diff --git a/configs/hparams_search/mnist_optuna.yaml b/configs/hparams_search/mnist_optuna.yaml index 8edecd810..cd8e12937 100644 --- a/configs/hparams_search/mnist_optuna.yaml +++ b/configs/hparams_search/mnist_optuna.yaml @@ -1,7 +1,7 @@ # @package _global_ # example hyperparameter optimization of some experiment with Optuna: -# python train.py -m hparams_search=mnist_optuna experiment=example_simple hydra.sweeper.n_trials=30 +# python train.py -m hparams_search=mnist_optuna experiment=example defaults: - override /hydra/sweeper: optuna @@ -10,35 +10,35 @@ defaults: # make sure this is the correct name of some metric logged in lightning module! optimized_metric: "val/acc_best" +# here we define Optuna hyperparameter search +# it optimizes for value returned from function with @hydra.main decorator +# docs: https://hydra.cc/docs/next/plugins/optuna_sweeper hydra: - # here we define Optuna hyperparameter search - # it optimizes for value returned from function with @hydra.main decorator - # learn more here: https://hydra.cc/docs/next/plugins/optuna_sweeper sweeper: _target_: hydra_plugins.hydra_optuna_sweeper.optuna_sweeper.OptunaSweeper + + # storage URL to persist optimization results + # for example, you can use SQLite if you set 'sqlite:///example.db' storage: null + + # name of the study to persist optimization results study_name: null + + # number of parallel workers n_jobs: 1 # 'minimize' or 'maximize' the objective direction: maximize - # number of experiments that will be executed - n_trials: 20 + # total number of runs that will be executed + n_trials: 25 # choose Optuna hyperparameter sampler - # learn more here: https://optuna.readthedocs.io/en/stable/reference/samplers.html + # docs: https://optuna.readthedocs.io/en/stable/reference/samplers.html sampler: _target_: optuna.samplers.TPESampler seed: 12345 - consider_prior: true - prior_weight: 1.0 - consider_magic_clip: true - consider_endpoints: false - n_startup_trials: 10 - n_ei_candidates: 24 - multivariate: false - warn_independent_sampling: true + n_startup_trials: 10 # number of random sampling runs before optimization starts # define range of hyperparameters search_space: