0, j=1,...,n (7.5k)
Yy >0 and pu; >0, i=1...,m (7.51)
z>0 and (>0, (7.5m)

;>0 and A; >0, i=1,...,m (7.5n)

For each fixed ¢ > 0, there exists a unique solution {z,y,2, A, &, n, p, ¢, 8) of these con-
ditions. This follows because (7.5a)-(7.5n) are mathematically (but not numerically)
equivalent to the Kuhn-Tucker conditions of the following strictly convex problem in
the variables x, y, z and s.

minimize go(z) +z+ 3 (civi + 2di?) +

i=1

+) _(—clog(; — aj) — elog(Bj — a7)) +
i=1

m 7.6

—%—Z(—Slogyimeiogsi)—sbgz (76)
i=1

subject to gi{z)~ ez —y 45 < b, 1=1,..

)

(; <y <ps, >0, 2>0, 8, >0)

where the strict inequalities will automatically be satisfled because of the logarithm
terms in the objective function.



7.3. A Newton direction for the “z-relaxed” optimality conditions.

Given a point (z,y, 2, A, &, 1,1, ¢, 5) such that {7.5j}=(7.5n) are satisfied. If, starting
from this point, Newton’s method should be applied to the system of nonlinear equa-
tions (7.5a}—(7.51), the following system of linear equations should be generated and

solved.

W cT -1 1 \ (_\m —&

(d) -1 -1 Ay 8y

—aT -1 Az — 83

G -1 -a 1 AN — 64

83 {(z—a) Ag —0s

—{m (B-=) An —3s
(1) {v) Ap —d7

¢ z AL ~ B

(s) W/ \as) \-&

where &y,...,d9 are defined by the left hand sides in (7.5a)-(7.51),
2
. 2p; ;
W is an n x n diagonal matrix with {(¥};; = 8 % = pi{d) 5 24; () 3
():Ej ('H,j - Cl?j) (.?Sj - lj)
N g Pij i
(13 an m X i t th (s = == = J - J ’
is an m x 7 matrix with (G)i; br; "l —a ) =T

I is a unit matrix, with dimensions apparent from its position,

{d) is a diagonal matrix with the vector d = (d;, ..., dm)T on the diagonal,

(e —a) i3 a diagonal matrix with the vector « — e on the diagonal, etc.

I the above Newton system, A&, An, Ay, A and As can be eliminated through

A = —{z—a) " HOAz - E+2(z—a) e, (7.7a)
A= {3—a)" ) Aw — g+ 2(F-2) te. {7.7b)
Ap= =y Ay — e+ slyy e, {(7.7c)
Al =—z 1Az 427t (7.7d)
As = — () HS AN~ 5 +2(N) e, (7.7e)

, with dimension apparent from the contexi.
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Then the following partially reduced system in (Az, Ay, Az, AA) is obtained.

Dy GT Az —&
D, , Ay 5,

D, —af Az B -3,

G —I —a D, AX —dy

where

Do = + (=) ) + (3-2)"n),

Dy = (d) -+ ()~ (u),

D,=¢(/z (ascalar},

Dy = ~{X)~Ys),

8= 5L —clz—a) e+ e{f—z)Te,

by =c+{d)y—A—ely) e,

§;=1—ez71 = ATa (ascalar),

Sy=glz)~az—y-~b+e{M)7le.

In this partially reduced system, Az, Ay and Az can be eliminated through
Az = -D;'GTAN - D74,
Ay=D;'AN - D15,

Az=D'aTAN- D16,
Then, finally, the following reduced system in AN is obtained.

DyAX = —3,
where
Dy = Dy — GD7GT oot~ aD7%” | and
8y =3y — GDYS, + D76, +aDIRe, .

It should be noted that Dy is symmetric and negative definite.

(7.8a)
(7.8b)

{7.8¢c)
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7.4. Line search in the Newton direction.

When the direction {Az, Ay, Az, AN, AL Ay, Ap, AC, As) has been calculalated, a step
should be taken in that direction. A “pure” Newton step would be to take a step equal
to the calculated direction. But this step might lead to a point where some of the
variables are negative, which is not feasible. Therefore, we first let & be the largest
number such that # <1 and

x; + 0Nz —a; > 0.01(x; — o) for all j,
3; — (z; + 02x5) > 0.0L(3; — =;) for all 7,
iy, + Ay > 0.01y, for all 4,

z 4+ 8.2z > 0.012,

A BAXN; > 0.01A; for all 1,

&+ 6AE; > 0.01; for all 7,

n; + 8Am; > 0.01n; for all 7,

Wi+ 8Ap; > 0.01g; for all ¢,

¢+ 60A¢ = 0.01¢,

s; + 8As; > 0.01s; for all <.

Now, il a step equal to & times the Newton direction is taken, the resulting point will
have all variables strictly positive. But in order to guarrantee convergence, the new
point should also be in some sense better than the previous. Therefore, we next let =
be the largest of #, 8/2, 8/4, 8/8, ... such that

ol(z,y, 2, A\ &, 1,6 8) + 7 - (Az, Ay, Az, AN A An, Ap, A As))E <
< |E5(~’L'=yzf,)\;f:ﬂ,#,C’S)H,

where §(z,y, z, A\, &, 7, 4, C, $) 18 the residual vector defined by the left hand sides in the
e-relaxed KKT conditions (7.5a)—(7.51}, and || - || is the ordinary Euclidian norm.

This is always possible to obtain since the Newton direction is a descent direction for
8 Ce. 372, A& 1, Gy 8}

-1
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7.5. The complete iteration scheme for solving the MMA subproblem.
First of all, £t} and a starting point (2(), y(1) 02 XD ) p(1) (1)~ 500y which
satisfies {7.5)—(7.5n) are chosen. The following is a simple but reasonable choice.
(=1, ol =L(e;+ 9, W =1, W =1, A =1,

ij(1) — 1/(,351) _ Qj), 7?‘5'1) . 1/(3} _ mfjl))ﬂ H(l) =1, (’*(1) =1, Sz(‘l) = 1.

H

A typical iteration, leading from the v:th iteration point to the (v+1):th iteration point,
consists of the following steps.

Step 1 (direction finding):

For given £} and (), y), 200 A e0) ) (0) 00 s()) which satisfy {7.53)—
(7.51), calculate (Az{), Ayl Az{”),A/\(”),f_\é(“),An(”),A,u(”),L\C(”),As(”)) by solv-
ing the system of linear equations described above.

Step 2 (linesearch):

Calculate a steplength 71*) as described in the previous section.

Step 3 (updating):

Let (z(v+1) yv+1) o4 A1) clotl) pletl) ) (ohd) clotl) glbl)y =
(z(), y), ) AB) ) ple) () ) gy 4

). (/_\m(V), Ayl Az AN Al ,-_\Ti(u), Apt), AW /_\S(v)) .

Step 4 (perhaps decreasing =):
If ||5($(V+1), y(rl-i-l)1 z(uﬁ-l)’ A(u+l}’£(u+1)1 W(U—H): ,Lt(V+1),C(U+1), S(u-i-l))” < =(¥) ’
let el+1) = £(¥) /10, Otherwise, let ¢(+1) = 20,

Increase v by 1 and go to Step 1.

The process is terminated when =(*) has become sufficiently small, say =¥ < 1077,



8. An implementation of MMA in Matlab.

The method described in this paper has been implemented in Matlab 5. This section
contains:

the head of a Matlab m-file containing the function “mmasub”,

1

an m-file used to define a simple test problem {cantilever beam),

— an m-file used to initialize some vectors for the test problem,

an m-file used as a “main program” for the test proplem,

a Matlab run with the above m-files.

The testproblem is a simple cantilever beam problem which can be formulated explicitly

as follows.
minlmize 9 4+ o+ 3+ 24+ Ts

subject to 61/z% +37/23 +19/2 +7/23 + 1/2% <1 (8.1)
1<2;<10, j=1,...,5

s s ot o e o o ok o s ok ookl ot s e o ol o o s sl o Sk ool R R AR o Ko ok ok ok o o ok ok ok ok ok K ok
% This is the file mmasub.m

A

function [xmma,ymma,zmma,lamma,low,uppl = ...
mmasub(m,n,iter,epsimin,xval,xmin,xmax,xoldl,xo0ld2,
fOval,dfCdx,df0dx2,fval,dfdx,dfdx2,low,upp,a,c,d);

pA written in June 1998 by
% Krister Svanberg (krille@math.kth.se)

% Optimization and Systems Theory, KTH,
% SE-10044 Stockholm, Sweden.

%
% mmzsub performs one MMA-iteration, aimed at
% solving the nonlinear programming problem:
pA
% Minimize f£_0(x) + = + sum( c_i*y_ i + O.B*d_i*(y_i)~2 )
Y subject to f_i(x) - a_i*z - y_i <= 0, i1=1,...,m
A ¥max_j <= x_j <= xmin_j, i=1,...,n
A z >= 0, y_i>= 0, i=1,...,m
Ye#x INPUT:
A
“oom = Tha number of constraints (zee above).
A al = Tha number of variables z_j {see above),
% 1ter = Current iteration number ( =1 the first time mmasub is called).
Yiepsimin = Tolerance parameter used in the termination criteria for
P P
A the MMA subproblem (smallest value of epsi).
¥ xval = Column vector with the current values of the variables x_73.
% xmin = Column vector with the lower bounds for the variables x_7.
1
% wmax = Column vector with the upper bounds for the variables x 3.
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% xoldl = xval, one iteration age (provided that iter>t).

%  x0ld2 = xval, two iterations ago {provided that iter>2).
g0 P

% fOval = The value of the objective function f£_0 at xval.

% 4df0dx = Column vector with the derivatives of the objective function f_0
4 with respect to the variables x_j, ¢alculated at xval.

% df0dx2 = Column vector with the non-mixed second derivatives of the

A objective function f_0 with respect to the variables x_j,

% calculated at xval.

% fval = Column vector with the values of the constraint functiocns f_i,
A calculated at xval.

% dfdx = (m x n)-matrix with the derivatives of the comnstraint functions
A f_1i with respect to the variables x_j, calculated at xval.

% dfdx(i,j) = the derivative of f_i with respect to x_j.

% dfdx2 = (m x n)-matrix with the non-—mixed second derivatives of the

4 constraint functions f_i with respect to the variables x_j,

A calculated at xval.

% dfdx2(i,j) = the second derivative of f_i with respect to x_j.
% low = Column vector with the lower asymptotes from the previous

% iteration (provided that iter>1).

% upp = Column vector with the upper asymptotes from the previous

% iteration (provided that iter>t}.

% a = Column vector with the constants a_i in the terms a_i*=z.

N ¢ = Column vector with the constants ¢_i in the terms c_i*y_1.

%od = Column vector with the constants d_i in the terms O.5#xd_i*{y_i)~2.

% xmma = Column vector with the optimal values of the variables x_j

% in the current MMA subproblem.

% ymma = Column vector with the optimal values of the variables y_i

A in the current MMA subproblem.

% =zmma = Scalar with the optimal value of the variable z

A in the current MMA subproblem.

% lamma = Column vector with the optimal values of the dnal variables

% {Lagrange multipliers) in the current MMA subproblem.

% low = Column vector with the lower asymptotes, calculated and used
% in the current MMA subproblem.

% upp = Column vector with the upper asymptotes, calculated and used
A in the current MMA subpreoblem.

h

Yod Rk e ok R KR ARk KRR R KRR ok R R R R R R Rk Rk ok Rk R R R Rk R Rk
% This is the file beam.m

%  which defines the cantilever beam problem.

%

functicen [£Cval,d£04%,df0dx2,fval, dfdx,dfdx2] = bean(x);
%

% written in June 1998 by

pA

%  Krister Svanberg {(krille@math.kth.ze)
%  Optimizaticn and Systems Theory, KTH,
% SE-10044 Stockholm, Sweden.
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|/'

e=[111111;

df
df
£0
co
x2
x3
x4
x5
x3
fv
df
df
Yx
%
%
%
A
%
%
%
%
I3
%

Yok
"
A

Qdx = e;

Q0dx2 = Q¥*e;

val = df0dx’ *x;

ef = [61 37 19 7 117;
= X.¥*X;

= X2.%x;

= x2.%x2;

= x3.%%x2;

inv = e./x3;

al = coef’#x3inv - 1;

dx = —3*{coef./x4)’;

dx2 = 12*{coef./x5)’;

ke s o o oo o s o e sk oKk o oK oK oK R o ok ek ok T s s o KR o R R R K K K
This is the file beaminit.m
in which some vectors for the cantilever
beam problem are initialized.

written in June 1998 by
Krister Svanberg (krille@math.kth.se)

Optimizaticn and Systems Theory, KTH,
SE-10044 Stockholm, Sweden.

m= 1;

n = 5;

epsimin = 0.000000005;
xval = b*ones(m,1);

xoldl = zeros(n,1);
x¥0ld2 = zeros(n,1);

low = zeros(n,1);
upp = zeros{n,i);
xmin = ones(m,1);
xmax = iO%ones(n,1);

¢ = 1000*ones{m,1);

d = zeros{m,1);

a = zeros(m,1);

[£0val,df0dx,df0dx2,fval,dfdx,dfdx?2] = beam(xval);
outvector = [fOval fval xval’]’

iter = 0;

S5 A o o o e o o o e o ok ok o oo oKl ol e e ks o o ok ok o b ks o e sk oo o o o

13

This is the file beammain.m
which is used as a maln program Ifor
the cantilever beam problem.

written in June 1998 by
Krister Svanberg (krille@math.kth.se)

Optimization and Systems Theory, KTH,
SE-10044 Stockhelm, Sweden.
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%

itte = 0O;

while itte < maxite
iter = iter+1
itte = itte+l;

[xmma , ymma,, zmma, lamma, low,uppl = ...
mmasub{m,n,iter,epsimin, xval, xmin,xmax,xoldl,x0ld2,
foval,df0dx,df0dx2,fval,dfdx,dfdx2,low,upp,a,c,d);

x0ld2 = xoldi;
xoldl = xval;
xval = xmma;
[f0val,df0dx,df0dx2,fval ,dfdx,dfdx2] = beam(xval):
outvector = [fOval fval xval’}’
end
Y oo s o o o R o R ok ok ok s o sk o ok o ok o ok o o ok ok SRR o kK

>> beaminit

outvector =
25

gomon o

>> maxite=3;
>> beammain

iter = 1
outvector =
21.23671540968126
.05143688305828
.53199378990684
.19640864935817
.65143408913184
7248497036447 1 e e e e
.13198117763970

N W o1 O

iter = 2
cutvector =
21.49392433684576
-0.00030008977653
.34532737946843
.30615287687694
.583566436551021
.538975283225658
.16912887973362

SV IRY R ¢ s e ]

R
AW



iter = 3
outvector =
21.47555781630788
-0.00000162629643
.95683561645921
.31238291165642
,52326975413410
.52438212611257
. 15888730794555

B W W NG

>> beammain

iter = 4
outvector =
21.47382497571198
-0.00000035796458
.99800703382287
.31118338118682
.50260863126298
.50698584583424
. 15504907360627

oW ok

iter = 5
ocutvector =
21.47367102202199
-0.00000001754855
.011166435427956
.31009073351918
.49635193271211
.50262846058030
.15343345978245

K W o N ;D

iter = 6
ountvector =
21.47366026272084
-0.00000000182023
.01488128269035
.30960079917009
- 49474308026951
.50167851835040
L 15287 158225050

BN WS

The academic user can get these Matlab m-files lor free. Just send an e-mail to the
author, explaining the intended usage of the code.





