
Digital Object Identifier (DOI) 10.1007/s00158-002-0248-5

Struct Multidisc Optim 24, 362–371  Springer-Verlag 2002

SCPIP – an efficient software tool for the solution of structural
optimization problems

C. Zillober

Abstract This paper describes SCPIP, a FORTRAN77
subroutine that has been proven to be a reliable imple-
mentation of convex programming methods in an indus-
trial environment. Convex approximation methods like
the method of moving asymptotes are used nowadays
in many software packages for structural optimization.
They are known to be efficient tools for the solution of
design problems, in particular if displacement dependent
constraints like stresses occur. A major advantage over
many but not all classical approaches of mathematical
programming is that at an iteration point a local model
is formulated. For the solution of such a model no further
function and gradient evaluations are necessary besides
those at the current iteration point. The first versions of
convex approximation methods used all a dual approach
to solve the subproblems which is still a very efficient al-
gorithm to solve problems with atmost a medium number
of constraints. But it is not efficient for problems with
many constraints. An alternative is the use of an interior
point method for the subproblem solution. This leads to
more freedom in the definition of the linear systems where
most of the computing time to solve the subproblems is
spent. In consequence, large-scale problems can be han-
dled more efficiently.

Key words convex approximation methods, method
of moving asymptotes, sequential convex programming,
structural optimization, large-scale optimization

1
Introduction

SCPIP (sequential convex programming with interior
point method) is an implementation of the convex ap-

Received May 18, 2001
Revised manuscript received April 24, 2002

C. Zillober

Mathematisches Institut, Universität Bayreuth, 95440 Bay-
reuth, Germany
e-mail: christian.zillober@uni-bayreuth.de

proximation methods MMA and SCP. MMA (method
of moving asymptotes; Svanberg (1987)) and its glob-
ally convergent extension SCP (sequential convex pro-
gramming; Zillober (2001b)) are known to work well for
structural optimization problems. One reason is that dis-
placement dependent constraints are approximated very
well. Another reason is that at the current iteration point
a local model is used that does not require further func-
tion and gradient evaluations of the original problem
besides that at the iteration point itself. This is very
important since evaluations of the original problem are
usually time consuming finite element analyses. Classi-
cal approaches like augmented Lagrangian methods or
penalty approaches need additional evaluations to solve
their subproblems. Other methods like sequential quad-
ratic programming use also only local models. For a sur-
vey of nonlinear programming methods see e.g. Nocedal
and Wright (1999). The local model of MMA and SCP
itself is convex such that efficient subproblem solution
methods are available.

We consider the followingmathematical programming
problem:

min f(x) , x ∈ Rn ,

s.t. gj(x) = 0 , j = 1, . . . ,meq ,

hj(x) ≤ 0 , j = 1, . . . ,mie ,

xi ≤ xi ≤ xi , i= 1, . . . , n . (OP)

The functions f , gj (j = 1, . . . ,meq) and hj (j =
1, . . . ,mie) have to be defined only onX := {x | xi ≤ xi ≤
xi, i= 1, . . . , n} and are assumed to be continuous on X
and at least twice continuously differentiable in the inte-
rior ofX. The feasible region is assumed to be nonempty.

(OP) will be approximated by convex subproblems,
i.e. the objective function will be replaced by a strictly
convex approximation, inequality constraints will be ap-
proximated by convex functions, equalities will be lin-
earized and the box-constraints will be allowed to shrink
in the local model with respect to the original box-
constraints.

363

Although equality constraints are not frequently ap-
parent in structural optimization models we keep them
in the formulation in order to show that they can also
be handled efficiently by the software. This is import-
ant since subsequently we will give arguments for at least
a trial to incorporate the equilibrium equations as equal-
ity constraints in the optimization model. Presently, this
cannot be accomplished in the author’s software environ-
ment due to limited access on the finite element software.

We will present details of the interior point subprob-
lem solution method, a major part of SCPIP. Com-
pared with the classical dual approach, the interior point
method provides more flexibility in the formulation
of the subproblem. The main computational work to
solve the subproblems has to be done in the solution
of a large sequence of linear systems. In the dual ap-
proach these systems are of dimension m×m, where
m :=meq+mie is the total number of constraints besides
the box-constraints. These systems are dense indepen-
dent of any structure in the problem. The interior point
method, however, provides the possibility to proceed by
either solving m×m systems or n×n systems which is
obviously an advantage for problems with many con-
straints but few variables which is often the case for sizing
problems. Moreover, sparsity of the Jacobian of the con-
straints can be exploited. If the model has this property
then larger problems can be solved. This paper does not
provide a detailed description of the theory because this
is already published in Zillober (2001a,b).

The outline of the paper is as follows. In Sect. 2 we in-
troduce the principles of the methods MMA and SCP. In
Sect. 3 the interior point approach for the subproblem so-
lution is presented. The topic of infeasible subproblems
is discussed in Sect. 4. Implementational details are pre-
sented in Sect. 5, followed by examples in Sect. 6. Finally,
conclusions are given in the last section.

2
MMA and SCP

Since problem (OP) is usually too hard to solve it directly
a common strategy of all modern nonlinear programming
methods is to replace (OP) by a sequence of easier to solve
subproblems. The way how these subproblems are defined
is the major difference of the methods. The background
of convex approximation methods is the observation that
in special cases displacement dependent constraints are
exact linearizations of the original functions of the in-
verse variables. Thus, after a variable transformation to
inverse variables a problem with linear constraints is ob-
tained which is usually easier to solve. For practical cases
the functions do not behave this way. However, a nearly
reciprocal behavior could be observed. MMA/SCP per-
form a linearization with respect to transformed variables
1

xi−L
k
i

and 1
Uk
i
−xi

, respectively, leading to convex approx-

imation functions. The parameters Lki and U
k
i have to be

chosen such that Lki < xi < Uki . They are asymptotes of
the approximation explaining the name of MMA.

In the (k+1)-st iteration the objective function f is
approximated at the point xk by

fk(x) := αk0,0+
∑
i∈Ik0,+

αk0,i(xi)

Uki −xi
−
∑
i∈Ik0,−

αk0,i(xi)

xi−Lki
. (1)

An inequality constraint hj (j = 1, . . . ,mie) is replaced
by

hkj (x) := αkj,0+
∑
i∈Ik
j,+

αkj,i

Uki −xi
−
∑
i∈Ik
j,−

αkj,i

xi−Lki
. (2)

Equality constraints are linearized in the usual sense

gkj (x) := gj
(
xk
)
+
n∑
i=1

∂gj
(
xk
)

∂xi

(
xi−x

k
i

)
. (3)

Defining h0 := f the index sets are defined as

Ikj,+ :=

{
i ∈ {1, . . . , n} :

∂hj
(
xk
)

∂xi
≥ 0

}
and

Ikj,− :=

{
i ∈ {1, . . . , n} :

∂hj
(
xk
)

∂xi
< 0

}
for all

j = 0, . . . ,mie.
The constants αkj,0 are defined as (j = 0, . . . ,mie) :

αkj,0 := hj
(
xk
)
−
∑
i∈Ik
j,+

∂hj
(
xk
)

∂xi

(
Uki −x

k
i

)
+

∑
i∈Ik
j,−

∂hj
(
xk
)

∂xi

(
xki −L

k
i

)
.

The constants αkj,i of the inequalities are defined as
(j = 1, . . . ,mie):

αkj,i :=



∂hj(xk)
∂xi

(
Uki −x

k
i

)2
, if i ∈ Ikj,+

∂hj(xk)
∂xi

(
xki −L

k
i

)2
, if i ∈ Ikj,−

(4)

To ensure strict convexity of the approximation of the
objective we have to introduce additional positive param-
eters τi with respect to (4):

αk0,i(xi) :=



∂f(xk)
∂xi

(
Uki −x

k
i

)2
+ τi

(
xi−xki

)2
, if i ∈ Ik0,+

∂f(xk)
∂xi

(
xki −L

k
i

)2
− τi

(
xi−xki

)2
, if i ∈ Ik0,−

(5)

yianp
Highlight

yianp
Highlight

364

Strict convexity of the approximation of the objective
is necessary to fulfill an assumption concerning the con-
vergence proof. However, it is also helpful in practice to
avoid slow convergence. The parameters τi will be dis-
cussed in Sect. 5.6 in more detail.

The approximations fk and hkj are defined on

Dk :=
{
x : Lki < xi <Uki , i= 1, . . . , n

}
.

Lki and U
k
i are parameters (“moving asymptotes”) to

be chosen withLki <xki <Uki , i= 1, . . . , n. In Sect. 5.1 we
will discuss a practical scheme to choose the asymptotes.

The approximations have the following properties:

– fk, gkj and h
k
j are first order approximations at xk.

– gkj are linear.
– hkj are convex, i.e. they can be strictly convex but also
linear.

– fk is strictly convex.
– fk, gkj and h

k
j are separable.

The (k+1)-st subproblem is then

min fk(x) , x ∈Rn ,

s.t. gkj (x) = 0 , j = 1, . . . ,meq ,

hkj (x)≤ 0 , j = 1, . . . ,mie ,

xi
′ ≤ xi ≤ xi

′ , i= 1, . . . , n , (SPk)

where xi
′ :=max{xi, xki −ω(x

k
i −L

k
i)} and xi

′ :=min{xi,
xki +ω(Uki −x

k
i)}, ω can be between 0 and 1. In SCPIP

it is chosen as ω = 0.9. Its role is to keep the variables
away from the poles Lki and Uki and to avoid the com-
putation of too large function and gradient values of the
approximations.

Due to the convexity properties a problem (SPk) has
always a unique solution provided its feasible region is
nonempty. In general this cannot be guaranteed but there
are remedies by enlarging the feasible region with artifi-
cial variables. This will be discussed in Sect. 4.

We will now formulate the MMA-algorithm.

Algorithm 1. MMA (method of moving asymptotes)

Step 0: Choose x0 ∈X, y0eq,j (j = 1, . . . ,meq), y
0
ie,j ≥ 0

(j = 1, . . . ,mie); compute f(x0),∇f(x0), gj(x0),

∇gj(x0) (j = 1, . . . ,meq), hj(x
0), ∇hj(x0)

(j = 1, . . . ,mie); let k := 0

Step 1: Compute Lki and Uki (i= 1, . . . , n) by some

scheme; define fk(x), gkj (x) (j = 1, . . . ,meq),

hkj (x), (j = 1, . . . ,mie) (cf. (1),(2) and (3))

Step 2: Solve (SPk) let (xk+1, yk+1eq , yk+1ie) be the

solution, where yk+1eq and yk+1ie denote the

corresponding vector of Lagrange multipliers

Step 3: If xk+1 = xk stop; (xk, ykeq, y
k
ie) is the solution

Step 4: Compute f(xk+1), ∇f(xk+1), gj(xk+1),

∇gj(xk+1) (j = 1, . . . ,meq), hj(x
k+1), ∇hj(xk+1)

(j = 1, . . . ,mie) , let k := k+1 , goto step 1

The SCP-method differs from MMA mainly by an ad-
ditional line-search with respect to the augmented La-
grangian function. With this modification it is possible
to prove global convergence of the algorithm, cf. Zillober
(2001b). Since MMA is always our default method we
neglect the detailed presentation of SCP and refer the
reader to Zillober (2001b,a).

3
Subproblem solution

To simplify the notation we neglect equality constraints
in this section and rewrite problem (SPk). It should be
stressed that the subproblem solvers described in this sec-
tion are not restricted to inequality constraints only. The
new subproblem is then

min fk(x) , x ∈ Rn ,

s.t. hkj (x)≤ 0 , j = 1, . . . ,m ,

xi
′ ≤ xi ≤ xi

′ , i= 1, . . . , n . (6)

m is used for the number of constraints since we do not
have to distinguish between equalities and inequalities.
We define X ′ :=

{
x : xi

′ ≤ xi ≤ xi
′, i= 1, . . . , n

}
.

The subproblems of MMA have been solved tradi-
tionally with a dual approach. For general nonlinear pro-
gramming problems the solution of the dual problem is
not easier than the solution of the primal problem (6),
even harder. In the case of MMA, however, two prop-
erties of the approximation functions lead to the fact
that the dual problem is much easier. Firstly, the con-
vexity property yields that the solution of the dual di-
rectly corresponds to the solution of the primal. In gen-
eral this provides only a bound. Secondly, the separa-
bility property leads to a much more easier evaluation
of the dual objective function. In general, an evaluation
of the dual objective is equivalent to the n-dimensional
minimization of an unconstrained function or a function
with respect to simple bound constraints. Here, this n-
dimensional minimization splits into n one-dimensional
minimizations which can be performed analytically. For
details of this approach see Fleury (1989) or Svanberg
(1987).

The main computational work in the solution of the
dual problem has to be done finally by solution of a se-
quence of linear systems of the dimension m×m. These
linear systems are dense, independent of any structure in
problem (OP) or (SPk). This is not critical for problems
with a moderate number of constraints. But for prob-
lems with a large number of constraints this leads to

yianp
Highlight

yianp
Highlight

yianp
Highlight

yianp
Highlight

365

a computational overhead. For this situation there was
a need to find an alternative. This has been found in the
predictor-corrector interior point method which will not
only cover the case of a large number of constraints but
also efficiently solves subproblems with few constraints
and maybe many variables. Moreover, structure in prob-
lem (OP) can be exploited.

We will now briefly describe the predictor-corrector
interior point method. Details of the approach are de-
scribed by Zillober (2001a).

First of all, nonnegative slacks are added wherever in-
equalities appear

min fk(x) , x ∈Rn ,

s.t. hkj (x)+ cj = 0 , j = 1, . . . ,m , (7)

−cj+ rj = 0 , j = 1, . . . ,m , (8)

xi
′−xi+ si = 0 , i= 1, . . . , n , (9)

xi−xi
′+ ti = 0 , i= 1, . . . , n , (10)

r, s, t≥ 0 .

In the interior point algorithm we will have to en-
sure the strict positivity of the variables r, s and t and
their duals. In consequence, their introduction allows the
corresponding constraints to coincide with their bounds,
i.e. cj = 0, xi = xi

′ and xi = xi
′ are possible. The corres-

ponding constraints may even be violated in intermediate
iterations. However, we have to ensure additionally that x
does not leave the region of the definition of fk and hkj , i.e.
x ∈X ′ has to be guaranteed.

For this modified problem we put the nonnegativity
constraints corresponding to r, s and t into the objective
function using a barrier formulation. Then we formulate
the Kuhn–Tucker conditions:

∇fk(x)+J(x)y−ds+dt= 0

hk(x)+ c = 0

y−dr = 0

dr−µR−1e = 0

ds−µS−1e = 0

dt−µT−1e = 0

−c+ r = 0

x′−x+ s = 0

x−x′+ t = 0

Here, y denotes the dual to (7), dr is the dual of (8), ds is
the dual of (9) and dt is the dual of (10). e= (1, . . . , 1)T

is a vector of ones in the appropriate dimension and µ > 0
denotes the barrier parameter. J(x) = (∇hk(x))T is the
transposed Jacobian of the constraints of (6). The capital
letters denote diagonal matrices built by the components
of the vectors, e.g. R−1 := diag(1/r1, . . . , 1/rm).

We apply Newton’s method to a set of equations de-
rived from the Kuhn–Tucker conditions by a few trivial
algebraic manipulations. For the right hand side, in the
predictor step the terms containing the barrier parameter
µ are neglected. We end up with


∇xxLk(x, y) J(x) −I I
JT (x) I

I −I
Dr R

Ds S
Dt T

−I I
−I I
I I







∆x
∆y
∆c
∆r
∆s
∆t
∆dr
∆ds
∆dt




=

−




∇fk(x)+J(x)y−ds+dt
hk(x)+ c
y−dr
DrRe
DsSe
DtTe
−c+ r

x′−x+ s
x−x′+ t



. (11)

∇xxLk(x, y) is the Hessian of the Lagrangianwith respect
to x. This matrix is only dependent on x and y.

The matrix of (11) is hard to handle but since most of
its terms are positive diagonal matrices we can eliminate
∆c, ∆r, ∆s, ∆t, ∆dr, ∆ds and∆dt.

This elimination process provides analytical, easy to
evaluate formulae for the eliminated components and the
following linear system that remains to be solved(
∇xxLk(x, y)+S−1Ds+T−1Dt J(x)

JT (x) −D−1r R

)(
∆x
∆y

)
=

(
b1
b2

)
(12)

The evaluation of the right hand side is straightforward.
Formulae are omitted because the structure of the matrix
of (12) is the main issue to be discussed below.

To understand the structure of this linear system we
focus on its input terms in more detail. Firstly, we observe
that∇xxLk(x, y) is a positive diagonal matrix

∇xxL
k(x, y) =∇2fk(x)+

m∑
j=1

yj∇
2hkj (x) .

The individual Hessians are all diagonal because of the
separability property. The Hessians of the constraints
are nonnegative because of the convexity, the Hessian of
the objective is positive because of its special construc-
tion, cf. (5). If the algorithm is able to ensure that the
corresponding Lagrange multipliers are nonnegative then
∇xxLk(x, y) is positive.

366

Secondly, we consider the nonzero structure of J(x).
For one particular component of the approximation (2) of
a constraint function we have

∂hkj (x)

∂xi
=




∂hj(xk)
∂xi

(Uki −x
k
i)
2

(Uki −xi)
2 , if i ∈ Ikj,+

∂hj(xk)
∂xi

(xki−L
k
i)
2

(xi−Lki)
2 , if i ∈ Ikj,−

. (13)

Since the second term is strictly positive in both cases, the
nonzero structure of J(x) at an arbitrary point is identical
to the nonzero structure of the original constraints at the
current main iteration point xk. That means, sparsity in
the original problem is preserved for the subproblems.

The matrix of (12) is indefinite, of full rank and can be
considered as sparse since the upper left and lower right
part are diagonal. Additional sparsity of J(x) improves
the sparsity.

It is possible to use this system to define the search
directions for the interior point method. It can be a prac-
tical alternative for certain sparsity patterns of J(x). But
the more important cases follow subsequently.

We may observe that due to the special structure of
(12), the diagonal matrices in the upper left and lower
right part, we can easily eliminate either ∆x or ∆y from
(12). In the first case the results is:

(
JT (x)Θ−1J(x)+D−1r R

)
∆y = b3 . (14)

In the second case we get:

(
Θ+J(x)R−1DrJ

T (x)
)
∆x= b4 . (15)

Θ abbreviates the upper left part of (12):

Θ :=∇xxL
k(x, y)+S−1Ds+T−1Dt .

In both cases the eliminated variable is easy to compute
as soon as the linear system (14) ((15) respectively) is
solved.

The matrices in (14) and (15) are both positive defi-
nite. The matrix in (14) is of dimension m×m, in (15) it
is of dimension n×n. This makes one of the major advan-
tages of the interior point approach evident: to compute
a search direction which is the major part of a subprob-
lem solution it is possible to define either linear systems of
dimension m×m or n×n. The formulations are equiva-
lent in the sense that all necessary data can be derived of
the corresponding linear system solution.While problems
with a large number of constraints where hardly to handle
with the traditional dual subproblem solver, the interior
point approach is suitable for both situations, problems
with many variables and few constraints as well as for
problems with few variables and many constraints. More-
over, since the sparsity of the Jacobian of the original
constraints can be exploited, it is also possible to solve

problems with many variables and many constraints as
long as the problem has such a structure.

In Sect. 5.4 it is discussed how SCPIP handles the
choice of (14) and (15) and the methods to solve the linear
systems.

The corrector step of the interior point method uses
the same matrices to define the search direction. Only the
right-hand side changes. The results of the predictor step
are used for its definition.

4
Infeasible subproblems

As mentioned in Sect. 2 we have to consider the case
where the feasible region of a subproblem (SPk) is empty.
This can be the case even if the feasible region of (OP)
is non-empty. Since the constraints of (SPk) are of first
order it is only possible if the current iteration point is in-
feasible. Most likely it happens if the infeasibility is large.
To overcome this situation we introduce artificial vari-
ables which guarantee the existence of a feasible point.
Since they are not related to the original problem we try
to keep their influence as low as possible. In the best case
they should vanish if they are not necessary, i.e. if the
feasible region of (SPk) is not empty. This can be ob-
tained by adding these variables to the objective function.
To accelerate the process we multiply them additionally
by a penalty parameter.

Although this seems to be a purely heuristical ap-
proach theoretical convergence properties of SCP can be
preserved in this case under mild regularity conditions.
For problems without equality constraints this has been
outlined in Zillober (1993).

Suppose w.l.o.g. that we have hkj
(
xk
)
> 0, j = 1,

. . . ,m1 and hkj
(
xk
)
≤ 0, j =m1, . . . ,m. We now intro-

duce new (artificial) variables qj (j = 1, . . . ,m1) and
transform problem (6) in the following way:

min fk(x)+
1

2

m1∑
j=1

ρjq
2
j , x ∈ Rn ,

s.t. hkj (x)− qjh
k
j

(
xk
)
≤ 0 , j = 1, . . . ,m1 ,

hkj (x) ≤ 0 , j =m1, . . . ,m ,

xi
′ ≤ xi ≤ xi

′ , i= 1, . . . , n ,

0≤ qj ≤M , j = 1, . . . ,m1 . (16)

With this transformation the point (xk, qk) with
qkj = 1, j = 1, . . . ,m1 is a feasible point (provided the
box-constraints are fulfilled). The penalty parameters
ρj are positive parameters. We choose initially ρj = 1,
j = 1, . . . ,m1. For degenerate problems it is possible
that the ρj have to be enlarged during the iteration, cf.

yianp
Highlight

367

Zillober (1993). If this is necessary we multiply them
by 10. The additional term in the objective function will
force the artificial variables to be as low as possible.
The constant M could be set to 1 to ensure at least
one feasible point. For numerical reasons (ensuring in-
terior points also for the artificial variables) we choose
M = 2.

It is important to notice that the basic structure of
(16) is the same as that of (6). The differentiability does
not change, the feasible region is compact due to the box-
constraints of the artificial variables and the separability
property is also still given. Therefore, the interior point
method introduced in Sect. 3 can be applied to problem
(16) with only minor modifications.

It is important to notice that this procedure is done
automatically within SCPIP such that a user does not
have to be concerned about the problem of infeasible
subproblems.

5
Implementational details

5.1
Choice of asymptotes

SCPIP contains several approaches to adapt the asymp-
totes Lki and U

k
i . We present here only one of these possi-

bilities. It is generally applicable and has been proven to
be a reliable strategy. For the other strategies see Zillober
(2001c).

k = 0, 1 : Lki = xki −γ1(xi−xi)

Uki = xki +γ1(xi−xi)

k = 2, 3, . . . : If sign
(
xki −x

k−1
i

)
= sign

(
xk−1i −xk−2i

)
:

Lki = xki −γ2
(
xk−1i −Lk−1i

)
Uki = xki +γ2

(
Uk−1i −xk−1i

)
If sign

(
xki −x

k−1
i

)

= sign

(
xk−1i −xk−2i

)
:

Lki = xki −γ3
(
xk−1i −Lk−1i

)
Uki = xki +γ3

(
Uk−1i −xk−1i

)
A suitable choice is γ1 = 0.5, γ2 = 1.15, γ3 = 0.7.

5.2
Initialization

For Algorithm 1 we have to initialize the design variables
x0 and the Lagrange multipliers y0eq and y

0
ie. For the de-

sign variables we expect input by the user. We only test
this input whether it fulfills the box-constraints (x0 ∈X).
If this is not the case we increase (or decrease, respec-
tively) the corresponding components such that the vio-
lated box-constraints are fulfilled exactly.

For the Lagrange multipliers we do not expect initial
values set by the user. To the experience of the author
the initialization of the Lagrangemultipliers is not crucial
for the performance of MMA or SCP. Therefore, we set
y0eq,j := 0 ∀ j = 1, . . . ,meq and y

0
ie,j := 0 ∀ j = 1, . . . ,mie.

However, by setting a certain input variable it is also pos-
sible to provide initial values for these two vectors.

We have to be more careful for the initialization of the
interior point algorithm since it is more sensitive to cer-
tain initial values, in particular the values of the variables
that have to fulfill the interior point condition (positiv-
ity condition). But due to the introduction of the vari-
ables r, s, t and their corresponding duals dr, ds and dt
we shifted the problem of the interior point initialization
from the original variables appearing in Algorithm 1 to
artificial variables that are not seen by a user. For ex-
ample, variables s and ds are initialized as si := max{xi−
xi
′, β} and (ds)i := β; β is an internal constant. Since

a scaling procedure is applied to the subproblems, β := 1
is a well working value that is not problem dependent.
More details on the initialization of the interior point al-
gorithm can be found in Zillober (2001a).

5.3
Stopping criteria

Within SCPIP there are two possibilities to define stop-
ping criteria. The first one is based on the mathematical
optimality conditions for problem (OP). It is the sim-
ultaneous fulfilling of ‖∇xL(x, y)‖max ≤ ε, |gj(x)| ≤ ε,
j = 1, . . . ,meq and hj(x) ≤ ε, j = 1, . . . ,mie; L denotes
the Lagrangian of (OP). Notice that the box-constraints
are always fulfilled due to the construction of the al-
gorithm; ε is a constant that has to be set by the
user.

The second possibility to define a stopping criterion
is a relaxed convergence check based on the iteration
progress. Four conditions have to be fulfilled simultan-
eously.

1. |gj(x)| ≤ ε, j = 1, . . . ,meq and hj(x) ≤ ε, j = 1, . . . ,
mie. This is the feasibility condition as in the first pos-
sibility.

2.
∥∥∥xk−xk−1

xk

∥∥∥
max
≤ ε1. The relative change in the design

variables.
3.
∣∣f (xk)−f(xk−1)∣∣ ≤ ε2. The absolute change in the
objective function.

4.
|f(xk)−f(xk−1)|
|f(xk)|

≤ ε3. The relative change in the objec-

tive function.

The values for ε, ε1, ε2 and ε3 can be set independently.
If a user wants to stop the algorithm whenever the

progress in the objective function is less than one per-
cent while attaining feasibility he could choose e.g. ε :=
10−7, ε3 := 0.01, ε1 :=inf, ε2 :=inf, where inf is a large
number representing infinity. This would lead to the fact
that criteria 2 and 3 are neglected.

368

5.4
Choice of linear system solution

To cover the variety of possible large-scale cases SCPIP
provides several possibilities to solve the linear systems
arising in (14) and (15):

– A dense Cholesky solver
– A sparse Cholesky solver
– A conjugate gradient solver

Together, there are six possibilities to define and solve the
linear systems. As a rough orientation we summarize in
which situation which combination of the definition of the
linear system and the corresponding linear system solver
should be chosen.

Formulation (14) should be chosen together with the
subsequent linear systems solvers in the following cases:

Cholesky, dense m<n, mmoderate orm large, ma-
trix in (14) is dense and sufficient
storage is available

Cholesky, sparse m < n, m large, matrix in (14) is
sparse

Conjugate gradients m< n, m large and available stor-
age is not sufficient for a decom-
position

Similarly, formulation (15) should be chosen together
with the subsequent linear systems solvers in the follow-
ing cases:

Cholesky, dense n <m, n moderate or n large, ma-
trix in (15) is dense and sufficient
storage is available

Cholesky, sparse n < m, n large, matrix in (15) is
sparse

Conjugate gradients n < m, n large and available stor-
age is not sufficient for a decompos-
ition

The meaning of the termmoderate depends on the un-
derlying hardware and what is accepted by the user for
the time of a subproblem solution in relation to a function
and/or gradient evaluation of (OP).

Each of these situations can be chosen by the user
of SCPIP by setting two integer parameters. But it is
also possible to set the parameters such that the program
decides itself which combination to choose. This is de-
pendent on the relation of m to n, possible sparsity in
the matrices of (14) and (15) and the available storage
for a possible decomposition of the matrices. It should be
mentioned that the case where sparsity of J(x) is given
andm as well as n are large is not explored enough up to
now to claim that the decision rules of SCPIP are good
in this case. Sophisticated preconditioning techniques for
the conjugate gradient solver are also still in work.

In most finite element software systems that provide
optimization tools (as well as in the author’s environ-

ment, cf. Sect. 6) the equilibrium conditions are solved in
the finite element part, i.e. their results are input for the
optimization routine. In consequence, the nodal displace-
ments u are always computed in direct dependence of
the design variables x. The Jacobian matrix of the nodal
displacements and the displacement dependent functions
(e.g. stresses) is then in general a dense matrix because
any nodal displacement is dependent on the sizes of all
elements.

If the equilibrium conditions would be incorporated to
the optimization model as equality constraints, u and x
could be handled as independent variables. This approach
is known in the literature as simultaneous analysis and
design. The Jacobians of all displacement dependent con-
straints would then be sparse matrices. Although the op-
timization problem dimensions would increase we could
solve larger problems since the sparsity can be handled
very efficiently by SCPIP. We would like to formulate
these arguments in order to convince finite element soft-
ware developers about the advantages and to be able to
proof this in the near future in a nonacademic environ-
ment. The data structures of SCPIP are already designed
for sparse problems, i.e. SCPIP expects the Jacobian of
the constraints in a sparse storage format.

A drawback of this approach would be the fact that in-
termediate designs can violate the equilibrium conditions
because the optimizer does not necessarily fulfill all the
constraints in intermediate iterations.

5.5
Active-set strategy

SCPIP contains also a simple active-set strategy. Gradi-
ents are requested only for those inequality constraints
that fulfill the condition hj

(
xk
)
≥ −ACTRES, where

ACTRES is a positive number to be set by the user. Only
these constraints are passed to the subproblem which can
lead to a considerable reduction of the number of con-
straints in a subproblem. Choosing a large value for AC-
TRES avoids the active-set strategy.

5.6
Strict convexity of fk

In Sect. 2 the approximation of the objective function was
defined in (1) and the choice of the αk0,i(xi), i= 1, . . . , n in
(5). Without the usage of the term containing the τi, the
second derivative with respect to a component i ∈ Ik0,+ is

∂2fk(x)

∂x2i
= 2

∂f
(
xk
)

∂xi

(
Uki −x

k
i

)2(
Uki −xi

)3 . (17)

This term is strictly positive in Dk provided the first

derivative
∂f(xk)
∂xi

is positive. If this is the case we do not

need the additional term containing τi. f
k(x) is strictly

369

convex inX ′ which is sufficient for the proof of global con-
vergence, cf. Zillober (2001b). In general this cannot be

guaranteed, i.e. we have to consider
∂f(xk)
∂xi

= 0. Then the
second derivative term as above vanishes. Therefore we

add a term that is independent of
∂f(xk)
∂xi

to ensure the

positivity of the second derivative of fk(x) in X ′ without
destroying the first-order approximation property. This is
achieved by the term τi(xi−xki)

2 as used in (5). (17) then
changes to

∂2fk(x)

∂x2i
= 2

(
∂f
(
xk
)

∂xi
+ τi

) (
Uki −x

k
i

)2(
Uki −xi

)3 .
For the practical implementation we have a stronger

demand. We ask for

∂f
(
xk
)

∂xi
+ τi ≥ τ > 0

to ensure a certain degree of convexity for the approxima-
tion of the objective.

The sameprinciple is valid for the components i ∈ Ik0,−.

6
Examples

We present three examples in order to show the advan-
tages of the interior point approach in SCPIP. A sizing
example with few variables and many constraints, an ex-
ample of topology design in its standard formulation with
many variables and few constraints and an example of
topology design in a different formulation with many vari-
ables and many constraints.

More examples can be found in Zillober (2001a). An
industrial project with applications of SCPIP can be
found in Zillober and Vogel (2000) (ship design).

The examples have been computed on a INTEL Pen-
tium PC with 450 MHz and 128 MB RAM.

6.1
Example 1

The first example has been computed with the shell op-
timization program POPT which is an add-on module to
the wide-spread finite element programANSYS. It should
be noted that due to limited access on the source code the
times reported below do not include the time for the start-
up of the problem (formulation of stiffness matrix etc.)
and the function and gradient evaluation at the initial de-
sign. More details of this example and the corresponding
computations can be found in Zillober (2001a).

The example is a tube construction. It is fixed at the
right border. There are two load cases. The first load
case are forces applying at the nodes on the upper end

Fig. 1 Example 1: tube

of the tube directed against the curvature of the tube.
These forces are indicated in Fig. 1 by many small arrows,
one per element node. The tips of these arrows form the
shifted circle at the top of the tube. The second load case
is a pressure force from inside the tube applying at each
element.

The tube is meshed with 2976 finite elements and
17856 degrees of freedom. The structure is divided in 36
areas where each area is assigned a thickness parameter.
The objective function is the weight of the structure, the
constraints are one stress constraint with upper and lower
bound for each element, i.e. 11 904 constraints for the two
load cases.

The time for one function and gradient evaluation
was approximately 500 CPU-seconds. SCPIP solves this
problem within 5336 CPU-seconds and 9 function and
gradient evaluations besides the evaluations at the initial
design. SCPIP chose automatically approach (15) and the
dense Cholesky solver. Manual selection of approach (14)
as well as the selection of the dual subproblem solver lead
to no results for the first subproblem within one night of
real time. The active set strategy lead to about 6000 con-
straints in the first subproblem.

6.2
Example 2

The second example is a problem of topology design
based on the power-law approach, the so-called MBB-
halfbeam taken from Sigmund (2001). For that purpose
the Matlab code of Sigmund (2001) has been translated
to Fortran77. The ground structure has beenmeshed with
390×260 two-dimensional square 4-node finite elements.
It is fixed at the left edge in x-direction and the lower
right node in y-direction. A force is applied at the up-
per left node. The objective is to minimize the compli-
ance of the structure with respect to a volume constraint
and equilibrium. During the optimization process a mesh-
independency filter like in Sigmund (2001) is used. The
formulation of the problem is as follows:

370

min
x

uTK(x)u ,

s.t. V (x) ≤ Vmax ,

K(x)u= p ,

0< xmin ≤ xi ≤ 1 , i= 1, . . . , ne ; (18)

xi is the relative density in element i, thus x is the vec-
tor of design variables. ne is the number of finite elements
in the discretization. K is the global stiffness matrix of
the power-law approach, V is the volume of the struc-
ture, u is the global displacement vector and p is the
force vector. xmin is a positive, but very low lower bound
on the relative densities to avoid singularities. We chose
xmin = 0.001 and Vmax as 50% of the volume of the ground
structure.

Fig. 2 Example 2. (a) topology design, ground structure, (b)
topology design, result

Thus, the optimization problem has 101400 variables
and one constraint besides the box-constraints since the
equilibrium condition is solved within a finite element an-
alysis in an outer loop.

SCPIP solved the problem within 31 iterations and
138000 CPU-seconds. Stopping criterion was an upper
bound of 0.1% on the relative change in the objective
function. SCPIP chose automatically approach (14). Ap-
proach (15) lead to no comparable results. In this example
the traditional dual approach is also efficient. It should
be emphasized that the largest part of the CPU-time
refers to the computation of the mesh-independency fil-
ter, not to the finite element analyses or the subproblem
solutions. This should be an encouragement to look for al-
ternative strategies for mesh independent solutions. The
structure of the solution is also sensitive to the size of
the filter radius. Moreover the fine discretization should
be viewed as a component of a numerical study for large
scale structural optimization problems. It is not necessary
for each topology optimization problem to use such a fine
discretization.

6.3
Example 3

The third example is also an example of topology design
but it is based on a slightly different formulation of the

Fig. 3 Example 3. (a) topology design, ground structure, (b)
topology design, result

volume constraint and subject to constraints on the elem-
ent compliances. The structure is fixed in x-direction at
the left edge and in y-direction at the lower edge. More-
over, there are damping layers of fixed material in the
upper and lower horizontal direction (indicated by grey).
The design domain is the domain between these fixed
layers. Forces are distributed equally at the upper edge in
negative y-direction. The discretization is 270×180, i.e.
48 600 finite elements are used.

The volume constraint is modified such that the
amount of material used in the final structure is vari-
able. To make such a formulation useful it is necessary
to penalize the use of material in the objective function.
The reason for this modification of the volume constraint
is the introduction of constraints on the element com-
pliances in order to ensure feasible designs. Thus, it is
possible to use more material to get feasible designs but
it is also possible to reduce the amount of material if the
constraints are not active.

The new problem formulation reads as follows:

min
x

uTK(x)u+ρδ2 ,

s.t. V (x)≤ δV0 ,

K(x)u= p ,

uTi Ki(x)ui ≤ ci , i= 1, . . . , ne ,

0≤ δ ≤ 1 ,

0< xmin ≤ xi ≤ 1 , i= 1, . . . , ne ; (19)

V0 is the amount of material in the ground structure, δ is
the new optimization variable for a flexible use of mate-
rial, ρ is a fixed penalty parameter to make δ as low as
possible; ui is the displacement vector corresponding to
element i, Ki is the element stiffness matrix of element i,
ci is the bound for the i-th element compliance.

In our example the ci are equal for all elements such
that we can expect that few of these constraints will be
active. Again, the equilibrium conditions are solved sepa-
rately such that the optimization problem has 48601 vari-
ables and 48601 constraints besides the box-constraints.

371

SCPIP solves this problem in 41 iterations and 43350
CPU-seconds to the stopping criterion as above. At the
optimum 4 of the local constraints are active. During the
iteration process up to 8 local constraints have been ac-
tive. The optimal value of δ at the optimum is 0.527, that
means 52.7% of the initial material of the design domain
is used. This value is sensitive to the choice of ρ which has
been set to 104 in this case. In all iterations approach (14)
has been chosen for the solution of the subproblems.

7
Conclusion

The Fortran code SCPIP for the solution of structural op-
timization problems has been introduced. Its advantages
in the variable formulation of subproblems have been
shown. SCPIP is suitable for the solution of large opti-
mization problems which is demonstrated by three exam-
ples. Moreover, structure in the problem data as sparsity
can be exploited. Future developments are to fix decision
rules in case of sparse Jacobians of constraints and the
development of sophisticated preconditioning techniques
for the conjugate gradient linear system solver. Both in
order to be able to solve problems that are still larger than
the problems handled presently.

Acknowledgements The author is grateful to CAD-FEM

GmbH, Marktplatz 2, D-85567 Grafing, for the possibility to

use the POPT program for finite element computations, to

Frank Vogel, inuTech GmbH, Fürther Straße 212, D-90429

Nürnberg, for providing structural optimization examples and

to Ole Sigmund, Department of Solid Mechanics, Technical

University of Denmark, DK-2800 Lyngby, for providing his

topology optimization code and examples.

References

Fleury, C. 1989: CONLIN: an efficient dual optimizer based
on convex approximation concepts. Struct. Optim. 1, 81–89

Nocedal, J.; Wright, S. 1999: Numerical optimization. Berlin,
Heidelberg, New York: Springer

Sigmund, O. 2001: A 99 line topology optimization code writ-
ten in Matlab. Struct. Multidisc. Optim. 21, 120–127

Svanberg, K. 1987: The method of moving asymptotes – a new
method for structural optimization. Int. J. Num. Meth. Eng.
24, 359–373

Zillober, C. 1993: A globally convergent version of the method
of moving asymptotes. Struct. Optim. 6, 166–174

Zillober, C. 2001a: A combined convex approximation – in-
terior point approach for large scale nonlinear programming.
Optim. Engng. 2, 51–73

Zillober, C. 2001b: Global convergence of a nonlinear pro-
gramming method using convex approximations. Numer. Al-
gorithms 27, 256–289

Zillober, C. 2001c: Software manual for SCPIP 2.2. Technical
Report TR01-2 , Informatik, Universität Bayreuth, WWW:
www.uni-bayreuth.de/departments/math/∼czillober/papers/
tr01-2.ps

Zillober, C.; Vogel, F. 2000: Solving large scale structural
optimization problems. In: Sienz, J. (ed.) Proc. 2-nd ASMO
UK/ISSMO Conf. on Engineering Design Optimization,
pp. 273–280. University of Swansea, Wales

