Demonstrate regression beta-6 to rc2

Bug description

Generating pdf of this doc using the following invokation of asciidoctor-pdf:

asciidoctor-pdf -a stem=latexmath -r asciidoctor-mathematical -a mathematical format=svg ./pdf_stem_bug.adoc

The below table renders ok using the following versions:

Asciidoctor PDF 1.5.0.beta.6 using Asciidoctor 2.0.10 [https://asciidoctor.org] Runtime Environment (ruby 2.5.3p105 (2018-10-18 revision 65156) [x86_64-linux]) (lc:UTF-8 fs:UTF-8 in:UTF-8 ex:UTF-8)

But the lines are not broken correctly using the following versions:

Asciidoctor PDF 1.5.0.rc.2 using Asciidoctor 2.0.10 [https://asciidoctor.org] Runtime Environment (ruby 2.3.1p112 (2016-04-26) [x86_64-linux-gnu]) (lc:UTF-8 fs:UTF-8 in:UTF-8 ex:UTF-8)

Table 1. List of statistical measures with definitions and the smallest supported number of data points in the data set.

Name	Description	Min number of data points
Мах	The highest value in the data set	1
Min	The lowest value in the data set	1
Median	The median value of the points in the data set	1
Mean	The mean value of the points in the data set	1

Name	Description	Min number of data points
Confidence interval of the mean	The confidence interval (80%, 90%, 95%, 98% or 99%) of the mean, assuming a Gaussian distribution: $[m - t_{\alpha} \frac{s}{\sqrt{n}}, m + t_{\alpha} \frac{s}{\sqrt{n}}]$, where <i>m</i> is the mean, <i>s</i> is the estimated sample standard deviation, <i>n</i> is the number of data points and t_{α} is the <i>critical value</i> where α is the confidence level. The following critical values are used: 1. $t_{80\%} = 1.28$ 2. $t_{90\%} = 1.645$ 3. $t_{95\%} = 1.96$ 4. $t_{98\%} = 2.326$ 5. $t_{99\%} = 2.576$	2
Percentile	The percentile (1%, 2%, 5%, 10%, 25%, 75%, 90%, 95%, 98%, 99%) is defined as the value compared to which a percentage of the points in the data set are smaller.	1
Standard deviation	The unbiased sample standard deviation, defined as TBD where TBD is the TBD:th data point, TBD is the mean of the data points and TBD is the number of data points. The unbiased sample standard deviation, defined as $\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i-m)^2}$ where x_i is the <i>i</i> :th data point, <i>m</i> is the mean of the data points and <i>n</i> is the number of data points.	2
Relative standard deviation	The unbiased sample standard deviation divided by the mean.	2
Standard error	The unbiased sample standard deviation divided by the square root of the number of data points, i.e. $\sqrt{\frac{1}{n(n-1)}\sum_{i=1}^{n}(x_i-m)^2}$ where x_i is the <i>i</i> :th data point, <i>m</i> is the mean of the data points and <i>n</i> is the number of data points.	2
Relative standard error	The standard error divided by the mean.	2

Name	Description	Min number of data points
Skewness	The sample skewness, calculated as $\frac{\sqrt{n(n-1)s}}{n-2}$ where <i>n</i> is the number of data points and $s = \sqrt{n} \frac{\sum_{i=1}^{n} (x_i - m)^3}{(\sum_{i=1}^{n} (x_i - m)^2)^{3/2}}$ where x_i is the <i>i</i> :th data point and <i>m</i> is the mean.	3
Kurtosis	The sample excess kurtosis, calculated as $\frac{n-1}{(n-2)(n-3)}((n+1)(k-3)+6)$ where <i>n</i> is the number of data points and $k = n \frac{\sum_{i=1}^{n} (x_i - m)^4}{(\sum_{i=1}^{n} (x_i - m)^2)^2}$ where x_i is the <i>i</i> :th data point and <i>m</i> is the mean of the data points.	4