Important: Before reading GB_WORDS, please read or at least skim the programs for GB_GRAPH and GB_IO.

1. Introduction. This GraphBase module provides two external subroutines:
words, a routine that creates a graph based on five-letter words;
find_word, a routine that looks for a given vertex in such a graph.
Examples of the use of these routines can be found in two demo programs, WORD_COMPONENTS and LADDERS.
```
<gb_words.h 1\rangle\equiv
    extern Graph *words();
    extern Vertex *find_word();
See also section 26 .
```

2. The subroutine call words (n, wt_vector, wt_threshold, seed) constructs a graph based on the five-letter words in words.dat. Each vertex of the graph corresponds to a single five-letter word. Two words are adjacent in the graph if they are the same except in one letter position. For example, 'words' is adjacent to other words such as 'cords', 'wards', 'woods', 'worms', and 'wordy'.

The constructed graph has at most n vertices; indeed, it has exactly n vertices if there are enough qualifying words. A word qualifies if its "weight" is wt_threshold or more, when weights are computed from a table pointed to by wt_vector according to rules described below. (If parameter wt_vector is Λ, i.e., NULL, default weights are used.) The fourth parameter, seed, is the seed of a random number generator.

All words of words. dat will be sorted by weight. The first vertex of the graph will be the word of largest weight, the second vertex will have second-largest weight, and so on. Words of equal weight will appear in pseudo-random order, as determined by the value of seed in a system-independent fashion. The first n words in order of decreasing weight are chosen to be vertices of the graph. However, if fewer than n words have weight \geq wt_threshold, the graph will contain only the words that qualify. In such cases the graph will have fewer than n vertices-possibly none at all.

Exception: The special case $n=0$ is equivalent to the case when n has been set to the highest possible value. It causes all qualifying words to appear.
3. Every word in words.dat has been classified as 'common' (*), 'advanced' (+), or 'unusual' (ப). Each word has also been assigned seven frequency counts c_{1}, \ldots, c_{7}, separated by commas; these counts show how often the word has occurred in different publication contexts:

```
\(c_{1}\) times in the American Heritage Intermediate Corpus of elementary school material;
\(c_{2}\) times in the Brown Corpus of reading material from America;
\(c_{3}\) times in the Lancaster-Oslo/Bergen Corpus of reading material from Britain;
\(c_{4}\) times in the Melbourne-Surrey Corpus of newspaper material from Australia;
\(c_{5}\) times in the Revised Standard Version of the Bible;
\(c_{6}\) times in The \(T_{E} X b o o k\) and The METAFONTbook by D. E. Knuth;
\(c_{7}\) times in Concrete Mathematics by Graham, Knuth, and Patashnik.
```

For example, one of the entries in words.dat is

```
happy*774,92,121,2,26,8,1
```

indicating a common word with $c_{1}=774, \ldots, c_{7}=1$.
Parameter wt_vector points to an array of nine integers $\left(a, b, w_{1}, \ldots, w_{7}\right)$. The weight of each word is computed from these nine numbers by using the formula

$$
c_{1} w_{1}+\cdots+c_{7} w_{7}+ \begin{cases}a, & \text { if the word is 'common'; } \\ b, & \text { if the word is 'advanced'; } \\ 0, & \text { if the word is 'unusual'. }\end{cases}
$$

The components of wt_vector must be chosen so that

$$
\max (|a|,|b|)+C_{1}\left|w_{1}\right|+\cdots+C_{7}\left|w_{7}\right|<2^{30}
$$

where C_{j} is the maximum value of c_{j} in the file; this restriction ensures that the words procedure will produce the same results on all computer systems.
4. The maximum frequency counts actually present are $C_{1}=15194, C_{2}=3560, C_{3}=4467, C_{4}=460$, $C_{5}=6976, C_{6}=756$, and $C_{7}=362$; these can be found in the entries for the common words 'shall', 'there', 'which', and 'would'.

The default weights are $a=100, b=10, c_{1}=4, c_{2}=c_{3}=2, c_{4}=c_{5}=c_{6}=c_{7}=1$.
File words.dat contains 5757 words, of which 3300 are 'common', 1194 are 'advanced', and 1263 are 'unusual'. Included among the unusual words are 891 having $c_{1}=\cdots=c_{7}=0$; such words will always have weight zero, regardless of the weight vector parameter.
\langle Private variables 4$\rangle \equiv$
static long max_c []$=\{15194,3560,4467,460,6976,756,362\} ; \quad / *$ maximum counts $C_{j} * /$
static long default_wt_vector []$=\{100,10,4,2,2,1,1,1,1\} ; \quad / *$ use this if wt_vector $=\Lambda * /$
See also sections 17 and 25 .
This code is used in section 7 .
5. Examples: If you call $\operatorname{words}(2000, \Lambda, 0,0)$, you get a graph with 2000 of the most common fiveletter words of English, using the default weights. The GraphBase programs are designed to be systemindependent, so that identical graphs will be obtained by everybody who asks for $\operatorname{words}(2000, \Lambda, 0,0)$. Equivalent experiments on algorithms for graph manipulation can therefore be performed by researchers in different parts of the world.

The subroutine call words $(2000, \Lambda, 0, s)$ will produce slightly different graphs when the random seed s varies, because some words have equal weight. However, the graph for any particular value of s will be the same on all computers. The seed value can be any integer in the range $0 \leq s<2^{31}$.

Suppose you call words $(0, w, 1,0)$, with w defined by the C declaration

$$
\text { long } w[9]=\{1\}
$$

this means that $a=1$ and $b=w_{1}=\cdots=w_{7}=0$. Therefore you'll get a graph containing only the 3300 'common' words. Similarly, it's possible to obtain only the $3300+1194=4494$ non-'unusual' words, by specifying the weight vector

$$
\text { long } w[9]=\{1,1\}
$$

this makes $a=b=1$ and $w_{1}=\cdots=w_{7}=0$. In both of these examples, the qualifying words all have weight 1 , so the vertices of the graph will appear in pseudo-random order.

If w points to an array of nine 0 's, the call $\operatorname{words}(n, w, 0, s)$ gives a random sample of n words, depending on s in a system-independent fashion.

If the entries of the weight vector are all nonnegative, and if the weight threshold is zero, every word of words.dat will qualify. Thus you will obtain a graph with $\min (n, 5757)$ vertices.

If w points to an array with negative weights, the call $\operatorname{words}\left(n, w,-{ }^{\#} 7 f f f f f f f, 0\right)$ selects n of the least common words in words.dat.
6. If the words routine encounters a problem, it returns Λ, after putting a code number into the external variable panic_code. This code number identifies the type of failure. Otherwise words returns a pointer to the newly created graph, which will be represented with the data structures explained in GB_GRAPH. (The external variable panic_code is itself defined in GB_GRAPH.)
\#define panic(c) \{ gb_free(node_blocks);

$$
\text { panic_code }=c ; \text { gb_trouble_code }=0 ; \text { return } \Lambda ;\}
$$

7. Now let's get going on the program. The C file gb_words.c begins as follows:
```
#include "gb_io.h" /* we will use the GB_IO routines for input */
#include "gb_flip.h" /* we will use the GB_FLIP routines for random numbers */
#include "gb_graph.h" /* we will use the GB_GRAPH data structures */
#include "gb_sort.h" /* and gb_linksort for sorting */
    <Preprocessor definitions>
    <Type declarations 15>
    <Private variables 4\rangle
    <Private functions 10\rangle
    Graph *words(n,wt_vector, wt_threshold, seed)
            unsigned long n; /* maximum number of vertices desired */
            long wt_vector[]; /* pointer to array of weights */
            long wt_threshold; /* minimum qualifying weight */
            long seed; /* random number seed */
    { <Local variables 8\rangle
        gb_init_rand(seed);
        < Check that wt_vector is valid 9>;
        <Input the qualifying words to a linked list, computing their weights 18\rangle;
        <Sort and output the words, determining adjacencies 22\rangle;
        if (gb_trouble_code) {
            gb_recycle(new_graph);
            panic(alloc_fault); /* oops, we ran out of memory somewhere back there */
        }
        return new_graph;
    }
```

8. \langle Local variables 8$\rangle \equiv$

Graph *new_graph; /* the graph constructed by words */
See also sections 14,16 , and 24.
This code is used in section 7 .
9. Validating the weights. The first job that words needs to tackle is comparatively trivial: We want to verify the condition

$$
\begin{equation*}
\max (|a|,|b|)+C_{1}\left|w_{1}\right|+\cdots+C_{7}\left|w_{7}\right|<2^{30} \tag{*}
\end{equation*}
$$

This proves to be an interesting exercise in "portable C programming," because we don't want to risk integer overflow. Our approach is to do the calculation first in floating point arithmetic, thereby ruling out cases that are clearly unacceptable. Once that test is passed, we can safely test the condition with ordinary integer arithmetic. Floating point arithmetic is system dependent, but we use it carefully so that system-independent results are obtained.
\langle Check that wt_vector is valid 9$\rangle \equiv$

```
        if (\negwt_vector) wt_vector = default_wt_vector;
        else { register double flacc;
            register long *p, *q;
            register long acc;
            <Use floating point arithmetic to check that wt_vector isn't totally off base 11\rangle;
            <Use integer arithmetic to check that wt_vector is truly OK 12\rangle;
    }
This code is used in section 7 .
```

10. The floating-point calculations are facilitated by a routine that converts an integer to its absolute value, expressed as a double:
\langle Private functions 10$\rangle \equiv$
static double flabs (x)
long x;
$\{$ if $(x \geq 0)$ return (double) x;
return $-(($ double $) x)$;
\}

See also section 13.
This code is used in section 7 .
11. Although floating point arithmetic is system dependent, we can certainly assume that at least 16 bits of precision are used. This implies that the difference between $f l a b s(x)$ and $|x|$ must be less than 2^{14}. Also, if x and y are nonnegative values less than 2^{31}, the difference between their floating-point sum and their true sum must be less than 2^{14}.

The floating point calculations in the following test will never reject a valid weight vector. For if condition $(*)$ holds, the floating-point value of $\max (f l a b s(a)$, flabs $(b))+C_{1} * f l a b s\left(w_{1}\right)+\cdots+C_{7} * f l a b s\left(w_{7}\right)$ will be less than $2^{30}+\left(8+C_{1}+\cdots+C_{7}\right) 2^{14}$, which is less than $2^{30}+2^{29}$.
\langle Use floating point arithmetic to check that wt_vector isn't totally off base 11$\rangle \equiv$
$p=w t_{-} v e c t o r$;
flacc $=$ flabs $(* p++)$;
if $($ flacc $<$ flabs $(* p))$ flacc $=$ flabs $(* p) ; \quad / *$ now flacc $=\max (|a|,|b|) * /$
for $(q=\&$ max_c $[0] ; q<\&$ max_c $[7] ; q++$) flacc $+=* q *$ flabs $(*+p)$;
if $($ flacc $\geq($ double $) \# 60000000) \quad / *$ this constant is $6 \times 2^{28}=2^{30}+2^{29} * /$
panic (very_bad_specs); /* whoa; the weight vector is way too big */
This code is used in section 9.
12. Conversely, if the floating point test just made is passed, the true value of the sum will be less than $2^{30}+2^{29}+2^{29}=2^{31}$; hence integer overflow will never occur when we make the following more refined test:
\langle Use integer arithmetic to check that wt_vector is truly OK 12$\rangle \equiv$
$p=$ wt_vector ;
$a c c=i a b s(* p++)$;
if $(a c c<\operatorname{iabs}(* p))$ acc $=\operatorname{iabs}(* p) ; \quad / *$ now $a c c=\max (|a|,|b|) * /$
for ($q=\&$ max_c $^{\prime}[0] ; q<\& \max _{_} c[7] ; q++$) acc $+=* q * \operatorname{iabs}(*++p)$;
if (acc \geq \#40000000) panic(bad_specs); $\quad / *$ the weight vector is a bit too big $* /$
This code is used in section 9 .
13. 〈Private functions 10$\rangle+\equiv$
static long $\operatorname{iabs}(x)$
long x;
$\{$ if $(x \geq 0)$ return (long) x; return $-(($ long $) x)$;
\}
14. The input phase. Now we're ready to read words.dat.
\langle Local variables 8$\rangle+\equiv$
register long $w t ; \quad / *$ the weight of the current word $* /$
char word [5]; /* the current five-letter word $* /$
long $n n=0 ; \quad / *$ the number of qualifying words found so far $* /$
15. As we read the words, we will form a linked list of nodes containing each qualifying word and its weight, using the memory management routines of GB_GRAPH to allocate space for 111 nodes at a time. These nodes should be returned to available memory later, so we will keep them in a separate area under local control.
The nodes start out with key and link fields, as required by the gb_linksort routine, which we'll use to sort by weight. The sort key must be nonnegative; we obtain it by adding 2^{30} to the weight.
\#define nodes_per_block 111
\langle Type declarations 15$\rangle \equiv$
typedef struct node_struct \{
long key; /* the sort key (weight plus 2^{30}) */
struct node_struct $*$ link; /* links the nodes together $* /$ char $w d[5] ; \quad / *$ five-letter word (which typically consumes eight bytes, too bad) */
\} node;
See also section 23.
This code is used in section 7 .
16. \langle Local variables 8$\rangle+\equiv$
node $*$ next_node; $\quad / *$ the next node available for allocation $* /$
node $*$ bad_node; $\quad / *$ if next_node $=$ bad_node, the node isn't really there $* /$
node $*$ stack_ptr; $\quad / *$ the most recently created node $* /$
node $*$ cur_node; $\quad / *$ current node being created or examined $* /$
17. \langle Private variables 4$\rangle+\equiv$
static Area node_blocks; /* the memory area for blocks of nodes $* /$
18. 〈Input the qualifying words to a linked list, computing their weights 18$\rangle \equiv$ next_node $=$ bad_node $=$ stack_ptr $=\Lambda$;
if (gb_open("words.dat") $\neq 0$) panic(early_data_fault);
/* couldn't open "words.dat" using GraphBase conventions; io_errors tells why */
do $\langle\operatorname{Read}$ one word, and put it on the stack if it qualifies 19\rangle while ($\left.\neg g b_{-} e o f()\right)$;
if (gb_close ()$\neq 0)$ panic (late_data_fault); $\quad / *$ something's wrong with "words.dat"; see io_errors */
This code is used in section 7 .
19. \langle Read one word, and put it on the stack if it qualifies 19$\rangle \equiv$
$\{$ register long $j ; \quad / *$ position in word $* /$

$$
\text { for }(j=0 ; j<5 ; j++) \text { word }[j]=g b _c h a r()
$$

\langle Compute the weight wt 21\rangle; if ($w t \geq w t_{-}$threshold $)$\{ $\quad / *$ it qualifies $* /$
\langle Install word and $w t$ in a new node 20\rangle;
$n n++$ \}
gb_newline();
\}
This code is used in section 18.
20. \#define $\operatorname{copy} 5(y, x)$

$$
\begin{aligned}
& \{*(y)=*(x) ; *((y)+1)=*((x)+1) ; *((y)+2)=*((x)+2) ; \\
& \quad *((y)+3)=*((x)+3) ; *((y)+4)=*((x)+4) ;\}
\end{aligned}
$$

\langle Install word and $w t$ in a new node 20$\rangle \equiv$
if (next_node \equiv bad_node) \{
cur_node = gb_typed_alloc(nodes_per_block, node, node_blocks);
if (cur_node $\equiv \Lambda$) panic $($ no_room +1$) ; \quad / *$ out of memory already $* /$
next_node $=$ cur_node +1 ;
bad_node $=$ cur_node + nodes_per_block;
\} else cur_node $=$ next_node + ;
cur_node $-k e y=w t+{ }^{\#} 40000000$;
cur_node \rightarrow link $=$ stack_ptr;
copy5 (cur_node \rightarrow wd, word);
stack_ptr $=$ cur_node;
This code is used in section 19.
21. Recall that gb_number () returns 0 , without giving an error, if no digit is present in the current position of the file being read. This implies that the words. dat file need not include zero counts explicitly. Furthermore, we can arrange things so that trailing zero counts are unnecessary; commas can be omitted if all counts following them on the current line are zero.

```
\(\langle\) Compute the weight \(w t 21\rangle \equiv\)
    \(\left\{\right.\) register long \(* p, * q ; \quad / *\) pointers to \(C_{j}\) and \(w_{j} * /\)
        register long \(c ; \quad / *\) current count \(* /\)
        switch (gb_char()) \{
        case '*': wt \(=\) wt_vector \([0]\); break; \(\quad / *\) 'common' word \(* /\)
        case '+': wt \(=\) wt_vector [1]; break; \(\quad / *\) 'advanced' word \(* /\)
        case 'ப': case ' \(\backslash \mathrm{n}\) ': \(w t=0\); break; /* 'unusual' word */
        default: panic(syntax_error); /* unknown type of word */
        \}
        \(p=\& \max _{-}[0]\);
        \(q=\& w t_{-}\)vector \([2] ;\)
        do \{
            if \((p \equiv\) \&max_c \([7])\) panic (syntax_error +1\() ; \quad / *\) too many counts \(* /\)
            \(c=g b \_n u m b e r(10)\);
            if \((c>* p++)\) panic (syntax_error +2\() ; \quad / *\) count too large \(* /\)
            \(w t+=c * * q++;\)
        \} while (gb_char ()\(\left.\equiv{ }^{\prime},{ }^{\prime}\right)\);
    \}
This code is used in section 19.
```

22. The output phase. Once the input phase has examined all of words.dat, we are left with a stack of $n n$ nodes containing the qualifying words, starting at stack_ptr.
The next step is to call gb_linksort, which takes the qualifying words and distributes them into the 128 lists $g b _$sorted $[j]$, for $0 \leq j<128$. We can then access the words in order of decreasing weight by reading through these lists, starting with gb_sorted [127] and ending with gb_sorted $[0]$. (See the documentation of gb_linksort in the GB_SORT module.)
The output phase therefore has the following general outline:
\langle Sort and output the words, determining adjacencies 22$\rangle \equiv$ gb_linksort(stack_ptr);
〈Allocate storage for the new graph; adjust n if it is zero or too large 27\rangle;
if (gb_trouble_code $\equiv 0 \wedge n$) \{
register long $j ; \quad / *$ runs through sorted lists */
register node $* p ; \quad / *$ the current node being output $* /$
$n n=n$;
for $(j=127 ; j \geq 0 ; j--)$
for $\left(p=(\right.$ node $*) g b_{-}$sorted $[j] ; p ; p=p$-link) $\{$
\langle Add the word $p \neg w d$ to the graph 28\rangle;
if $(--n n \equiv 0)$ goto done;
\}
\}
done: gb_free(node_blocks);
This code is used in section 7 .
23. The only slightly unusual data structure needed is a set of five hash tables, one for each of the strings of four letters obtained by suppressing a single letter of a five-letter word. For example, a word like 'words'

\#define hash_prime 6997 /* a prime number larger than the total number of words */
\langle Type declarations 15$\rangle+\equiv$
typedef Vertex $*$ hash_table [hash_prime];
24. \langle Local variables 8$\rangle+\equiv$

Vertex $*$ cur_vertex; $\quad / *$ the current vertex being created or examined $* /$
char $*$ next_string; /* where we'll store the next five-letter word $* /$
25. \langle Private variables 4$\rangle+\equiv$
static hash_table $* h t a b ; \quad / *$ five dynamically allocated hash tables */
26. The weight of each word will be stored in the utility field $u . I$ of its Vertex record. The position in which adjacent words differ will be stored in utility field a.I of the Arc records between them.
\#define weight u.I /* weighted frequencies */
\#define loc a.I /* index of difference $(0,1,2,3$, or 4$) * /$
\langle gb_words.h 1$\rangle+\equiv$
\#define weight u.I /* repeat the definitions in the header file */
\#define loc a.I
27. 〈Allocate storage for the new graph; adjust n if it is zero or too large 27$\rangle \equiv$
if $(n \equiv 0 \vee n n<n) n=n n$;
new_graph $=$ gb_new_graph (n);
if (new_graph $\equiv \Lambda$) panic (no_room); /* out of memory before we're even started */
if (wt_vector \equiv default_wt_vector)
sprintf ($n e w _$graph $\rightarrow i d$, "words (\%1u, 0, \%1d, \%1d) ", n, wt_threshold, seed);
 wt_vector [0], wt_vector [1], wt_vector [2], wt_vector [3], wt_vector [4], wt_vector [5], wt_vector [6], wt_vector [7], wt_vector [8], wt_threshold, seed);
strcpy (new_graph \rightarrow util_types, "IZZZZZIZZZZZZZZ");
cur_vertex $=$ new_graph \rightarrow vertices;
next_string $=$ gb_typed_alloc $(6 * n$, char, new_graph $\rightarrow d a t a)$;
$h t a b=$ gb_typed_alloc (5, hash_table, new_graph \rightarrow aux_data $)$;
This code is used in section 22.
28. 〈Add the word $p \bullet w d$ to the graph 28$\rangle \equiv$
$\{$ register char $* q ; \quad / *$ the new word $* /$
$q=$ cur_vertex \rightarrow name $=$ next_string;
next_string $+=6$;
copy5 ($q, p \rightharpoonup w d$);
cur_vertex \rightarrow weight $=p-k e y-\# 40000000$;
\langle Add edges for all previous words r that nearly match $q 29\rangle$; cur_vertex ++;
\}
This code is used in section 22.
29. The length of each edge in a words graph is set to 1 ; the calling routine can change it later if desired. \#define $\operatorname{mtch}(i)(*(q+i) \equiv *(r+i))$
\#define match $(a, b, c, d)(m t c h(a) \wedge m t c h(b) \wedge m t c h(c) \wedge m t c h(d))$
\#define store_loc_of_diff (k) cur_vertex \rightarrow arcs \rightarrow loc $=($ cur_vertex \rightarrow arcs -1$) \rightarrow l o c=k$
\#define $\operatorname{ch}(q)(($ long $) *(q))$
\#define $h \operatorname{down}(k) h \equiv h t a b[k] ? h=h t a b[k+1]-1: h--$
\langle Add edges for all previous words r that nearly match $q 29\rangle \equiv$
$\{$ register char $* r ; \quad / *$ previous word possibly adjacent to $q * /$
register Vertex $* * h ; \quad / *$ hash address for linear probing $* /$
register long raw_hash; /* five-letter hash code before remaindering */
raw_hash $=((((((\operatorname{ch}(q) \ll 5)+\operatorname{ch}(q+1)) \ll 5)+\operatorname{ch}(q+2)) \ll 5)+\operatorname{ch}(q+3)) \ll 5)+\operatorname{ch}(q+4)$; for $($ $h=h t a b[0]+($ raw_hash $-($ ch $(q) \ll 20)) \%$ hash_prime;
*h; hdown(0))
\{
$r=(* h) \rightarrow n a m e$;
if (match $(1,2,3,4))$ gb_new_edge(cur_vertex $\left., * h, 1_{\mathrm{L}}\right)$, store_loc_of_diff (0);
\}
$* h=$ cur_vertex $;$ for $(h=h t a b[1]+($ raw_hash $-(c h(q+1) \ll 15)) \%$ hash_prime;
*h; hdown(1))
\{
$r=(* h) \rightarrow n a m e ;$
if (match $(0,2,3,4))$ gb_new_edge(cur_vertex $, * h, 1_{\mathrm{L}}$), store_loc_of_diff (1);
\}
$* h=$ cur_vertex $;$ for $(h=h t a b[2]+($ raw_hash $-(c h(q+2) \ll 10)) \%$ hash_prime;
*h; hdown(2))
\{
$r=(* h) \rightarrow$ name;
if (match $(0,1,3,4))$ gb_new_edge(cur_vertex $\left., * h, 1_{\mathrm{L}}\right)$, store_loc_of_diff (2);
\}
*h $=$ cur_vertex $;$ for $(h=h t a b[3]+($ raw_hash $-(c h(q+3) \ll 5)) \%$ hash_prime;
*h; hdown(3))
\{
$r=(* h) \rightarrow n a m e ;$
if (match $(0,1,2,4))$ gb_new_edge(cur_vertex $, * h, 1_{\mathrm{L}}$), store_loc_of_diff (3);
\}
*h $=$ cur_vertex $;$ for $\left(h=h t a b[4]+\left(r a w _h a s h-c h(q+4)\right) \%\right.$ hash_prime;
*h; hdown(4))
\{ $r=(* h) \rightarrow n a m e$; if (match $(0,1,2,3))$ gb_new_edge(cur_vertex $\left., * h, 1_{\mathrm{L}}\right)$, store_loc_of_diff (4);
\}
*h $=$ cur_vertex $;\}$
This code is used in section 28.
30. Finding a word. After words has created a graph g, the user can remove the hash tables by calling $g b_{-}$free ($g \rightarrow$ aux_data). But if the hash tables have not been removed, another procedure can be used to find vertices that match or nearly match a given word.
The subroutine call find_word (q, f) will return a pointer to a vertex that matches a given five-letter word q, if that word is in the graph; otherwise, it returns Λ (i.e., NULL), after calling $f(v)$ for each vertex v whose word matches q in all but one letter position.

```
Vertex *find_word \((q, f)\)
    char \(* q\);
    void \((* f)() ; \quad / * * f\) should take one argument, of type Vertex \(*\), or \(f\) should be \(\Lambda * /\)
    \(\{\) register char \(* r ; \quad / *\) previous word possibly adjacent to \(q * /\)
    register Vertex \(* * h\); /* hash address for linear probing \(* /\)
    register long raw_hash; /* five-letter hash code before remaindering */
    raw_hash \(=((((((\operatorname{ch}(q) \ll 5)+\operatorname{ch}(q+1)) \ll 5)+\operatorname{ch}(q+2)) \ll 5)+\operatorname{ch}(q+3)) \ll 5)+\operatorname{ch}(q+4)\); for
        \((h=h t a b[0]+(\) raw_hash \(-(c h(q) \ll 20)) \%\) hash_prime;
    *h; hdown (0) )
    \{
        \(r=(* h) \rightarrow n a m e ;\)
    if \((\operatorname{mtch}(0) \wedge \operatorname{match}(1,2,3,4))\) return \(* h\);
    \}
    \(\langle\) Invoke \(f\) on every vertex that is adjacent to word \(q 31\rangle\);
    return \(\Lambda ;\}\)
```

```
31. 〈Invoke f}\mathrm{ on every vertex that is adjacent to word q 31> 三
    if }(f){\mathrm{ for ( h=htab[0] + (raw_hash - (ch(q)<< 20)) % hash_prime;
    *h; hdown(0) )
    {
        r=(*h)}->\mathrm{ name;
        if (match (1, 2, 3,4)) (*f)(*h);
    }
for (h=htab[1] + (raw_hash - (ch(q+1)<< 15)) % hash_prime;
*h; hdown(1) )
{
        r=(*h)}->name
        if (match(0,2,3,4)) (*f)(*h);
    }
    for ( h= htab[2] + (raw_hash - (ch(q+2)<< 10)) % hash_prime;
    *h; hdown(2) )
    {
        r=(*h)->name;
        if (match (0,1,3,4)) (*f)(*h);
    }
for ( h=htab[3] + (raw_hash - (ch(q+3)<<5)) % hash_prime;
*h; hdown(3) )
{
        r=(*h) \negname;
        if (match (0,1, 2,4)) (*f)(*h);
    }
    for ( }h=htab[4]+(raw_hash - ch(q+4)) % hash_prime; 
    *h; hdown(4))
    {
        r=(*h) }->\mathrm{ name;
        if (match (0,1,2,3)) (*f)(*h);
    }
}
This code is used in section 30 .
```

32. Index. Here is a list that shows where the identifiers of this program are defined and used.
acc: $\underline{9}, 12$.
alloc_fault: 7 .
Arc: 26.
arcs: 29.
Area: 17.
aux_data: 27, 30.
bad_node: 16, 18, 20.
bad_specs: 12.
c: $\underline{21 .}$
ch: 29, 30, 31 .
copy5: 20, 28.
cur_node: 16, 20.
cur_vertex: 24, 27, 28, 29.
data: 27.
default_wt_vector: 4, 9, 27.
done: $\underline{22}$.
early_data_fault: 18.
f : 30 .
find_word: 1, 30.
flabs: 10, 11.
flacc: 9,11 .
gb_char: 19, 21.
gb_close: 18.
gb_eof: 18.
gb_free: 6, 22, 30.
gb_init_rand: 7.
gb_linksort: 7, 15, 22.
gb_new_edge: 29.
gb_new_graph: 27.
gb_newline: 19.
gb_number: 21.
gb_open: 18.
gb_recycle: 7 .
gb_sorted: 22.
gb_trouble_code: 6, 7, 22.
gb_typed_alloc: 20, 27.
Graham, Ronald Lewis: 3.
Graph: 1, 7, 8.
$h: \quad \underline{29}, \underline{30}$.
hash_prime: $\underline{23}, 29,30,31$.
hash_table: $\underline{23}, 25,27$.
hdown: 29, 30, 31.
$h t a b: ~ 25,27,29,30,31$.
iabs: 12, 13 .
id: 27.
io_errors: 18.
$j: 19, \underline{22}$.
key: 15, 20, 28.
Knuth, Donald Ervin: 3.
late_data_fault: 18.
link: 15, 20, 22.
loc: 26, 29 .
match: 29, 30, 31.
max_c: $\underline{4}, 11,12,21$.
$m t c h: ~ 29,30$.
n : 7.
name: 28, 29, 30, 31.
new_graph: 7, $\underline{8}, 27$.
next_node: 16, 18, 20.
next_string: 24, 27, 28.
$n n: 14,19,22,27$.
no_room: $20,27$.
node: 15, 16, 20, 22.
node_blocks: 6, 17, 20, 22.
node_struct: 15.
nodes_per_block: 15, 20.
$p: \quad \underline{9}, \underline{21}, \underline{22}$.
panic: $\underline{6}, 7,11,12,18,20,21,27$.
panic_code: 6.
Patashnik, Oren: 3.
$q: \underline{9}, \underline{21}, \underline{28}, \underline{30}$.
$r: \quad 29, \underline{30}$.
raw_hash: 29, 30, 31 .
seed: 2, $7,27$.
sprintf: 27.
stack_ptr: 16, 18, 20, 22.
store_loc_of_diff: $\underline{29}$.
strcpy: 27.
syntax_error: 21.
util_types: 27.
Vertex: 1, 23, 24, 26, 29, 30.
vertices: 27.
very_bad_specs: 11.
w : 5 .
$w d: 15,20,28$.
weight: 26, 28.
word: 14, 19, 20.
words: $\underline{1}, 2,3,5,6, \underline{7}, 8,9,29,30$.
$w t: 14,19,20,21$.
wt_threshold: 2, $\underline{7}, 19,27$.
wt_vector: $2,3,4, \underline{7}, 9,11,12,21,27$.
$x:$ 10, $\underline{13}$.

〈Add edges for all previous words r that nearly match q 29〉 Used in section 28.
〈Add the word $p \neg w d$ to the graph 28〉 Used in section 22.
〈Allocate storage for the new graph；adjust n if it is zero or too large 27\rangle Used in section 22.
\langle Check that wt＿vector is valid 9\rangle Used in section 7.
〈Compute the weight wt 21〉 Used in section 19.
〈Input the qualifying words to a linked list，computing their weights 18〉 Used in section 7 ．
\langle Install word and $w t$ in a new node 20\rangle Used in section 19.
\langle Invoke f on every vertex that is adjacent to word $q 31\rangle$ Used in section 30 ．
\langle Local variables 8，14，16，24〉 Used in section 7.
\langle Private functions 10，13〉 Used in section 7.
\langle Private variables 4，17，25〉 Used in section 7 ．
〈Read one word，and put it on the stack if it qualifies 19〉 Used in section 18.
\langle Sort and output the words，determining adjacencies 22$\rangle \quad$ Used in section 7.
〈Type declarations 15，23〉 Used in section 7 ．
〈Use floating point arithmetic to check that wt＿vector isn＇t totally off base 11〉 Used in section 9 ．
〈Use integer arithmetic to check that wt＿vector is truly OK 12\rangle Used in section 9.
\langle gb＿words．h 1，26〉

GB_WORDS

Section Page
Introduction 1
Validating the weights 5
The input phase 7
The output phase 9
Finding a word 12
Index 14

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked to help keep the Stanford GraphBase files consistent and "uncorrupted," identical everywhere in the world. Changes are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system has a "change file" facility by which users can easily make minor alterations without modifying the master source files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his best to produce correct and useful programs, in order to help promote computer science research, but no warranty of any kind should be assumed.
Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant CCR-86-10181.

