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~DJA - moclelling aspects and solution schemes' 

Krister Svanberg t 

Abstract 

This paper deals with modelling aspects and solution schemes when using the 
Method of:\Ioving Asymptotes (MMA) for solving different optimization problems. 
First, a convenÎE~llt and useful general farm for inequality-constrained optimization 
problems 18 suggestecl and analyzed. After that, j\IMA for solving problems on this 
general farm is cieait with. In particular, a primai-dual interior point method for 
solving the subproblems 18 developed. Further, an option for the user to provide 
non-mixed second derivatives i5 described. Finally, an Implementation of MMA in 
ivIatlab i8 presented and illustrated on a simple example. The reader is invited to 
obtain the Matlab-files free for academic usage. 

1. Considered optimization problem. 

Throughout this paper, optimization problems on the following form are considered, 
where the variables are x = (Xl, ... , xn)T E IRn, y = (Yi, ... , Ym) TE IRm and z E IR. 

m 

minimize fo(x) + z + I:(CiYi + ~diYll 
i=l 

subject to fi(X) _. aiZ - Yi ~ 0, 

Yi 2': 0, 

Z 2': 0, 

i = 1, .. _,m 

j= 1, ... ,'11, 

i = 1, .. . ,'m 

Here, la, ft,··., lm are given, continuously differentiable, real-valued fnnctions. 

;tjÙl, and .1:]taX are given real numbers such that, for each j, :rjin < .rTij
.
X

• 

(1.1) 

(Ci; C and di are given non-negative real Ilnmbers s1.1eh that, for c(\,c1l /; (. + d,' > O. 

~,.rotivations for cOllsidering problems on this particular fOIm l,vill be given in the fo1-
lmving sections. 

~f~'-""ilrch ~l!PPol'tecl by the S\\"(·dith HI'~'('élrch Council for the Engin(,(Till;~ S(-j'"III"('è> ITFH). 
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2. Sorne rnodelling aspects. 

In this section, we give some examples of how the above formulation (1.1) can be used 
in some particular cases which often appear in application. 

2.1. Ordinary NLP problems. 

Assume that one wants to solve a problem on the following "standard" form for non­
linear programming. 

minimize Jo (x) 

subject to J;(x):,:: 0, ·i = 1, ... ,'m 

X"!lin < x· < x1?lax '1 n 
J - J- J ' J= j"', 

The parameters ai, Ci and di should then be chosen as follows in problem (1.1). 

(2.1) 

For each i, let ai'" O. Then z '" 0 in any optimal solution of (1.1). Further, for each 
i, let di = 0 and Ci = "a large number", so that the variables Yi become '''expensive''. 
Then typically Yi '" 0 in any optimal solution of (1.1), and the corresponding x is an 
optimal solution of (2.1). 

lt should be noted that the problem (1.1) al ways has feasible solutions, and in fact also 
at least one optimal solution (see below). This holds even if the user's problem (2.1) 
does not have any feasible solutions, in which case sorne Yi > 0 in the optimal solution 
of (1.1). This is one advantage of the formulation (1.1) compared to the formulation 
(2.1). Other advantages will be discussed later. 

Now follows sorne practical considerations and recommendations concerning the above 
situation. 

In many structural optimization applications, the eonstraints are typieally on the form 
O"i(X) ::; CTiax, where O"i(X) stands for e.g. a certain stress in the structure, while aywx 
is the largest permitted value on this stress. This means that f;(x) '" a;(x) - af'ax (in 
(1.1) as well as in (2.1)). The user should then preferably scale the constraints in sueh a 
way that 1 :; af'"X :; 100 for eaeh i (and not e.g. <MX", 109 ). The objective function 
Joix) should preferably be scalecl such that 1 :; Jo(x) :; 100 for reasonable values on 
the variables. The va.riables ,Iwuld preferably be scaled suell th,Lt typieal values satisfy 
0.1:':: IXj!:':: 100 for all j. 

Concerning the "large n li il! be l'S" above, the user should (for 1l11meric::-d reasons) try 
to avoid very large \'alllc-,::, ni] tlle coefficients Ci (like 10 1'2). It i:-:; bet,ter to start \Vith 
"'re::t50nably large': v'.Llue:-:; ;'Ille! tltell: if ît tllrns out that Hot a.1l .~/i = 0 in the optimal 
SOI'ltio11 of (1.1), incredse Ilw.,e c,-values by e.g. a factor Ion ,wei solve the problem 
again, etc. If the functioJis dncl the variables have been scaleel arcording to "bove, then 
'"resonably large" va.lues ou the parameters Ci coulcl bel ~:;a)-"~ Cl = 1000. 

Filld.ll}') cOllcerning the ,:-Î11liilt·' 1)()llnd constraînts 

bl' the case that 80n1\' \'cll'Î;ll,!f"c.. ,ri do not have 
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bouncls. In that case, it is in practice always possible to choose "artificial" bO\lnds 
:CJ'in and xj'"x 5uch that every realistic solution x satisfies the corresponding bound 

constraints. The user should then preferably avoid choosing xj""X - xjin unnecessa.rily 
large. It is better to try sorne reasonable bounds and then, if it turns out that SOllle 
variable ,ri becomes equal to such an "artificial" bound in the optimal solution of (1.1), 
change this bound and solve the problem again (starting from the recently obtained 
solution), etc. 

2.2. Least squares problems. (Minimum 12-norm problems.) 

Assume that one wants to solve a constrained least squares problem on the form 

p 

mmlmlze 2:(hdx))2 
k=l 

subject to gi(X):5 0, i = 1) ... ) q 
(2.2) 

X '0in < X· < x Tfiax J. 1 n J - J - J ' =, .. ", 

where hk and gi are given differentiable functions. 

The functions Ji and the parameters ai, Ci and di should then be chosen as follows in 
problem (1.1). 

m 2p+q, 
Jo Cr) 0, 
Ji (x) hi(X), i = 1, ... ,p 
Jp+i(X) -hi(X), i = 1, .. . ,p 

12p+i(x) gi (x), i = 1, ... , q 
ai 0, i= 1, . .. ,m 
di 2, i = l, ... , 2p 

d2p +i 0, i = 1, ... , q 

Ci 0, i=1, ... ,2p 
C2p+i = large number, 'i = 1, ... , q 

2.3. Minimum l,-norm problems. 

Assume that one want.s t.o solve a minimum l,-llorm problem on the form 

p 

llllnImlZe 2: Ihk(x)1 
k=l 

cahject t.o gi(:r):5 0, i = 1, ... , Q 

.,'(Wln < ,». < ,,,'(!' (LJ: J. l n 
'J _<"J .... } , = j"') 

\vhere hl-;, and !h ;-I.j'<' ,~i\'en differentiable functions. 



The functions li and the parameters ai, Ci and di should then be chosen as follows in 
problem (1.1). 

m = 2p+q, 
10 (:r) 
li (,1') 
Ip+i (:1') 
hp+i(:r) 

= d, 
hi( x), 

= -hi(:r), 
gi(X ), 
0, 

= 0, 
= 1, 

large number, 

2.4. Minimum Iw-norm problems. 

i=l, ... ,p 
i = 1, .. . ,p 
'Î = 1, .. ",q 
i = l, .. . ,m 
i = 1, .. . ,m 
i=I, ... ,2p 
i = 1, ... , q 

Assume that one wants to solve an loo-norm problem on the form 

minimize max {lhk(x)1} 
k=l, .. ,p 

subject to 9i(X) ~ 0, i == 1, .. " q 

XTftin < X· < x7!lax J' 1 
J - J - J ' = ""ln 

where hk and 9i are given differentiable functions. 

(2.4) 

The functions li and the parameters ai, Ci and di should then be chosen as follows in 
problem (1.1). 

m 

lo(x) 
J;(x) 
Ip+i(x) 
hp+i(X) 
ai 

a2p+i 

di 

2p+ g, 

0, 
hi (x), 
-hi (x), 
gi (x), 

== 1, 
0, 
0, 

i = 1, .. . ,p 
i = 1, .. . ,p 
i = 1, ... , q 
i=I, ... ,2p 
i == 1, ... , q 
i::::; l, .. . ,m 

Ci :::::; large number, i = 1, ... , 'm 



3. Sorne theoretical properties of the considered problern. 

In this section, some theoretical properties of the problem (1.1) will be proved. 

Ta shorten the notation, let./\ = {:r E!Rn \ ;J;j"in::; Xj ~ xjax, j = l, .. ", n}. 

First, we note the simple fact that there are always feasible solutions of problem (1.1). 
This follows since for any x EXit is possible to find y and z such that (x, y, z) is a 
feasible solution of (1.1). One may take, e.g., z = ° and Yi = max{O, J;(x)}. A perhaps 
less obvious fact is the following. 

Proposition 3.1. There is al-ways at lwst Olle optimal sorution of the problem (1.1). 

Proof. Since X is a compact set and fi is a continuo us function for each i, it follows 
from Weierstrass' theorem that the numbers fi = max{J;(x) 1 x E X},i = 1, ... , m, 
are well defined. 

Let y,/wx = 1 + max{O,7;} and Y = {y E IRm 
1 ° ::: Yi ::: yraX

, i = 1, ... , m}. 

If (x, y, z) is an optimal solution of the problem (1.1) then Yi < Yrax for ail i, since if 
any Yi ? yraX then fi(x) - aiz - Yi::: -1 < 0, and then a feasible solution with strictly 
lower objective value wou Id be obtained by sim ply decreasing Yi. 

Thus, no optimal solutions of the problem (1.1) are lost or introduced if the restriction 
Y E Y is included in the formulation. 

Next, let Z = {z E IR 1 ° ::: z ::: zma
x

}, 
max 

where zmax = 1 if al = ... = am = 0, while zmax = 1 +max{ ~ 1 ai > O} otherwise. 
t ai 

By similar arguments as above, it follows that no optimal solutions of the problem (1.1) 
are lost or introduced if the restriction z E Z is included in the formulation. 

The above discussion implies that (x, y, z) is an optimal solution of the problem (1.1) 
if and only if (x, y,.i) is an optimal solution of the following problem. 

m 

minimize fo(x) + z + I:(CiYi + ~diYJ) 
i=l 

subject to fi (cc) - aiz - Yi ::: 0, 

< .,_'. < _/.'f!1QX 
- '"] - "J 1 

i = l, .. _,m 
j = l, .. 'ln 

'1: = 1, ... , ra 

(3.1 ) 

ln thi::; problern (:3.1): the f(,(\:-:ilble 0et is nonemDtv and compact ,;vhile the objective 
fUllction is contillUOll::l. Thus: according ta \Veierstrass 1 theorem 1 there is alway~:; a.t 
lcast one optimal solllliou. Ellit iLny sneh optimal solution of (:l.l) is an optimal solution 
,,180 of the problem (l.i). 1 

'The next result deab '.\;'11 Il t!t(; I{llhn-Tucker optillla,lit~- \.."onditions. In order to st;-d,l 

C) 
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these, we first form the Lagrange function for problem (l.I): 

m 

i:::::1 
m 

+ I: ÀiUi(X) - ai z - Yi) + 
1=1 

n 

+ I:t;j(x'J'n - Xi) + 
n 

+ I:1)j(Xj - xjGX) -
j=:l 
m 

- I: J.1iYi - (z , 
i:::;l 

(3.2) 

where À = (À" ... , Àm)T, t; = (';" ... , çn)T, 1) = (r)1, ... , 7)n)T, J.1 = (J.11, ... , ftm)T and 
( are non-negative Lagrange multipliers for the different constraints in (1.1). 

The Kuhn-Tucker conditions for problem (1.1), which are stated below, consist of 4 
types of conditions, namely 
- Stationarity of the Lagrange function L with respect to (x, y, z). 
- Primai feasibility, which means that (x, y, z) should be a feasible point. 
- Dual feasiblity, which means that the Lagrange multipliers should be non-negative. 
- Complementary slackness, which means that Lagrange multipliers corresponding to 
inactive constraints should be zero. 

Dio + I>Dli - çj + 7)j = 0, j = 1, .. . ,n (DL/Dxj = 0) (3.3a) 
Dx· . 'Dx· 

J 2=1 ) 

Ci + diYi - Ài - J.1i = 0, i = 1,. "J'm (aL/8Yi = 0) (3.3b) 
m 

1 - ( - I: Àiai = 0, (aL/oz = 0) (3.3c) 
i::::l 

li(X) - ai z - Yi::; 0, i = 1, .. 'lm (primai feasibility) (3.3d) 

ÂiUi(X) - aiz - Yi) = 0, i = 1, ... ,m (compl slackness) (:3.3e) 
C( min .)-0 <"J Xj - x) - , J = 1, . .. ,n (compl slackness) (:>.3f) 

l)j(Xj - xjax) = 0, j = 1, .. " n (corn pl slackness) (:J.:lg) 

-ftiVi = 0, i = 1, .. . ,m (corn pl slackness) i:l.:Jh) 

-(z = 0: (compl slackness) (:Ui) 
x',?,i'll 
. J - ,rj ::;0 "nd . ,max .,/ 0 

.TJ-Xj -=::: l j=l, ... ,n (primai feasibi!ity) Il.lj) 

-;:: < 0 and - Yi < 0, 1= l, ... , m (primai feasibility) l' .j' ) \.)., i-\ 

çj > 0 and 'I7j 2: 0, .i = 1, ... , n (dual feasibi!ity) (:3.3!) 

(>0 and Pi :::: 0, i=1. ... ,'m (dual feasibi!ity) (:Ulll) 

Ài :::: o. i= l, ... ,m (dual feasibility) (:Un) 

The llext propo~itjoll say's that these KlIhn-'Tllckt';r conditions are in fart )If:\{y.'<-;a.l'Y 

conditions for ;-111 optimal solution of pro!j!l l Ill (] .l). 
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Proposition 3.2. If (i,:9, i) IS an optimal solution (local or global) of problem (1.1) 
then there are Lagrange multiplias P"I;,I),/l,() ",hich, together ",ith (;î;,Û,z), salisfy 

the aboue conditions (J.Ja)-(J.Jn). 

Proof. It is well known that if ,î; is an optimal solution (local or global) of a problem 
on the form 

minimize fo(x) 

subject to fi(x):S 0, i = l, ... , m (:Ll) 

x E ]Rn, 

and if there is a vector L'ix E IRn such that V fi (x) T è>x < 0 for ail i such that fd x) = 0 
(i.e. the inner product of ~x and the gradient vector of any active constraint in problem 
(3.4) is strictly negative) th en there are Lagrange multipliers ),i which together with x 
satisfy the Kuhn-Tucker conditions, which in this case are 

aJo(x) + 'f),i af; (x) =0, j=l, ... ,n (aLjaxj=O) 
aXj i=1 aXj 

Ji(X) :S 0, i = l, ... , m (primai feasibility) 

),i Z 0, i = l, ... , m (dual feasibility) 

),;/i(5:) = 0, i = l, ... , m (compl slackness) 

This result shall now be applied to problem (1.1). 

(3.50.) 

(3.5b) 

(3.5c) 

(3.5d) 

Assume that (x,:9, i) is an optimal solution of problem (1.1) and construct a corre­
sponding vector (L'ix, L'iy, L'iz) as follows. 

For j = l, ... , n, let L'iXj = 1 if :Cj = xTin , L'iXj = -1 if Xj = xTax , ilxj = Ootherwise. 

For i = l, ... , m, let ilYi = 1 + t 1 aa Ji (x)l. Finally, let ~z = 1. 
j=1 X J 

Then it is easily checked that the inner product of (ilx, ily, ilz) and the gradient vector, 
calculated at (x, g, .'i), of any active constraint in problem (1.1) is strictly negative. 
Thus, there are Lagrange multipliers which together with (x, fj, 2) satisfy the Kuhn-
Tucker conditions (3.3a)-(:3.:3n). 1 

Corollary 3,1. If, in l'rob/cm (l.1), di = 0 Jor all'i E {l, ... , m} and L;:1 aici < 1 
thén z = 0 in every optÙ7?u! solution. 

Proaf. (3.3b) implies t11"t Ài :S Ci for eachi. Together \Vith (:3.:30) this implies that 
( Z 1 - Li aici > O. But then (:Ui) implies that z = Q. , 

Corollary 3.2. Il; in. pm/Jlr!)) (1.1), aiCi > l for somei E {J, ... , m} then the COrre­

sponch:ng Yi = 0 in euery optimal solution. 

Praof. (:3.3c) implies thilt ,\;11, <; l for each i. Togethel' \\"it11 (:Llb) this implies that 
l' ,", Z r,ai - 1 > 0, 30 th,il il, > O. But then (3.3h) implies (hat 1), = O. 1 

7 



4. The MMA subproblem. 

MMA is a method for solving problems on the form (1.1), using the following approach: 
In each iteration, a CUITent iteration point (,,(k), y(k), z(k») is given. Then an approx­
imating explicit subproblem is generated. In this subproblem, the functions fi(x) are 

replaced by approximating convex functions flk)(x). These approximations are based 
mainly on gradient information at the current iteration point, but also (implicitly) on 
information From previous iteration points. The subproblem is solved, and the unique 
optimal solution becomes the next iteration point (,,(k+1) , y(k+1), z(k+l»). Then a new 
su bproblem is generated, etc. 

The subproblem mentioned above looks as follows. 

m 

minimize fJk) (x) + z + I)CiYi + ~diYl) 
i=l 

-(k) subject to fi (x) - ai z - Yi :S 0, 

o/k) < x' < a(k) 
y-J-'J' 

Yi 2': 0, 

z > O. 

i = l)o .. ,m 

j = l,o .. ,n 

i= 1, . .. ,m 

The approximating functions fik)(x) are dlOsen as 

where 

l'lere, 

n ((k) (k) ) -(k) _ Pij qij . (k) 
fi (x)-2:: (k) .~+ ._ (k) +ri , 

J=l uJ -xJ xJ lj 

(k) = ( (k) _ ,Ik»)2 (( [) fi (. (k»)) + + (k») 
PZ] uJ x J ~ . X KZ]' 

UXJ 

((,) - -{. ,min 091(k) , (' l.(k i } 0.i - max ,,2:j ) .. 'j T,).·I j ; 

-(k) _ '{._,fIUlX ,Ik) - ,,(.~) 
di -mlIl "j ,O.9u.; +O'!.'j }. 

1 (
DI. (, ) - { iJ 1; 

(J,11( -'. -, (.i""') = max 0) --o' 
(J,l') :l.:j 

,q 

(4.1) 

)J. 



The default rules for updating the lower asymptotes ljk) and the upper asymptotes u;k) 

are as foilows. The first two iterations, when /,; = 1 and k = 2, 

( k) (k) 0 l. = x- - 0 ;(x,?1ax - x7!'m) 
J J "J) J' 

In later iterations, wheu /,; :::: 3, 

where 

N) = . (k) _, (k)(o (k-l) _l(k-l)) 
J :C J Il ,-C) J ' 

(k) (k) (k) (k 1) (k 1) u 0 ="·0 + 'Y 0 (." 0 - - x 0 - ) 
) J il J • J ' 

l 
0.7 if (x 1k ) - x(k-l ll (x(k-l) - x(k-2)l < 0 

. J J J J l 

"(k) = 1.2 if (x(kl _ x(k-l)l (x(k-l) _ x(k-2)l > 0 
J J) J J ' 

1 if (x(k) _ x(k-l))(x 1k- 1 ) _ x(k-2l) = 0 
J J 1 J • 

In the original MMA, ,,);) 
foilowing two sections. 

= 0 for ail i and j. Other values on ,,(k) appear in the 
'J 

5. Non-mixed second derivatives in MMA 

Sometimes the user might be able to calculate sorne of the non-mixed second derivatives 
of sorne of the functions fi. In this section, it will be described how this additional 
information can be utilized when generating the MMA subproblem. 

First, the parameters pl;) and q~) are ca\culated as above with ail ,,);) = 0, i.e. 

(k) = ( (k) _ (kl)2 (a fi ( (k)l) + 
Pt] uJ xJ ùx' X l 

J 

(k) = ( .Ik) _11k))2 (Of; (o .• lkll)-
qtJ X J J ~1",. ,f) 

U'UJ 

Next, the [ollowing numbers 5.i;) are calculatecl. 

.(k) 
)/) 0 ,.... l'l 

where it is assumecl that the second dcri,·atives have been calculated by the liser. 

(i·) Ik) (h) -(10) 
ff 1\,," < 0 tlwn the ab ove values on JJ;.; (lllc] qij are used to define !; C • 



If 6;;) > 0 then instead the following values on p\J) and q;;) are used to define J?). 

(k) == ( (k) _ (k)), (( [Jfi. (.(k l))+ + 
PI) uJ xJ ~ x 

UX) 

With these latter values on p;;) and q;;) it holds that 

and 

vVhen all the plJ) and qi~) have been calculated, the parameters r)kl are calculated as 

(k) _ . (k) Pij qij 
n (k) (k)) 

ri - f,(x ) - ~, u(k) _ x(k) + x(k) _ /k) . 
J- J J J J 

Then it holds that J,ik)(x(k)) == fi(X(k)). 

It is possible for the user to calculate only sorne of the non-mixed second derivatives. 
The ones that are not calculated should sim ply be set to zero, so that the corresponding 
6;;) become ::; O. This implies that the original Mi'vIA approximations will be used for 
these missing combinations of i and j. 

6. A globally convergent version of MMA. 

The original MMA can be modified in su ch a way that a globally convergent version is 
obtained. Again, the approximating functions l;(k)(x) are chosen as 

but now p;;) and q!J) are chosen a:i 

10 

(k) . + T'i , l = 0) 1, ... ~ 'm, 

(kl( (ic) /I.kl)) 
/J- u· -

't .f J 

2 

(kl ( .(kl /(kl j ) Pi _Uj -.1 

2 ' 



where the parameters p;k) are chosen as follows. The first iteration, wh en k = 1, Pl') = 
a "sm ail" but strictly positive number for ail i E {O, 1, ... , m}. 

In later iterations, when k :>: 2, the parameters p;k) are llpdated according to 

(k) 2 (k-I) 
Pi = Pi 

p;k) = p;k-I) if j,(k-I) Cork») :>: J;(x(k») . 

Further, if J/k-')(x1k») :>: fi(:r 1k») for all i E {O, 1, ... , m}, the asymptotes should now 
instead be llpdated as 

Z(k) = :r(k) _ (x(k-I) _ Z(k-I») 
J J J J ' 

. (k) _ (k) + ((k-I) .(k-I») 
Uj - xj u j - x j . 

Even though this leads to a globally convergent method, the practical experience is 
that it in most cases converges slower than the original MMA (on problems where the 

original MMA does converge). The reason for this is that since the parameters p;k) are 
increased but never decreased, the approximations become increasingly conservative. 
This mal' eventually lead to very small steps in the iteration process. 

Il 



7. An interior point method for solving the MMA subproblem. 

To simplify the notations, we now skip the index k in the subproblem. Further, we let 

bi '" _r;k), and we drop the constant r~k) from the objective function. Then the ,,['vIA 
subproblem becomes 

where 

m 
'\' ].2 minimize go(x) + z + L)CiYi + 'jdiYi) 
'i=l 

subject to gi(X) - aiz - Yi ::; bi, 

Œj::;:Xj-::;,6 j ? 

Y · > 0 ,- , 
z ~ 0, 

i = 1, .. 'lm 

j:::::: 1, "'ln 

i = 1, .. . ,m 

n ( ) 
Pij qij . 

gi(x)=L . . + . [. ' I=O,l, ... ,m. 
j=1 uJ - x J x J - J 

(7.1) 

In the following sections, a primai-dual interior point method for solving problems on 
this forrn will be described. 

7.1. Optimality conditions for the subproblem. 

Since the subproblern (7.1) is a convex problem, and since the Slater's constraint qual­
ifications are fulfilled, the Kuhn-Tucker optimality conditions are both necessary and 
sufficient for an optimal solution of (7.1). In order to state these conditions, we first 
form the Lagrange function corresponding to (7.1). 

m 

L(x,y,z,>',/;,1),p,() = go(x) +z+ L(CiYi + ~diYf) + 

m 

+ L >'i(gi(X) - ai Z - Yi - bi) + 
i=l 

n 

j=l 

(7.2) 

m 

i=l 

where >. '" p.], ... , >'m) T, ç = ((1' ... ,(,J T li = (rI!, ... , Tin) T, l' = (l' 1, ... , Pmfr ;end 
( a.re llon-negative Lagrange multip!iel'S for the different constraints in (7.1). 

Let 
," n ( p(>') Q.( \) ) 

\':(:c, >') '" 90(:e) + L.. À,V;(:1') '" L } .' + . J' . • 
;-;::;1 )=1 1J.J - ,1:) '&j - IJ 

m m 

yianp
Highlight



Then the Lagrange function can be written 

n 

Ler, y, z, À, ç, 1), 1-', Cl = ,p( x, À) + '2.) ç) (crj - :r J) + Ilj Cr j -3j)) + (1 - () z + 
j=1 

m 

+ I)CiYi + !diyl- À,ai z - ÀiYi - Àibi - !liYi) , 

(7.3) 
and th en the Kuhn-Tucker optimality conditions for the subproblem (7.1) become as 
follows. 

where 

[hf; 
j = 1, .. . ,n (DL/EJxj = 0) 7)'- - çj + 1)j = 0, 

X· J 

Ci + diYi - Ài - I-'i = 0, i= 1, .. 'lm (DL/DYi = 0) 

1- (- À
T a = 0, (DL/Dz = 0) 

9i(X) - ai z - Yi - bi S 0, i= 1, ... ,m (primai feasibility) 

Ài(9i(X) - aiz - Yi - bi) = 0, i= 1, .. _,'m (campi slackness) 

çj(crj - Xj) = 0, j = 1, .. _,n (compl slackness) 

ry(x-(3)-O J J J - , j = 1, "'ln (corn pl slackness) 

-l-'iYi = 0, i = 1, . .. ,'m (corn pl slackness) 

-(z = 0, (campi slackness) 

cr'-x,<O ) J - and Xj - (3j S 0, j = 1, .. _,n (primai feasibility) 

-z < 0 and - Yi S 0, i= l,o .. ,m. (primai feasibility) 

ç > 0 J -
and 1)j ::: 0, j = 1, .. _,n (dual feasibility) 

(:::0 and I-'i ::: 0, i = 1,. "lm (dual feasibility) 

Ài ::: 0, i = 1, . .. ,'In (dual feasibility) 

D1jJ pj (À) 
Dx' = (u· - x .)2 J J J 

qj (À) 
(Xj - Ij)2 

m 

and ).7 a = L Àiai. 
i=l 

7.2. The "E-relaxed" optimality conditions for the subproblem 

(7Aa) 

(7Ab) 

(7Ac) 

(7Ad) 

(7 .'le) 

(Hf) 

(7Ag) 

(7Ah) 

(Hi) 

(7Aj) 

(7.4k) 

(7 Al) 

(7Am) 

(7.4n) 

\'Ihen a primai-dual interior point method ie uscd fur .,uh·ing the subproblem (7.1), the 
zeros in right hand sides of the complementary s!?Lckness conditions (7Ae)-(7Ai) are 
rcplaced by the negati-ve of a "small" parameter :: > O. Furthel') slack variables Si are 
introcluced for the constraints (7Ad). 

The "E-rela,xcd~' optimality conditions then beconw 

D,p 
~D -çj+TIj=O, )=I, ... ,n 

:rj 

Ci + di/Ii - /\ - Pi = O. i::::.:: -!, ... 1 fTi 

1 " d 'J .,-\.-/\ a=\. 

(7.,ja) 

1 ï.:jh) 

(ï .. )e) 
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Ui(X) - Cli z - Yi + Si - bi = 0, i = l, ... ,'m (7.,Sd) 

C(x a) ~-O '-.,J . J - - J - ':: - , j = l, ... , n (7.5e) 

1)j(;3j - Xj) - c: = 0, j=l, ... ,n (i.of) 

PiY-i - E = 0, i = l, ... ,'m (i.5g) 

(Z-'O=O, (7.,5h) 

ÀiS-i - ê = 0, i = l, . .. ,"m (7.5i) 

Xj - Cij > 0 and çj > 0, j = 1, .. 'ln (7.5j) 

,!3j - Xj > 0 and ryj > 0, j = l, .. . ,n (7.5k) 

Yi> 0 and l'i > 0, i = l,o",m (7.51) 

z > 0 and (> 0, (7.5m) 

Si > 0 and Ài > 0, i = l, "'lm (7.5n) 

For eachfixed E: > 0, there exists a unique solution (x,y,z,À,ç,1),/L,(,s) ofthese con­
ditions. This follows because (7 .5a)-(7 .5n) are mathematically (but not numerically) 
equivalent ta the Kuhn-Tucker conditions of the following strictly convex problem in 
the variables x, y, z and s. 

m 

minimize go (x) + z + 2) CiYi + ~ diyf) + 
i=l 

n 

+ L(-dog(xj - aj) - ê!og(,6j - Xj)) + 
j=l 

m (7.6) 
+ L(-E!og Yi - slog Si) - slog z 

subjectto gi(x)-aiZ-Yi+Si~bi, i=l, ... ,m 

(aj < :rj < ;3j, Yi> 0, z> 0, Si> 0) 

where the strict inequalities will automatically be satisfied because of the logarithm 
terms in the objective function. 

l ,-~ 



7.3. A Newton direction for the "é-relaxed" optimality conditions. 

Gi\'en a point (x,y,z,>',f;,1),I'.(,S) sueh that (7.5j)-(r.5n) are satisfied. If, starting 
from this point, Newton's methoe! shoule! be appliee! to the system of nonlinear equa­
tions (i.5a)-(7.5i), the following system of linear equations shoule! be generatee! and 
solved. 

\fi GT -I I 6x -01 

(d) -I -I 6y -02 

_aT -1 6z -03 

G -I -a I 6>' -04 

(f;) (x-a) 6.ç -05 

-(1)) (/3 - x) 61) -06 

(1-') (y) 61-' -07 

( z 6.( -08 

(8) (>.) 68 -Og 

\vhere 61 , ... ,89 are defined by the left hand sides in (7.5a)-(7.5i), 

\fi is an n x n diagonal matrix with (\fI)jj = ~2~ = 2pj(>') 2qj(>') 
UXj CUj - Xj)3 + (Xj - Ij)3 ' 

, . . . , f)gi Pij 
G IS an m x n matnx wIth (G)ij = ;:;-- = ( )2 

UXj 'ilj - Xj 

I is a unit matrix, with dimensions apparent from its position, 

(d) is a diagonal matrix with the veetor d = ((it, ... , dm) T on the diagonal, 

(:r - a) is a diagonal matrix with the veclor x - a on the diagonal, etc. 

III the cbove Newton system, 6Ç', 6~. 6p, 6( and 68 can be eliminated through 

l5 

(Va) 

(T.7b) 

(7.7d) 

(7.7e) 
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Then the following partially reduced system in (2.X, ';"y, ';"z, ';",\) is obtained. 

Dy -1 

where 

Dx = \ji + (x-a)-'(ç) + (p-x)-'(~), 
Dy = (d) + (y)-'(f.l), 

Dz = (/z (ascalar), 

Dy- = _('\)-'(8) , 

Ox = ~~ - c(x-a)-'e +é(p-x)-le, 

Sy = c+ (d)y-'\ -c(y)-le, 

Oz = 1 - u-1 - ,\T a (a scalar), 

6;. = g(x) - az - y - b+c(,\)-le. 

';"x -0,& 

';"y -Oy 

2.Z -6" 

2.,\ -6.\ 

In this partially reduced system, .0.x, .0.y and 2.Z can be eliminated through 

.0.y = U,;l.0.'\ - u;;tOy, 

.0.z = D;;laT.0.'\ - D;;loz. 

Then, finally, the following reduced system in 2.,\ is obtained. 

"here 

D~ - D G'D-1(,T ["-1 'D- 1 T ./\ - À - X T -.../y - (" z a , and 

r 5 GD-l)~ + D-là~ , D-u 
U.\ = ( ,\ -' 1; (.1" y!J -i a z u z · 

It should be noted rhéLt Ô,\ 13 s,'y'mmetric and negativ(' dennite. 

tG 

(7.8a) 

(7.8b) 

(7 .8c) 

(7.9) 
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7.4. Line search in the Newton direction. 

When the direction (",x, "'y, "'2, "'À. "'Ç. "'1), ~P, ",Ç, "'8) has been caJculalated, a step 
chould be taken in that direction. A "pure" Newton step would be ta take a step equal 
ta the calculated direction. But this step might lead ta a point where sorne of the 
variables are negative, which is not feasible. Therefore, we first let IJ be the largest 
number such that IJ ~ 1 and 

xJ + fI",xj - Cij ~ O.Ol(xj - l>j) for al! j, 

;3j - (Xj + IJD.Xj) ~ O.Ol(,8j - Xj) for al! j, 

Yi + IJD.Yi ~ O.OlYi for al! i, 

z + IJ",z ~ O.Olz, 

Ài + IJ"'Ài ~ O.OlÀi for aU i, 

Ç,J + IJ "'Ç,j ~ 0.0 1ç, for all j, 

ryj + IJD.1)j ~ O.Ol1)j for all j, 

l'i + IJD.Pi ~ O.01pi for all i, 

(+ M( ~ 0.01(, 

Si + IJD.Si ~ O.Olsi for aU i. 

Now, if a step equal ta IJ times the Newton direction is taken, the resulting point will 
have all variables strictly positive. But in arder to guarrantee convergence, the new 
point should also be in sorne sense better than the previous. Therefore, we next let T 

be the largest of IJ, IJ /2, IJ / 4, IJ /8, ... such that 

Ilo((x, !J, z, À, ç, 1), p, Ç, s) + T • (D.X, D.y, D.Z, D.À, D.ç, D.1), D.p, D.(, D.s)) Il < 
< 115(x.y.z,À,ç,1),p,(,s)ll, 
where ii(:",y,z,À,ç,1),p,(,s) is the residual vector defined by the left hand sides in the 
ê-relaxed KKT conditions (7.5a)-(7.5i), and 11·11 is the ordinary Euclidian norm. 

This is always possible to obtain since the Newton direction is a descent direction for 
110(:1:. !J. z, À, ç, 1), l', (, s)ll· 

li 
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7.5. The complete iteration scheme for solving the Ml\tIA subproblem. 

First of ail, E(l) and a starting point (;r(1) , y( 1), z(1), À (1), ç(I), ,P), ,.,(1), ((1), s(l)) which 
satisfies (7.5j)-(7.5n) are chosen. The following is a simple but reasonable choice. 

c(l) = 1 x(l) = l(n' + J) yll) = 1 ,(1) -1 ,>,(1) = l 
~ 'J 2),)'1 '~~'I : 

c(1) = l/(X(l) _ n·) n(l) = 1/(3' - XiI)) ,'p) = l ((1) = 1 S(l) = 1 
1.,,) . J J J 'fJ 1 J J' Î ~ 1 .., 'l • 

A typical iteration, leading from the v:th iteration point to the (v+1):th iteration point, 
consists of the following steps. 

Step 1 (direction fin ding ): 

For given EIV) and (x IV),yIV),zlv),,>,IV),ç(V),1)(v),p(V),ÇIV),slv)) which satisfy (7.5j)­
(7.5n), calcl1late (~xIV), ~y(v), ~zlv), ~À (v), ~ç(v), ~ 1)(v), ~plv), ~((v), ~slv)) by solv­
ing the system of linear equations described above. 

Step 2 (linesearch): 

Calculate a steplength r lv ) as described in the previous section. 

Step 3 (updating): 

Let (xlv+1), y(v+1), zIV+l), ÀIV+l), ç(v+l), 1)(V+l), p(V+l), ((v+1) , SIV+l)) 

(xiV), ylv), z(v), À (v) ,ç(v), 1)IV) , p(v), (IV), sIV)) + 
rlv) . (~xlv), ~y(v), ~zlv), ~À (v), ~ëv), ~1)(v), ~p(v), ,-,(IV), ~sIV)) . 

Step 4 (perhaps decreasing E): 

If 115(x(v+l), y(v+1), ZIV+l), À(V+l), ç(v+1) , 1)IV+l), 1,lv+l), ((V+l), 8(V+1») Il < clV) , 

let E(v+1) = EH /10. Otherwise, let Elv+1) = cl V) 

Increase v by 1 and go to Step 1. 

The pro cess is terminated when E(v) has become ollfficiently small, say Elv) < 10-7 



8. An implementation of MMA in Matlab. 

The method described in this paper has been implemented in Matlab 5. This section 
contaÎns: 

- the head of a Matlab m-file containing the function "mmasub", 

- an m-file used to define a simple test problem (cantilever beam), 

- an m-file used to initialize some vectors for the test problem, 

- an m-file used as a "main program" for the test proplem, 

- a ivIatlab run with the above m-files. 

The testproblem is a simple cantilever beam problem which can be formulated explicitly 
as follows. 

minimize Xl + X2 + X3 + X4 + Xs 

subject to 61/xr + 37 /x~ + 19/x5 + 7 /x~ + l/x~ < 1 

1~xj~10, j=1, ... ,5 

%************************************************************ 
% This is the file mmasub.m 
% 
function [xrnma,ymma,zmma,lamma,low,uppJ ;::; 
mmasubCm,n,iter,epsimin,xval.xmin,xmax,xoldl,xold2, 
fOval,dfOdx,dfOdx2,fval,dfdx,dfdx2,low,upp,a,c,d); 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

written in June 1998 by 

Krister Svanberg (krille~math.kth.se) 
Optimization and Systems Theory, KTH, 
SE-l0044 Stockholm, Sweden. 

mmasub performs one MMA-iteration, airned at 
solving the nonlinear programming problem: 

Minimize f_O(x) + z + sum( c_i*y_i + O.5*d_i*(y_i)~2 
subject ta f_i(x} - a i*z -

xrnax_j <;::; x_j <= 
z >= 0, y_i >= 

y- i <; 

xmin_j, 
0, 

0, i ; l, ,m 
j l, ,n 
i ; l, ,m 

%~** INPUT: 
% 
% m 

~, il 

% iter 
ï,epsimin 
% 
" xv al 
" % xmin 
>, ;cmax 
" 

; 

The number of constraints (see above). 
The number of variables x_j (see abova). 
Current iteration number ( =1 the first time mmasub is called). 
Tolerance parameter used in the termination criteria for 
the HMA subproblem (smallest value of epsi). 
Column vector with the current values of the variables x_j. 
Column vector with the lower bounds for the variables x_j. 
Column vector with the upper bounds for the variables x_j. 
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'l. xoldl = xval, one iteration ago (provided that iter>l). 
'l. xold2 ~ xval, two iterations ago (provided that iter>2). 
'l. fOval The value of the objective function f_O at xval. 
X dfOdx = Column vector with the derivatives of the objective function f 0 
'l. with respect to the variables x_j, calculated at xval. 
'l. dfOdx2 = Colurnn vector with the non-mixed second derivatives of the 
'l. objective function f_O with respect to the variables x_j, 

calculated at xval. 
'l. fval = Column vector with the values of the constraint functions f_i, 
X 
'l. dfdx 
X 
X 
X dfdx2 
X 
X 
X 
X low 
X 
X upp 
Y. 
X a 
X c 
X ct 
X 

= 

= 

= 
= 
= 

calculated at xval. 
(m x n)-matrix with the derivatives of the constraint functions 
f_i with respect to the variables x_j, calculated at xval. 
dfdx(i,j) ~ the derivative of f_i with respect to x_j. 
(m x n)-matrix with the non-mixed second derivatives of the 
constraint funetions f_i with respect to the variables x_j, 
calculated at xval. 
dfdx2(i,j) ~ the second derivative of f_i with respect to x_j. 
Column vector with the lower asymptotes from the previous 
iteration (provided that iter>l). 
Column vector with the upper asymptotes from the previous 
iteration (provided that iter>l). 
Column vector with the constants a_i in the terms a_i*z. 
Column vector with the constants c_i in the terms c_i*y_i. 
Column vector with the constants d_i in the terms O.5*d_i*(y_i)-2. 

'l.*** OUTPUT: 

X xmma = Column vector with the optimal values of the variables x_j 
X in the current MMA subproblem. 
X ymma = Column vector with the optimal values of the variables y_i 
X in the current MMA subproblem. 
X zmma = Scalar with the optimal value of the variable z 
X in the current MMA subproblem. 
X lamma = Column vector with the optimal values of the dual variables 
X (Lagrange multipliers) in the current MMA subproblem. 
X low = Column vector with the lower asymptotes, calculated and used 
X in the current MMA subproblem. 
X upp = Column vector with the upper asymptotes, calculated and used 
X in the current MMA subproblem. 
% 
%************************************************************ 
% This is the file bearn.m 
% :.lhich deiines the cantilever beam problem. 
% 
function UOval, dfOdx, dfOdx2, fval, dfdx, àfdx2J :::; bearn(:;.;:) j 

% 
% written in June 1998 by 

% 
% Krister Svanberg (krille<Omath.kth.se) 
ï. Optimization and Systems Theory, KTH, 
% SE-10044 Stockholm, Sweden. 



% 
e=[lllll]'; 
dfOdx = e; 
dfOdx2 ::::; O*e; 
fOval = dfOdx'*x; 
coef = [61 37 19 7 1]'; 
x2 = x.*x; 
x3 = x2.*x; 
x4 = x2.*x2; 
x5 ::::; x3.*x2; 
x3inv = e./x3; 
fval = coef'*x3inv - 1; 
dfdx::::; -3*(coef./x4), ; 
dfdx2 = 12*(coef./x5)'; 

%************************************************************ 
Y. This i5 the file beaminit.rn 
% in which sorne vectors for the cantilever 
% beam problern are initialized. 
% 
% written in June 1998 by 
% 
Y. Krister Svanberg (krilleemath.kth.se) 
y. Optimization and Systems Theory, KTH, 
% SE-l0044 Stockholm, Sweden. 
% 

m = 1 ; 
n = 5; 

epsimin = 0.000000005; 
xv al = 5*ones(n,1); 
xoldl = zeros (n J 1) ; 
xold2 = zeros (n, 1) ; 

low = zeros (n.1) ; 
upp = zeros (n J 1) ; 

xmin = ones(n,l); 
xmax ::::; 10*ones(n,l); 
c::::; 1000*ones(m,1); 
d ::::; zeros(m, 1); 
a:;;; zeros(m,l); 
[fOval,dfOdx,dfOdx2,fval,dfdx,dfdx2] = beam(xval); 
outvector = [fOval tval xval ,] ) 

iter ::::; 0; 

%************************************************************ 
% This is the file bearnrnain. lU 

% t.lhich is used as ."l main prograrn Îor 
ï. the cant ile""er beam pro blem. 

% 
ï. written in June 1998 by 

% 
% Krister Svanberg (krillel(Jmath .kth. se) 

% Optimization and Systems Theory, KTR, 
ï. SE-l0044 Stockholm, S"Jeden. 

21 



% 
itte = Oi 

while itte < maxite 
i ter == i ter+l 
itte ::; itte+l; 

[xmma,ymma.zmma~larnrna,low,uppJ = 
mmasub(m.n,iter,epsirnin,xval,xmin,xmax,xoldl,xold2. 
fOval,dfOdx,dfOdx2,fval,dfdx,dfdx2,low,upp,a,c,d); 

xold2 = xold1; 
xoldl ;;;; xval; 
xval ::; xmma; 
[fOval,dfOdx,dfOdx2,fval,dfdx,dfdx21 = beam(xval); 
outvector == [fOval fval xval'J' 

end 

%************************************************************ 

» beaminit 

outvector ::: 
25 

o 
5 
5 
5 
5 
5 

» maxi te=3; 
» beammain 

iter = 1 
outvector == 

21.23671540968126 
0.05143688305828 
5.53199378990684 
5.19640664935817 
4.65148408913184 
3.72484970364471 

2.13198117763970 

iter = 2 

cutv6ctor = 
21.49392433684576 
-0.00030008977653 

5.84532737946843 
5.30615287587694 
4.58356436951021 

3.58975283225656 
2.16912687973362 



iter::; 3 

outvector ::; 
21.47555761630785 

-0.00000162629643 
5.95683551645921 
5.31238291165642 

4.52326975413410 

3.52438212611257 
2.15868730794555 

» beammain 

iter::; 4 
outvector ::; 

21.47382497571198 
-0.00000035796458 

5.99800703382267 

5.31118339118582 
4.50259563126298 
3.50698984583424 
2.15504907360627 

iter::; 5 
outvector ::; 

21.47367102202199 
-0.00000001754855 

6.01116643542795 
5.31009073351918 
4.49635193271211 
3.50262846058030 
2.15343345978245 

iter::; 6 
outvector ::; 

21.47366026272084 
-0.00000000182023 

6.01486128269035 

5.30950079917009 
4.49474808025951 
3.50167851835040 
2.15287158225050 

(The academic liser can get these l'vIatlab rn-files for free. Just send an e-ma.il to the 
authol'; explailling the intended usage of the code. 




