
CAPSTONE: TASK PIPELINE 1

Capstone: Task Pipeline

Western Governors University

000929868

CAPSTONE: TASK PIPELINE 2

Table of Contents

Prompt A 4

Letter of Transmittal 4

Project Recommendation 7

Problem Summary 7

Application Benefits 7

Application Description 8

Data Description 8

Objective and Hypothesis 9

Methodology 9

Funding Requirements 10

Stakeholders Impact 10

Data Precautions 11

Developer Expertise 11

Prompt B 13

Project Proposal 13

PROBLEM STATEMENT 13

CUSTOMER SUMMARY 13

EXISTING SYSTEM ANALYSIS 14

DATA 14

PROJECT METHODOLOGY 15

PROJECT OUTCOMES 16

IMPLEMENTATION PLAN 16

EVALUATION PLAN 18

RESOURCES AND COSTS 19

TIMELINE AND MILESTONES 19

Prompt C 21

CAPSTONE: TASK PIPELINE 3

Application Files 21

Prompt D 22

Post-implementation Report 22

Project purpose 22

Datasets 23

Data product code 24

Hypothesis verification 25

Effective visualizations and reporting 25

Accuracy analysis 26

Application testing 26

Appendices 27

Installation Guide 27

User Guide 29

Summation of Learning Experience 30

References 31

CAPSTONE: TASK PIPELINE 4

Prompt A

Letter of Transmittal

April 21th, 2020

Ms. JoAnn Miller

Seamus Company

650 N South Street

Dellberg, WI 99999

Ms. Miller,

Optimizing assignment of tasks is an obstacle faced by every service organization. This task is

complicated by the distributed nature of institutional knowledge and the difficulty inherent in

transforming that knowledge into actionable wisdom. Solving this challenge creates

opportunities for improved operational efficiency as optimized task assignment reduces the

time taken to resolve each task and reduces the risk of defects that require rework.

The task pipeline will provide a ranked list of resources whose experience is an optimized match

for each task provided. The browser-based interface will allow exploration of the driving factors

behind each ranking. Factors which will be extracted by processing the provided task

descriptions into descriptive tags and incorporating existing descriptive tags about the

CAPSTONE: TASK PIPELINE 5

customer and the site. Due to the sensitive nature of the data processed by this pipeline, a

relational database management system will be used for secure data storage and access. To

preserve confidentiality of existing data sources, the demonstration dataset for the pipeline is

randomly generated from generic sources then hand curated by an industry expert.

Providing task assignment recommendations based on resource proficiencies and availability

allows a variety of practical efficiency gains. Service resources will benefit with better utilization

of training and more applicable training. Dispatch staff will be able to more quickly evaluate

tasks and select appropriate resources to resolve requests. Customers experience more

consistent interactions with less disruption, fewer repeat visits and less time required to resolve

tasks.

The resulting product will encapsulate a flexible and customizable browser-based interface, a

demonstration database and a modular processing pipeline. The pipeline will accept a task

description along with associated site information. It will combine institutional knowledge

about customer systems, site-specific details and company resources to provide a ranked list of

the employees able to most efficiently resolve the request.

Building, installing and maintaining an application of this critical nature will require an

investment of $27,000 with yearly maintenance costs totalling to $5,400 or 20%. This pricing

relies on the utilization of development tools and libraries available at no additional cost and

with no associated licensing fees.

To implement this solution, I will be relying on academic training that culminated in a Bachelors

of Computer Science, with proficiency validated through independent certifications from

CompTIA, EdX, ITIL, Microsoft and Udacity. My academic training has been refined by more

CAPSTONE: TASK PIPELINE 6

than 10 years of experience in physical security service and a series of successful cross-vendor

system integration projects.

Sincerely,

CAPSTONE: TASK PIPELINE 7

Project Recommendation

Problem Summary

Uneven distribution of institutional knowledge creates difficulties for dispatch staff as they

perform their duties, assessing tasks and attempting to determine optimal task assignments. To

control operational and warranty costs, adequate task assignment optimization must occur.

Current methods of resolving this problem are numerous, each accepting reduced effectiveness

to produce consistent results; training dispatch staff in technology and techniques that they will

not otherwise need or use; limiting product variety and by extension, customer base; dividing

technical resources along product lines; and enforcing standardized training without regard for

individual resource talents or interests. As a result, only those customers, sites and situations

where a costly incident has already occurred are likely to receive a higher level of analysis of

need and available resources.

In resolving this, the solution will provide data input and review interfaces and data storage. It

will require an initial labor investment for data input and maintenance as new relevant

information becomes available or existing information becomes outdated.

Application Benefits

The task pipeline will provide a ranked list of resources whose experience is an optimized match

for each task provided. The interface will provide access to explanatory details, allowing

instantaneous evaluation of the driving factors behind the ranks allowing dispatch to

determine, with confidence, which resource is best able to resolve a given task and prioritize

CAPSTONE: TASK PIPELINE 8

assignments accordingly. Current dispatch solutions in the marketplace ignore the optimization

question, instead assuming that any resource in a group is equally capable at resolving a given

task associated with that group.

Application Description

The application composes the resource rankings for each task by extracting activity descriptors

from the text provided and combining it with existing knowledge about the customer, site and

available resources. Using this process, on an internally hosted application, protects business

critical proprietary information while maximizing the benefit gained from that information.

Data Description

To operate this pipeline, business critical, confidential, and proprietary information will need to

be compiled. Installing this application will require populating the database with details on

customer companies, sites and contacts as well as measuring the expertise of resources at

various tasks and technologies. The quality of this data is critical to the proper functioning of

the pipeline.

To prevent harm to any person or business, the demonstration dataset will be composed of

randomly generated data curated to resemble real information, lacking the anomalies that

would be present in real data. This dataset will be composed of textual identifiers and numeric

weight values. Where practicable, repeating values will be stored separately and referenced as

needed.

CAPSTONE: TASK PIPELINE 9

Objective and Hypothesis

Resulting from this project, a data processing pipeline will accept a formatted description of a

requested task. It will rank the available resources on their ability to efficiently resolve the

request. The attributes and weights underlying these rankings will be available for examination

by system users. Operation of the pipeline is premised on the theory that if a service

organization’s collective knowledge about their customer’s sites, customer’s systems and

available organizational resources were combined, then optimal resources could be efficiently

and accurately matched to any task requested by those customers.

Methodology

The traditional waterfall project management methodology will be used to develop this

product. This project management style is the most cost effective option for smaller projects in

environments with fixed requirements over the life of the project.

The requirements phase of the waterfall method corresponds to the initial discussions and

refinements of needed features for this project. This task will be accomplished using input from

technical service industry experts. The design phase of the project follows requirements

gathering and clarification. This will see the application architecture determined and data

models defined. Configuration of the database, programming environment and coding of the

application itself will occur in the implementation phase, after the conclusion of the design

process. Once implementation completes, the functions, modules and application will be tested

in the verification phase, ensuring proper behavior across both intended and unintended

CAPSTONE: TASK PIPELINE 10

inputs. The project will pass into the maintenance phase where any bugs missed in verification

and any regulatory concerns can be resolved.

Funding Requirements

This application will operate on a dedicated, secure linux server, with an associated hardware

cost of $3000.00 specified to accommodate widely varied workloads. It will require dedicated

software engineer resources totalling to $24,000 over the course of 240 working hours at $100

per hour. The project will utilize development tools and software libraries available at no cost

and with no associated licensing fees. Completing this project will cost $27,000 in total with

expected quarterly maintenance averaging to $600 per year with $4800 per year in labor.

Annual maintenance costs are expected to average to 20% of installed cost.

Stakeholders Impact

The application will allow a variety of practical efficiency gains for service resources, dispatch

staff, customer representatives and service management. Service resources will benefit with

better utilization of training and more applicable training. Allowing them to be more productive

and experience more predictable work assignments. Dispatch staff will be able to more quickly

evaluate tasks and select the right resources to bring a swift resolution. This opens

opportunities to better track and examine trouble cases and encourages more complete task

description. Customers representatives experience more consistent interactions and reduced

disruptions as knowledgeable technical resources resolve problems faster and with fewer trips.

Service management benefits from higher work quality, as resource proficiency is matched to

tasks, reduced costs, as rework and return trips are reduced. As a system, these stakeholders

CAPSTONE: TASK PIPELINE 11

see decreased costs and increased quality as the existing workload is optimized, increasing

work

quality and decreasing both length and quantity of visits.

Data Precautions

While the data that will be used in the installed application is sensitive, it is not necessarily

bound by regulations in the United States. Constructing the project to minimize the duration a

portion of the data is kept in memory and using a modular structure will facilitate changes

required for future regulatory compliance. Existing regulatory frameworks, HIPAA and HITECH

for healthcare, PCI DSS for credit card processing and FERPA for educational data, all have

recommendations and requirements that encourage secure computing. These requirements

vary in scope and specificity, ranging from requiring role-based access to mandatory password

rotation on to encryption of data at rest and in transit. In support of easing compliance with

future regulation efforts, the application will be divided into discrete modules, connecting to a

shared, secure MariaDB database engine for storage and retrieval of sensitive information.

Additionally, password information will be securely stored using verified hashing functionality.

 Developer Expertise

This project will be completed by a degreed computer science engineer bringing more than 12

years of experience in the technical service industry; a wealth of knowledge and experience,

supported by a variety of certifications, to the project.

The software engineer’s experience with project management, using the waterfall method, is

underpinned by both ITIL 3 Foundation certification and CompTIA Project +. Validating this

CAPSTONE: TASK PIPELINE 12

experience with graphical user interface design technologies is CIW Site Development

Associate. A Microsoft Professional Certification in Data Science and Udacity Machine Learning

Nanodegree demonstrate expertise in application of machine learning techniques. These

academic and professional certifications and achievements provide a strong foundation for

completing this project as scheduled and budgeted.

CAPSTONE: TASK PIPELINE 13

Prompt B

Project Proposal

PROBLEM STATEMENT

Interpreting problem descriptions in context and identifying the best available resource to

resolve that problem is the challenge faced by dispatch teams at every service based company.

Accurate analysis of the relevant knowledge an organization has and prediction of technical

resources best suited to efficiently resolve an issue can provide tangible benefits to all

stakeholders. These benefits can manifest as reductions in the number of tasks, hours required

to resolve, trips required to resolve and frequency of rework.

CUSTOMER SUMMARY

This application is intended to serve dispatchers of service organizations. It’s purpose is to

supplement their knowledge and skill set with information gathered and compiled from

throughout their organization. It will present a best-effort ranking, with explanatory descriptors

and weights. This opportunity to review the driving factors provides these subject matter

experts reminders of overlooked details and opportunities to correct faulty decisions and

associated knowledge.

CAPSTONE: TASK PIPELINE 14

The task pipeline will be structured to be flexible in its deployment. The initial version will be

targeted to run on a dedicated linux server and provide a browser-based interface on the local

network. This application will assume users have basic web navigation skills.

EXISTING SYSTEM ANALYSIS

Currently, the customer, Seamus Company, uses a standard service ticket application. This tool

allows a member of the dispatch team to open tickets upon receiving a request from customers

via email or over the phone. The ticket, customer information and available resources are then

reviewed by a member of the dispatch team. That team member chooses an available technical

resource to dispatch to resolve the ticket.

At the completion of the project, a physical server will be installed, providing a dispatch support

interface on the Seamus Company internal network. This server will use Ubuntu Server 18.04.4

LTS as its operating system. Python 3.7 will be installed with the following libraries: Bcrypt,

Flask, Flask-Security-Too, Flask-WTF, Keyring, Matplotlib, Natural Language Processing Toolkit

(NLTK), PyPubSub, SQLAlchemy, WTForms and Urllib. The final, intended result of this project is

to provide direct, consistent and actionable information and recommendations to the

dispatcher during their review of the ticket. If successful, this will improve outcomes for all

stakeholders involved.

DATA

To operate this pipeline, business critical, confidential, and proprietary information will need to

be compiled. Installing this application will require populating the database with details on

customer companies, sites and contacts as well as measuring the expertise of resources at

CAPSTONE: TASK PIPELINE 15

various tasks and technologies. The quality of this data is critical to the proper functioning of

the pipeline.

The demonstration dataset will be composed of generated data curated to resemble real

information though lacking the anomalies that would be present in real data. This dataset will

be composed of textual identifiers and numeric weight values. Where practicable, repeating

values will be stored separately and referenced as needed.

As resource skill sets change, new customers and sites are added, new information about

customers and sites becomes available or systems are replaced, updates to the data housed in

this application will need to be applied. The application will include the interfaces required to

perform these database updates.

PROJECT METHODOLOGY

Over the course of this project, planning and scheduling will follow the waterfall method. Using

traditional waterfall project management will see the application development process pass

through requirements gathering, design, implementation, testing and maintenance. This

method, while less flexible than alternatives and less robust when coping with requirements

changes, is cost effective and efficient on small projects and those instances where

requirements are expected to remain stable.

Requirements gathering includes the initial discussions about the needs of dispatchers and

concludes when agreement is reached on the feature set to be included in the application.

Design follows requirements gathering and clarification. This will see the application

architecture determined and data models defined. These phases will be completed prior to

CAPSTONE: TASK PIPELINE 16

implementation of the application, when configuration of the database, programming

environment and coding of the application itself will occur. Once implementation completes,

the application will be tested in the verification phase, ensuring proper behavior across both

intended and unintended inputs. As a result of this testing decision, extra time will be allotted

during the testing phase to resolve bugs discovered. Finally, the project will pass into the

maintenance phase where any bugs missed in verification and any regulatory concerns can be

resolved.

PROJECT OUTCOMES

Upon completion of the project, the finished application will be delivered to the customer. The

application will include a browser-based graphical user interface, providing access to user and

administrative interfaces and allowing access to maintenance functionality. In addition, the

finished application will include the demonstration database, and a demonstration user for

each of the application access roles. For documentation purposes, the user guide will be

provided, providing installation instructions and explaining the user interface. Finally, the

project schedule with projected and actual milestone completion dates will be provided.

IMPLEMENTATION PLAN

Coding of the application will be completed in a top-down approach. This approach has been

chosen to allow functionality verification of each module and to ensure that they interface

correctly with the broker module. First, the data models will be defined, implemented, and

populated with generated data. Second, the pipeline broker will be established, providing

publisher-subscriber signaling between modules and encapsulating the PyPubSub library. Third,

CAPSTONE: TASK PIPELINE 17

a generic pipeline interface class will be established, providing generic pass-through

functionality. Each of the required modules will be constructed as stubs, derived from the

generic pipeline interface. Fourth, each of the modules will be filled out, replacing the stub

functionality with the required processing. Fifth, the GUI will be constructed and attached to

the completed pipeline.

Upon completion of the GUI, each test task will be added to the database. As the processing

steps are completed, their outputs will be logged to the database for examination. When errors

occur, the responsible module will be examined to locate and correct the faulting logic before

the entire test process is restarted.

Once functionality has been verified, deployment of the application to the production server

will follow a separate set of phases; environment setup, application installation and database

population.

During the environment setup phase, Ubuntu Server 18.04.4 LTS will be installed and updated

to the most current long-term support configuration. MariaDB will be installed and configured

as the database engine. Python 3.7 will be installed, along with the dependency libraries, and

NLTK will be configured. Application installation will require creation of the permanent

directory for the application and configuration of the database connection details in

pipeline.config. Launching the application once the configuration is in place will allow it to

securely store the database connection details and remove the provided password from the

config file. Finally, if the application is ready for deployment to production, the provided

demonstration data must be removed and replaced with customer business data.

CAPSTONE: TASK PIPELINE 18

During the development process, all portions of the environment setup can be completed,

though later deployment stages must wait until the development process is completed.

Conversely, the development process has no dependencies within application deployment.

Upon delivery of the configured, physical server, the customer will also receive the user guide

and production schedule documentation. As extended maintenance is expected,

documentation of repairs made, updates performed and enhancements applied will be

provided after each maintenance event.

EVALUATION PLAN

The application will be validated using curated task assignments. These demonstration tasks

have been selected as representative of normal service request tasks and assigned an ideal

resource for grading purposes. The pipeline is said to have been successful if the ideal resource

appears in the top 10% of rankings. In the case of the demonstration database, with 25 defined

resources, success requires the ideal resource be in the top 2. Overall, the application will be

considered successful and reliable for customer needs if it can achieve 70% success over all test

tasks by the above metric. This criteria will bias the application towards the desired result,

matching technical resource proficiency to customer, site and task needs.

This pipeline acts as a tool to provide assistance to existing human dispatchers, using

information already available to the organization. Concentrating it and analyzing it in this way

does not create new liabilities under existing United States regulatory frameworks. Nor does it

interact meaningfully with existing industry standards.

CAPSTONE: TASK PIPELINE 19

RESOURCES AND COSTS

For this application, a single server will be required, with the natural fluctuations of server

prices, it will cost approximately $2,500. Taxes and shipping are expected to add as much as

$500 to the final price of $3,000. The libraries and applications used in this project are available

for use without additional licensing costs. Final delivery is anticipated to require 8 hours of

labor, costing $800, as accounted for in the initial project schedule and budget.

TIMELINE AND MILESTONES

Development and deployment is anticipated to require 240 hours of labor over the course of 13

weeks. This schedule is a result of outside constraints on the schedule of the assigned software

engineer. Completion of this project is dependent on the milestones described below.

CAPSTONE: TASK PIPELINE 20

Mile-
stone

Pre-requisi
tes

Activity Resource Assigned Hours Start End

1 - Requirements approval Project Manager 8 5/4/20 5/5/20

2 1 Architecture design Software Engineer 16 5/6/20 5/11/20

3 1 Database design Database Engineer 16 5/12/20 5/15/20

4 2, 3 Server purchase Procurement Specialist 4 5/18/20 5/18/20

5 4 Server receipt Procurement Specialist 4 6/18/20 6/18/20

6 5 Server environment setup Software Engineer 8 6/19/20 6/22/20

7 2, 3 Development environment
configuration

Software Engineer 8 5/20/20 5/21/20

8 7 Database creation Database Engineer 8 5/22/20 5/26/20

9 8 Data generation and
curation

Software Engineer 16 5/27/20 6/1/200

10 7 Pipeline broker creation Software Engineer 8 6/2/20 6/3/20

11 7 Generic pipeline interface Software Engineer 12 6/4/20 6/8/20

12 11 Pipeline parser module Software Engineer 12 6/9/20 6/11/20

13 11 Pipeline tagger module Software Engineer 12 6/12/20 6/16/20

14 11 Pipeline ranker module Software Engineer 12 6/17/20 6/25/20

15 7 Pipeline GUI Software Engineer 20 6/26/20 7/2/20

16 10, 11, 12,
13, 14

System testing Quality Assurance 40 7/6/20 7/17/20

17 16 Application deployment Software Engineer 8 7/20/20 7/21/20

18 17 Application verification Software Engineer 20 7/22/20 7/28/20

19 18 Final project delivery Software Engineer 8 7/29/20 7/30/20

CAPSTONE: TASK PIPELINE 21

Prompt C

Application Files

\task_pipeline

\config

demo_database.sql SQL script creates the db and inserts demo data

database_string.config Configuration file used by the data generator

pipeline.config Configuration file used by the application

synonym_map.json Listing of attribute associations and synonyms

task_sample.json Listing of tasks used for verifying the pipeline

\generators Generator files used to initially generate demo data

\static\pipeline.css CSS file used throughout the GUI for consistency

\templates* Template files for each page within the GUI

\dependencies Listing of required python libraries

\pipeline_app.py Application initializer

\pipeline_database.py Database connection initializer

\pipeline_form.py HTML form definitions for the GUI

\pipeline_helper.py Miscellaneous static utility functions

\pipeline_model.py Database model definitions for SQLAlchemy

\pipeline_service.py Broker and pipeline module definitions

\pipeline_view.py Flask routing and user interaction handling

\app.py Application launcher.

CAPSTONE: TASK PIPELINE 22

Prompt D

Post-implementation Report

Project purpose

The task pipeline project provides decision-support to service dispatch staff by using a database

of information relating customers, sites and resources to predict which resources would be best

suited to resolve a given service task efficiently. By comparing weighted tags of technical

resources to generated tag weights for service tasks, the application attempts to rank those

CAPSTONE: TASK PIPELINE 23

resources by estimated proficiency in performing the service requested. By performing these

estimations and providing an interface to examine the component estimates, the application

provides the user with high confidence in the system and enables them to review and reconcile

rankings with which they have cause to

disagree.

Datasets

The sensitive nature of the data

required for effective operation of the

task pipeline precluded its use in the

demonstration database. As a result,

data was generated using generic data

with the aim to recreate the look and

feel of curated, real-world data.

This day has been stored in 3rd normal form, with the exception of address data, for which all

fields are typed data entry, with no

normalization. This format was

chosen to reduce the depth of the

joins required to form complete

contact, company, site and resource

records.

CAPSTONE: TASK PIPELINE 24

Data product code

In an effort to facility future modifications and to reduce exposure to systemic bugs, the task

analysis process was decomposed into discrete, disconnected steps. The steps, and therefore

modules, included in the pipeline are text parsing, text tagging and resource ranking. Each

module of the task pipeline receives the task id of the next task it should process from the

broker. The module then retrieves the current status of that task from the secure database,

performs its processing step and writes the result back to the database. After the database

writing task is complete, the module sends the task id back to the broker, signalling that it has

completed its work on that task.

The text parser divides the task description into discrete sentences before extracting the nouns

from each sentence. These nouns are used by the text tagger as tags with a neutral weight,

providing an abbreviated, descriptive view of the task. The resource ranker combines the

noun-based tags with existing knowledge about the site, company and, if available, customer

contact and manually added task tags to create a single composite weight for each tag included

in any contributing entity. This composite weighted tag list is then compared against the tags

assigned to each available resource. Each resource receives a score estimating how closely

matched their skill set is to the needs of the task. When sorted in ascending order, by score,

this listing becomes a predictive ranking of the most efficient resource to assign to the task.

CAPSTONE: TASK PIPELINE 25

Hypothesis verification

The design of this application was informed by the hypothesis that if a service organization’s

collective knowledge about their customer’s sites, customer’s systems and available

organizational resources were combined, then optimal resources could be efficiently and

accurately matched to any task requested by those customers. Using the randomly generated

dataset, the hypothesis could not be confirmed. However, the behaviour of the system and

performance levels that were reached suggest that the hypothesis cannot yet be rejected.

Improvements to any part of the pipeline, or to the generator algorithm, could show significant

improvements in the performance of the pipeline.

Effective visualizations and reporting

As a decision-support application for dispatch, the visualization of primary importance is the

representation of the tasks to be dispatched and the ranked list of available resources. In this

regard, from the dashboard, the user is able to quickly assess which sites have tasks requiring

dispatch and complete those dispatch activities.

From the same dashboard, the frequency with which certain resources are ranked highly is

immediately accessible as well as which tags are receiving the most activity. The data review

section of the interface allows access to the underlying data for addition and modification. To

protect referential integrity in the database, records can be set to inactive through the interface

but cannot be deleted.

CAPSTONE: TASK PIPELINE 26

Accuracy analysis

For the accuracy metric for this application, it was determined that a recommendation would

only be considered successful if the ideal resource for a given task was in the top 10% of

rankings for that task. With a field of 25 generated technical resources, this requires that the

ideal resource be one of the top 2. As can be seen on the dashboard, the pipeline achieves that

level of success 48.3% of the time across 29 tasks. By this predetermined metric, on randomly

generated data, the pipeline fails to perform at reasonable levels. Review of the data and

predictive behavior suggests that greater differentiation between technical resources would

improve pipeline performance dramatically.

Application testing

Using a top-down development methodology allowed the functionality of each module to be tested as

part of the integrated whole throughout its coding. This resulted in the input and output of each module

being inspected at the database level to ensure the expected results were achieved. Each modification

to a module required resetting the demonstration database and re-executing the pipeline. This proved

to be more labor intensive than implementing unit testing. The resulting modular pipeline has been

confirmed to behave as intended with each module accepting the expected inputs and providing the

expected outputs.

CAPSTONE: TASK PIPELINE 27

Appendices

Installation Guide

Prerequisites:

MariaDB Server Instance

Python 3.7 with supporting libraries: Bcrypt, Flask, Flask-Security-Too, Flask-WTF,

Keyring, Matplotlib, Natural Language Processing Toolkit (NLTK), PyPubSub, SQLAlchemy,

WTForms and Urllib.

1) Install the prerequisite applications.

2) Extract task_pipeline.zip into the directory from which the application will run.

3) Create an account on the database server instance with db_owner and db_creator

permissions.

4) If the demonstration database will be used, run /task_pipeline/config/pipeline_data.sql

5) If not, create an empty database, granting db_owner to the account created in step 3.

6) Edit /task_pipeline/config/pipeline.config, inserting the connection information for the

installed database.

7) Run python /task_pipeline/app.py

8) If the application is installed on a workstation, open a web browser and type

http://127.0.0.1:5000/

http://127.0.0.1:5000/

CAPSTONE: TASK PIPELINE 28

9) If the application is installed on a server, from any local workstation, open a web

browser to http://<server address>:5000

10) Demonstration user accounts exist for each permission level. These accounts should be

changed on first application launch.

a) admin user: admin@example.com

b) dispatch user: dispatch@example.com password:

c) user user: user@example.com

11) For production use, data entry is available through the Data Review page.

password:

CAPSTONE: TASK PIPELINE 29

User Guide

To start task processing, configure a new

task through the add task interface. Once

the task is created, it will be passed through

the pipeline automatically.

For administrators, processed tasks will

appear in the Ungraded Tasks interface of

the Task Grader. To activate the task

grader, select the task and resource, then

click Assign Ideal Resource. Once this is completed, the grader will determine whether the

pipeline was correct or incorrect and assign the appropriate score.

For dispatch users, once the pipeline has finished processing the task, it will appear in Tasks

awaiting dispatch on the Task Pipeline Health Dashboard. Selecting any task and clicking

Dispatch will open the dispatch interface for that task.

CAPSTONE: TASK PIPELINE 30

Summation of Learning Experience

In approaching this assignment, I was again confronted with my own issues with scale and

troubles with vague directions. My educational experiences to this point and desire to be

productive with my time encouraged me to choose a task that would solve an issue I encounter

in my daily life. Learning to build graphical interfaces in Java gave me a grounding in graphical

interfaces I previously lacked. Learning project management skills and gaining 2 certifications to

validate those skills also put me in good stead to understand the processes involved. Finally,

building multiple applications from scratch, resulting in functional interfaces, gave me the

confidence to approach a more serious developmental challenge.

I chose to build this application in python, a choice that required I learn python-specific

graphical interface technologies. For this, I chose Flask, a simpler framework that would

support the project development. Learning the flask ecosystem also introduced me to

SQLAlchemy, providing a significantly improved SQL interface compared to the encapsulated

database connector I had built. Learning these additional libraries and techniques from the

documentation was a challenging and enlightening experience. Aside from checking in with my

course instructor and program mentor every week or two, this work was completed without

assistance. This project has encouraged me to continue expanding my repertoire programming

knowledge and to seek certification of those skills.

CAPSTONE: TASK PIPELINE 31

References

This space intentionally left blank.

