
§1 GB WORDS INTRODUCTION 1

Important: Before reading GB WORDS, please read or at least skim the programs for GB GRAPH and GB IO.

1. Introduction. This GraphBase module provides two external subroutines:

words , a routine that creates a graph based on five-letter words;
find word , a routine that looks for a given vertex in such a graph.

Examples of the use of these routines can be found in two demo programs, WORD COMPONENTS and
LADDERS.

〈 gb_words.h 1 〉 ≡
extern Graph ∗words ();
extern Vertex ∗find word ();

See also section 26.

2. The subroutine call words (n,wt vector ,wt threshold , seed) constructs a graph based on the five-letter
words in words.dat. Each vertex of the graph corresponds to a single five-letter word. Two words are
adjacent in the graph if they are the same except in one letter position. For example, ‘words’ is adjacent to
other words such as ‘cords’, ‘wards’, ‘woods’, ‘worms’, and ‘wordy’.

The constructed graph has at most n vertices; indeed, it has exactly n vertices if there are enough qualifying
words. A word qualifies if its “weight” is wt threshold or more, when weights are computed from a table
pointed to by wt vector according to rules described below. (If parameter wt vector is Λ, i.e., NULL, default
weights are used.) The fourth parameter, seed , is the seed of a random number generator.

All words of words.dat will be sorted by weight. The first vertex of the graph will be the word of largest
weight, the second vertex will have second-largest weight, and so on. Words of equal weight will appear in
pseudo-random order, as determined by the value of seed in a system-independent fashion. The first n words
in order of decreasing weight are chosen to be vertices of the graph. However, if fewer than n words have
weight ≥ wt threshold , the graph will contain only the words that qualify. In such cases the graph will have
fewer than n vertices—possibly none at all.

Exception: The special case n = 0 is equivalent to the case when n has been set to the highest possible
value. It causes all qualifying words to appear.

2 INTRODUCTION GB WORDS §3

3. Every word in words.dat has been classified as ‘common’ (*), ‘advanced’ (+), or ‘unusual’ (). Each
word has also been assigned seven frequency counts c1, . . . , c7, separated by commas; these counts show
how often the word has occurred in different publication contexts:

c1 times in the American Heritage Intermediate Corpus of elementary school material;
c2 times in the Brown Corpus of reading material from America;
c3 times in the Lancaster-Oslo/Bergen Corpus of reading material from Britain;
c4 times in the Melbourne-Surrey Corpus of newspaper material from Australia;
c5 times in the Revised Standard Version of the Bible;
c6 times in The TEXbook and The METAFONTbook by D. E. Knuth;
c7 times in Concrete Mathematics by Graham, Knuth, and Patashnik.

For example, one of the entries in words.dat is

happy*774,92,121,2,26,8,1

indicating a common word with c1 = 774, . . . , c7 = 1.
Parameter wt vector points to an array of nine integers (a, b, w1, . . . , w7). The weight of each word is

computed from these nine numbers by using the formula

c1w1 + · · ·+ c7w7 +

{
a, if the word is ‘common’;
b, if the word is ‘advanced’;
0, if the word is ‘unusual’.

The components of wt vector must be chosen so that

max
(
|a|, |b|

)
+ C1|w1|+ · · ·+ C7|w7| < 230,

where Cj is the maximum value of cj in the file; this restriction ensures that the words procedure will
produce the same results on all computer systems.

4. The maximum frequency counts actually present are C1 = 15194, C2 = 3560, C3 = 4467, C4 = 460,
C5 = 6976, C6 = 756, and C7 = 362; these can be found in the entries for the common words ‘shall’,
‘there’, ‘which’, and ‘would’.

The default weights are a = 100, b = 10, c1 = 4, c2 = c3 = 2, c4 = c5 = c6 = c7 = 1.
File words.dat contains 5757 words, of which 3300 are ‘common’, 1194 are ‘advanced’, and 1263 are

‘unusual’. Included among the unusual words are 891 having c1 = · · · = c7 = 0; such words will always have
weight zero, regardless of the weight vector parameter.

〈Private variables 4 〉 ≡
static long max c [] = {15194, 3560, 4467, 460, 6976, 756, 362}; /∗ maximum counts Cj ∗/
static long default wt vector [] = {100, 10, 4, 2, 2, 1, 1, 1, 1}; /∗ use this if wt vector = Λ ∗/

See also sections 17 and 25.

This code is used in section 7.

§5 GB WORDS INTRODUCTION 3

5. Examples: If you call words (2000,Λ, 0, 0), you get a graph with 2000 of the most common five-
letter words of English, using the default weights. The GraphBase programs are designed to be system-
independent, so that identical graphs will be obtained by everybody who asks for words (2000,Λ, 0, 0).
Equivalent experiments on algorithms for graph manipulation can therefore be performed by researchers
in different parts of the world.

The subroutine call words (2000,Λ, 0, s) will produce slightly different graphs when the random seed s
varies, because some words have equal weight. However, the graph for any particular value of s will be the
same on all computers. The seed value can be any integer in the range 0 ≤ s < 231.

Suppose you call words (0, w, 1, 0), with w defined by the C declaration

long w[9] = {1};

this means that a = 1 and b = w1 = · · · = w7 = 0. Therefore you’ll get a graph containing only the 3300
‘common’ words. Similarly, it’s possible to obtain only the 3300 + 1194 = 4494 non-‘unusual’ words, by
specifying the weight vector

long w[9] = {1, 1};

this makes a = b = 1 and w1 = · · · = w7 = 0. In both of these examples, the qualifying words all have
weight 1, so the vertices of the graph will appear in pseudo-random order.

If w points to an array of nine 0’s, the call words (n,w, 0, s) gives a random sample of n words, depending
on s in a system-independent fashion.

If the entries of the weight vector are all nonnegative, and if the weight threshold is zero, every word of
words.dat will qualify. Thus you will obtain a graph with min(n, 5757) vertices.

If w points to an array with negative weights, the call words (n,w,−#7fffffff, 0) selects n of the least
common words in words.dat.

6. If the words routine encounters a problem, it returns Λ, after putting a code number into the external
variable panic code . This code number identifies the type of failure. Otherwise words returns a pointer to
the newly created graph, which will be represented with the data structures explained in GB GRAPH. (The
external variable panic code is itself defined in GB GRAPH.)

#define panic(c) { gb free (node blocks);
panic code = c; gb trouble code = 0; return Λ; }

4 INTRODUCTION GB WORDS §7

7. Now let’s get going on the program. The C file gb_words.c begins as follows:

#include "gb_io.h" /∗ we will use the GB IO routines for input ∗/
#include "gb_flip.h" /∗ we will use the GB FLIP routines for random numbers ∗/
#include "gb_graph.h" /∗ we will use the GB GRAPH data structures ∗/
#include "gb_sort.h" /∗ and gb linksort for sorting ∗/
〈Preprocessor definitions 〉
〈Type declarations 15 〉
〈Private variables 4 〉
〈Private functions 10 〉
Graph ∗words (n,wt vector ,wt threshold , seed)

unsigned long n; /∗ maximum number of vertices desired ∗/
long wt vector []; /∗ pointer to array of weights ∗/
long wt threshold ; /∗ minimum qualifying weight ∗/
long seed ; /∗ random number seed ∗/

{ 〈Local variables 8 〉
gb init rand (seed);
〈Check that wt vector is valid 9 〉;
〈 Input the qualifying words to a linked list, computing their weights 18 〉;
〈Sort and output the words, determining adjacencies 22 〉;
if (gb trouble code) {

gb recycle (new graph);
panic(alloc fault); /∗ oops, we ran out of memory somewhere back there ∗/

}
return new graph ;
}

8. 〈Local variables 8 〉 ≡
Graph ∗new graph ; /∗ the graph constructed by words ∗/

See also sections 14, 16, and 24.

This code is used in section 7.

§9 GB WORDS VALIDATING THE WEIGHTS 5

9. Validating the weights. The first job that words needs to tackle is comparatively trivial: We want
to verify the condition

max
(
|a|, |b|

)
+ C1|w1|+ · · ·+ C7|w7| < 230. (∗)

This proves to be an interesting exercise in “portable C programming,” because we don’t want to risk integer
overflow. Our approach is to do the calculation first in floating point arithmetic, thereby ruling out cases
that are clearly unacceptable. Once that test is passed, we can safely test the condition with ordinary integer
arithmetic. Floating point arithmetic is system dependent, but we use it carefully so that system-independent
results are obtained.

〈Check that wt vector is valid 9 〉 ≡
if (¬wt vector) wt vector = default wt vector ;
else { register double flacc ;

register long ∗p, ∗q;
register long acc ;

〈Use floating point arithmetic to check that wt vector isn’t totally off base 11 〉;
〈Use integer arithmetic to check that wt vector is truly OK 12 〉;
}

This code is used in section 7.

10. The floating-point calculations are facilitated by a routine that converts an integer to its absolute
value, expressed as a double:

〈Private functions 10 〉 ≡
static double flabs (x)

long x;
{ if (x ≥ 0) return (double)x;

return −((double)x);
}

See also section 13.

This code is used in section 7.

11. Although floating point arithmetic is system dependent, we can certainly assume that at least 16 bits
of precision are used. This implies that the difference between flabs (x) and |x| must be less than 214. Also,
if x and y are nonnegative values less than 231, the difference between their floating-point sum and their
true sum must be less than 214.

The floating point calculations in the following test will never reject a valid weight vector. For if condition
(∗) holds, the floating-point value of max(flabs (a),flabs (b)) + C1 ∗ flabs (w1) + · · · + C7 ∗ flabs (w7) will be
less than 230 + (8 + C1 + · · ·+ C7)214, which is less than 230 + 229.

〈Use floating point arithmetic to check that wt vector isn’t totally off base 11 〉 ≡
p = wt vector ;
flacc = flabs (∗p++);
if (flacc < flabs (∗p)) flacc = flabs (∗p); /∗ now flacc = max(|a|, |b|) ∗/
for (q = &max c [0]; q < &max c [7]; q++) flacc += ∗q ∗ flabs (∗++p);
if (flacc ≥ (double) #60000000) /∗ this constant is 6× 228 = 230 + 229 ∗/

panic(very bad specs); /∗ whoa; the weight vector is way too big ∗/
This code is used in section 9.

6 VALIDATING THE WEIGHTS GB WORDS §12

12. Conversely, if the floating point test just made is passed, the true value of the sum will be less than
230 + 229 + 229 = 231; hence integer overflow will never occur when we make the following more refined test:

〈Use integer arithmetic to check that wt vector is truly OK 12 〉 ≡
p = wt vector ;
acc = iabs (∗p++);
if (acc < iabs (∗p)) acc = iabs (∗p); /∗ now acc = max(|a|, |b|) ∗/
for (q = &max c [0]; q < &max c [7]; q++) acc += ∗q ∗ iabs (∗++p);
if (acc ≥ #40000000) panic(bad specs); /∗ the weight vector is a bit too big ∗/

This code is used in section 9.

13. 〈Private functions 10 〉 +≡
static long iabs (x)

long x;
{ if (x ≥ 0) return (long)x;

return −((long)x);
}

§14 GB WORDS THE INPUT PHASE 7

14. The input phase. Now we’re ready to read words.dat.

〈Local variables 8 〉 +≡
register long wt ; /∗ the weight of the current word ∗/
char word [5]; /∗ the current five-letter word ∗/
long nn = 0; /∗ the number of qualifying words found so far ∗/

15. As we read the words, we will form a linked list of nodes containing each qualifying word and its
weight, using the memory management routines of GB GRAPH to allocate space for 111 nodes at a time.
These nodes should be returned to available memory later, so we will keep them in a separate area under
local control.

The nodes start out with key and link fields, as required by the gb linksort routine, which we’ll use to
sort by weight. The sort key must be nonnegative; we obtain it by adding 230 to the weight.

#define nodes per block 111

〈Type declarations 15 〉 ≡
typedef struct node struct {

long key ; /∗ the sort key (weight plus 230) ∗/
struct node struct ∗link ; /∗ links the nodes together ∗/
char wd [5]; /∗ five-letter word (which typically consumes eight bytes, too bad) ∗/
} node;

See also section 23.

This code is used in section 7.

16. 〈Local variables 8 〉 +≡
node ∗next node ; /∗ the next node available for allocation ∗/
node ∗bad node ; /∗ if next node = bad node , the node isn’t really there ∗/
node ∗stack ptr ; /∗ the most recently created node ∗/
node ∗cur node ; /∗ current node being created or examined ∗/

17. 〈Private variables 4 〉 +≡
static Area node blocks ; /∗ the memory area for blocks of nodes ∗/

18. 〈 Input the qualifying words to a linked list, computing their weights 18 〉 ≡
next node = bad node = stack ptr = Λ;
if (gb open ("words.dat") 6= 0) panic(early data fault);

/∗ couldn’t open "words.dat" using GraphBase conventions; io errors tells why ∗/
do 〈Read one word, and put it on the stack if it qualifies 19 〉 while (¬gb eof ());
if (gb close () 6= 0) panic(late data fault); /∗ something’s wrong with "words.dat"; see io errors ∗/

This code is used in section 7.

19. 〈Read one word, and put it on the stack if it qualifies 19 〉 ≡
{ register long j; /∗ position in word ∗/

for (j = 0; j < 5; j++) word [j] = gb char ();
〈Compute the weight wt 21 〉;
if (wt ≥ wt threshold) { /∗ it qualifies ∗/
〈 Install word and wt in a new node 20 〉;
nn ++;

}
gb newline ();
}

This code is used in section 18.

8 THE INPUT PHASE GB WORDS §20

20. #define copy5 (y, x)
{ ∗(y) = ∗(x); ∗((y) + 1) = ∗((x) + 1); ∗((y) + 2) = ∗((x) + 2);
∗((y) + 3) = ∗((x) + 3); ∗((y) + 4) = ∗((x) + 4); }

〈 Install word and wt in a new node 20 〉 ≡
if (next node ≡ bad node) {

cur node = gb typed alloc(nodes per block ,node,node blocks);
if (cur node ≡ Λ) panic(no room + 1); /∗ out of memory already ∗/
next node = cur node + 1;
bad node = cur node + nodes per block ;
} else cur node = next node ++;
cur node~key = wt + #40000000;
cur node~ link = stack ptr ;
copy5 (cur node~wd ,word);
stack ptr = cur node ;

This code is used in section 19.

21. Recall that gb number () returns 0, without giving an error, if no digit is present in the current
position of the file being read. This implies that the words.dat file need not include zero counts explicitly.
Furthermore, we can arrange things so that trailing zero counts are unnecessary; commas can be omitted if
all counts following them on the current line are zero.

〈Compute the weight wt 21 〉 ≡
{ register long ∗p, ∗q; /∗ pointers to Cj and wj ∗/

register long c; /∗ current count ∗/
switch (gb char ()) {
case ’*’: wt = wt vector [0]; break; /∗ ‘common’ word ∗/
case ’+’: wt = wt vector [1]; break; /∗ ‘advanced’ word ∗/
case ’ ’: case ’\n’: wt = 0; break; /∗ ‘unusual’ word ∗/
default: panic(syntax error); /∗ unknown type of word ∗/
}
p = &max c [0];
q = &wt vector [2];
do {

if (p ≡ &max c [7]) panic(syntax error + 1); /∗ too many counts ∗/
c = gb number (10);
if (c > ∗p++) panic(syntax error + 2); /∗ count too large ∗/
wt += c ∗ ∗q++;

} while (gb char () ≡ ’,’);
}

This code is used in section 19.

§22 GB WORDS THE OUTPUT PHASE 9

22. The output phase. Once the input phase has examined all of words.dat, we are left with a stack
of nn nodes containing the qualifying words, starting at stack ptr .

The next step is to call gb linksort , which takes the qualifying words and distributes them into the 128
lists gb sorted [j], for 0 ≤ j < 128. We can then access the words in order of decreasing weight by reading
through these lists, starting with gb sorted [127] and ending with gb sorted [0]. (See the documentation of
gb linksort in the GB SORT module.)

The output phase therefore has the following general outline:

〈Sort and output the words, determining adjacencies 22 〉 ≡
gb linksort (stack ptr);
〈Allocate storage for the new graph; adjust n if it is zero or too large 27 〉;
if (gb trouble code ≡ 0 ∧ n) {

register long j; /∗ runs through sorted lists ∗/
register node ∗p; /∗ the current node being output ∗/
nn = n;
for (j = 127; j ≥ 0; j−−)

for (p = (node ∗) gb sorted [j]; p; p = p~ link) {
〈Add the word p~wd to the graph 28 〉;
if (−−nn ≡ 0) goto done ;

}
}

done : gb free (node blocks);

This code is used in section 7.

23. The only slightly unusual data structure needed is a set of five hash tables, one for each of the strings
of four letters obtained by suppressing a single letter of a five-letter word. For example, a word like ‘words’
will lead to entries for ‘ ords’, ‘w rds’, ‘wo ds’, ‘wor s’, and ‘word ’, one in each of the hash tables.

#define hash prime 6997 /∗ a prime number larger than the total number of words ∗/
〈Type declarations 15 〉 +≡

typedef Vertex ∗hash table [hash prime];

24. 〈Local variables 8 〉 +≡
Vertex ∗cur vertex ; /∗ the current vertex being created or examined ∗/
char ∗next string ; /∗ where we’ll store the next five-letter word ∗/

25. 〈Private variables 4 〉 +≡
static hash table ∗htab ; /∗ five dynamically allocated hash tables ∗/

26. The weight of each word will be stored in the utility field u.I of its Vertex record. The position in
which adjacent words differ will be stored in utility field a.I of the Arc records between them.

#define weight u.I /∗ weighted frequencies ∗/
#define loc a.I /∗ index of difference (0, 1, 2, 3, or 4) ∗/
〈 gb_words.h 1 〉 +≡
#define weight u.I /∗ repeat the definitions in the header file ∗/
#define loc a.I

10 THE OUTPUT PHASE GB WORDS §27

27. 〈Allocate storage for the new graph; adjust n if it is zero or too large 27 〉 ≡
if (n ≡ 0 ∨ nn < n) n = nn ;
new graph = gb new graph (n);
if (new graph ≡ Λ) panic(no room); /∗ out of memory before we’re even started ∗/
if (wt vector ≡ default wt vector)

sprintf (new graph~ id , "words(%lu,0,%ld,%ld)", n,wt threshold , seed);
else sprintf (new graph~ id , "words(%lu,{%ld,%ld,%ld,%ld,%ld,%ld,%ld,%ld,%ld},%ld,%ld)", n,

wt vector [0],wt vector [1],wt vector [2],wt vector [3],wt vector [4],wt vector [5],wt vector [6],
wt vector [7],wt vector [8],wt threshold , seed);

strcpy (new graph~util types , "IZZZZZIZZZZZZZ");
cur vertex = new graph~vertices ;
next string = gb typed alloc(6 ∗ n, char,new graph~data);
htab = gb typed alloc(5,hash table,new graph~aux data);

This code is used in section 22.

28. 〈Add the word p~wd to the graph 28 〉 ≡
{ register char ∗q; /∗ the new word ∗/
q = cur vertex~name = next string ;
next string += 6;
copy5 (q, p~wd);
cur vertex~weight = p~key − #40000000;
〈Add edges for all previous words r that nearly match q 29 〉;
cur vertex ++;
}

This code is used in section 22.

§29 GB WORDS THE OUTPUT PHASE 11

29. The length of each edge in a words graph is set to 1; the calling routine can change it later if desired.

#define mtch (i) (∗(q + i) ≡ ∗(r + i))
#define match (a, b, c, d) (mtch (a) ∧mtch (b) ∧mtch (c) ∧mtch (d))
#define store loc of diff (k) cur vertex~arcs~ loc = (cur vertex~arcs − 1)~ loc = k
#define ch (q) ((long) ∗(q))
#define hdown (k) h ≡ htab [k] ? h = htab [k + 1]− 1 : h−−

〈Add edges for all previous words r that nearly match q 29 〉 ≡
{ register char ∗r; /∗ previous word possibly adjacent to q ∗/
register Vertex ∗∗h; /∗ hash address for linear probing ∗/
register long raw hash ; /∗ five-letter hash code before remaindering ∗/
raw hash = (((((((ch (q)� 5) + ch (q + 1))� 5) + ch (q + 2))� 5) + ch (q + 3))� 5) + ch (q + 4); for (

h = htab [0] + (raw hash − (ch (q)� 20)) % hash prime;

∗h; hdown (0))
{
r = (∗h)~name ;
if (match (1, 2, 3, 4)) gb new edge (cur vertex , ∗h, 1L), store loc of diff (0);
}
∗h = cur vertex ; for (h = htab [1] + (raw hash − (ch (q + 1)� 15)) % hash prime;

∗h; hdown (1))
{
r = (∗h)~name ;
if (match (0, 2, 3, 4)) gb new edge (cur vertex , ∗h, 1L), store loc of diff (1);
}
∗h = cur vertex ; for (h = htab [2] + (raw hash − (ch (q + 2)� 10)) % hash prime;

∗h; hdown (2))
{
r = (∗h)~name ;
if (match (0, 1, 3, 4)) gb new edge (cur vertex , ∗h, 1L), store loc of diff (2);
}
∗h = cur vertex ; for (h = htab [3] + (raw hash − (ch (q + 3)� 5)) % hash prime;

∗h; hdown (3))
{
r = (∗h)~name ;
if (match (0, 1, 2, 4)) gb new edge (cur vertex , ∗h, 1L), store loc of diff (3);
}
∗h = cur vertex ; for (h = htab [4] + (raw hash − ch (q + 4)) % hash prime;

∗h; hdown (4))
{
r = (∗h)~name ;
if (match (0, 1, 2, 3)) gb new edge (cur vertex , ∗h, 1L), store loc of diff (4);
}
∗h = cur vertex ; }

This code is used in section 28.

12 FINDING A WORD GB WORDS §30

30. Finding a word. After words has created a graph g, the user can remove the hash tables by calling
gb free (g~aux data). But if the hash tables have not been removed, another procedure can be used to find
vertices that match or nearly match a given word.

The subroutine call find word (q, f) will return a pointer to a vertex that matches a given five-letter word q,
if that word is in the graph; otherwise, it returns Λ (i.e., NULL), after calling f(v) for each vertex v whose
word matches q in all but one letter position.

Vertex ∗find word (q, f)
char ∗q;
void (∗f)(); /∗ ∗f should take one argument, of type Vertex ∗, or f should be Λ ∗/
{ register char ∗r; /∗ previous word possibly adjacent to q ∗/
register Vertex ∗∗h; /∗ hash address for linear probing ∗/
register long raw hash ; /∗ five-letter hash code before remaindering ∗/
raw hash = (((((((ch (q)� 5) + ch (q + 1))� 5) + ch (q + 2))� 5) + ch (q + 3))� 5) + ch (q + 4); for

(h = htab [0] + (raw hash − (ch (q)� 20)) % hash prime;

∗h; hdown (0))
{
r = (∗h)~name ;
if (mtch (0) ∧match (1, 2, 3, 4)) return ∗h;

}
〈 Invoke f on every vertex that is adjacent to word q 31 〉;
return Λ; }

§31 GB WORDS FINDING A WORD 13

31. 〈 Invoke f on every vertex that is adjacent to word q 31 〉 ≡
if (f) { for (h = htab [0] + (raw hash − (ch (q)� 20)) % hash prime;

∗h; hdown (0))
{
r = (∗h)~name ;
if (match (1, 2, 3, 4)) (∗f)(∗h);
}
for (h = htab [1] + (raw hash − (ch (q + 1)� 15)) % hash prime;

∗h; hdown (1))
{
r = (∗h)~name ;
if (match (0, 2, 3, 4)) (∗f)(∗h);
}
for (h = htab [2] + (raw hash − (ch (q + 2)� 10)) % hash prime;

∗h; hdown (2))
{
r = (∗h)~name ;
if (match (0, 1, 3, 4)) (∗f)(∗h);
}
for (h = htab [3] + (raw hash − (ch (q + 3)� 5)) % hash prime;

∗h; hdown (3))
{
r = (∗h)~name ;
if (match (0, 1, 2, 4)) (∗f)(∗h);
}
for (h = htab [4] + (raw hash − ch (q + 4)) % hash prime;

∗h; hdown (4))
{
r = (∗h)~name ;
if (match (0, 1, 2, 3)) (∗f)(∗h);
}
}

This code is used in section 30.

14 INDEX GB WORDS §32

32. Index. Here is a list that shows where the identifiers of this program are defined and used.

acc : 9, 12.
alloc fault : 7.
Arc: 26.
arcs : 29.
Area: 17.
aux data : 27, 30.
bad node : 16, 18, 20.
bad specs : 12.
c: 21.
ch : 29, 30, 31.
copy5 : 20, 28.
cur node : 16, 20.
cur vertex : 24, 27, 28, 29.
data : 27.
default wt vector : 4, 9, 27.
done : 22.
early data fault : 18.
f : 30.
find word : 1, 30.
flabs : 10, 11.
flacc : 9, 11.
gb char : 19, 21.
gb close : 18.
gb eof : 18.
gb free : 6, 22, 30.
gb init rand : 7.
gb linksort : 7, 15, 22.
gb new edge : 29.
gb new graph : 27.
gb newline : 19.
gb number : 21.
gb open : 18.
gb recycle : 7.
gb sorted : 22.
gb trouble code : 6, 7, 22.
gb typed alloc : 20, 27.
Graham, Ronald Lewis: 3.
Graph: 1, 7, 8.
h: 29, 30.
hash prime: 23, 29, 30, 31.
hash table: 23, 25, 27.
hdown : 29, 30, 31.
htab : 25, 27, 29, 30, 31.
iabs : 12, 13.
id : 27.
io errors : 18.
j: 19, 22.
key : 15, 20, 28.
Knuth, Donald Ervin: 3.
late data fault : 18.
link : 15, 20, 22.

loc : 26, 29.
match : 29, 30, 31.
max c : 4, 11, 12, 21.
mtch : 29, 30.
n: 7.
name : 28, 29, 30, 31.
new graph : 7, 8, 27.
next node : 16, 18, 20.
next string : 24, 27, 28.
nn : 14, 19, 22, 27.
no room : 20, 27.
node: 15, 16, 20, 22.
node blocks : 6, 17, 20, 22.
node struct: 15.
nodes per block : 15, 20.
p: 9, 21, 22.
panic : 6, 7, 11, 12, 18, 20, 21, 27.
panic code : 6.
Patashnik, Oren: 3.
q: 9, 21, 28, 30.
r: 29, 30.
raw hash : 29, 30, 31.
seed : 2, 7, 27.
sprintf : 27.
stack ptr : 16, 18, 20, 22.
store loc of diff : 29.
strcpy : 27.
syntax error : 21.
util types : 27.
Vertex: 1, 23, 24, 26, 29, 30.
vertices : 27.
very bad specs : 11.
w: 5.
wd : 15, 20, 28.
weight : 26, 28.
word : 14, 19, 20.
words : 1, 2, 3, 5, 6, 7, 8, 9, 29, 30.
wt : 14, 19, 20, 21.
wt threshold : 2, 7, 19, 27.
wt vector : 2, 3, 4, 7, 9, 11, 12, 21, 27.
x: 10, 13.

GB WORDS NAMES OF THE SECTIONS 15

〈Add edges for all previous words r that nearly match q 29 〉 Used in section 28.

〈Add the word p~wd to the graph 28 〉 Used in section 22.

〈Allocate storage for the new graph; adjust n if it is zero or too large 27 〉 Used in section 22.

〈Check that wt vector is valid 9 〉 Used in section 7.

〈Compute the weight wt 21 〉 Used in section 19.

〈 Input the qualifying words to a linked list, computing their weights 18 〉 Used in section 7.

〈 Install word and wt in a new node 20 〉 Used in section 19.

〈 Invoke f on every vertex that is adjacent to word q 31 〉 Used in section 30.

〈Local variables 8, 14, 16, 24 〉 Used in section 7.

〈Private functions 10, 13 〉 Used in section 7.

〈Private variables 4, 17, 25 〉 Used in section 7.

〈Read one word, and put it on the stack if it qualifies 19 〉 Used in section 18.

〈Sort and output the words, determining adjacencies 22 〉 Used in section 7.

〈Type declarations 15, 23 〉 Used in section 7.

〈Use floating point arithmetic to check that wt vector isn’t totally off base 11 〉 Used in section 9.

〈Use integer arithmetic to check that wt vector is truly OK 12 〉 Used in section 9.

〈 gb_words.h 1, 26 〉

May 3, 2022 at 22:53

GB WORDS
Section Page

Introduction . 1 1
Validating the weights . 9 5
The input phase . 14 7
The output phase . 22 9
Finding a word . 30 12
Index . 32 14

c© 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

	Introduction
	Validating the weights
	The input phase
	The output phase
	Finding a word
	Index
	Names of the sections
	Add edges for all previous words r that nearly match q
	Add the word p->wd to the graph
	Allocate storage for the new graph; adjust n if it is zero or too large
	Check that wt_vector is valid
	Compute the weight wt
	Input the qualifying words to a linked list, computing their weights
	Install word and wt in a new node
	Invoke f on every vertex that is adjacent to word q
	Local variables
	Private functions
	Private variables
	Read one word, and put it on the stack if it qualifies
	Sort and output the words, determining adjacencies
	Type declarations
	Use floating point arithmetic to check that wt_vector isn't totally off base
	Use integer arithmetic to check that wt_vector is truly OK
	gb_words.h

