Wachspress and mean value coordinates

Michael S. Floater

Abstract This paper gives a brief survey of two kinds of generalized/&entric
coordinates, Wachspress and mean value coordinates, gindplications. Appli-
cations include surface parameterization in geometricetliod, curve and surface
deformation in computer graphics, and their use as nodaleshanctions for polyg-
onal and polyhedral finite element methods.

1 Introduction

There is no unigue way to generalize barycentric coordintm@olygons and poly-
hedra. However, two specific choices have turned out to bielluseseveral appli-
cations: Wachspress and mean value coordinates, and thesguf this paper is to
survey their main properties, applications, and genextdins.

For convex polygons the coordinates of Wachspress andgéearalizations due
to Warren and others [30, 22, 32, 33, 15], are arguably thelsghsince they are
rational functions (quotients of bivariate polynomialsidit is relatively simple to
evaluate them and their derivatives. Some simple bound$@in gradients have
been found recently in [6], justifying their use as shapecfioms for polygonal
finite elements.

For star-shaped polygons, and arbitrary polygons, Waeksproordinates are
not well-defined, and mean value coordinates are perhapadbkepopular choice,
due to their generality and surprising robustness over @amgeometric shapes
[4,8, 16, 13, 2, 1], even though they are no longer posititiedfpolygon is not star-
shaped. They have been employed in various tasks in geesmatdelling, such as
surface parameterization, and plane and space deformasonell as to shading
and animation in computer graphics.
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While most of this paper surveys previous results, we add emoanes. The first
is a new formula for the gradients of mean value coordinateg;h could be used
in finite element methods. The second is an alternative flarion the mean value
coordinates themselves, which is valid on the boundary efpiblygon. Though it
may not be of practical value, it offers an alternative wayb$howing that these
coordinates extend continuously to the polygon boundary.

2 Barycentric coordinates on polygons

Let P c R? be a convex polygon, viewed as an open set, with vertiges, . .., vy,
n > 3, in some anticlockwise ordering. Figure 1 shows an exanvjilen = 5. We

Va
V3

Vs

Vi V2

Fig. 1 Vertex ordering for a polygon.

call any functionsp : P — R, i =1,...,n, (generalized) barycentric coordinates if,
forxe P, @(x)>0,i=1,...,n,and

‘i(,q(x) =1, li(g(x)vi =X Q)

Forn= 3, the functionsp,, @, @; are uniquely determined and are the usual triangu-
lar barycentric coordinates w.r.t. the triangle with vegtivy,vo,vs. Forn > 4, the
choice ofqy, . .., @ is no longer unigque. However, they share some basic pregerti
derived in [7]:

The functionsp have a unique continuous extensioro®®, the boundary oP.
Lagrange propertyp (vj) = &j.
Piecewise linearity o P:

@((1—pvj+uvi) = 1-malvj) +ualvia), He01. (2

(Here and throughout, vertices are indexed cyclically, V¢ 1 := v etc.)
Interpolation: if

n

g(X)=zifn(X)f(vi), xeP, (3)
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theng(vi) = f(v;). We callg a barycentric interpolant té.

e Linear precision: iff is linear therg = f.

e /i <@ <LjwhereLj,/ : P— R are the continuous, piecewise linear functions
over the partitions oP shown in Figure 2 satisfyingi(v;) = ¢i(vj) = §;.

Vi Vi

Fig. 2 Partitions forl; and/;.

3 Wachspress coordinates

Wachspress coordinates were developed by Wachspresaffi8OlVarren [32]. They
can be defined by the formula

o wi(x)
(ﬂ (X) - ZT:]_W]' (X) 9 (4)

where
A(Vi,]_,Vi 7Vi+1)

Wi(X) =
() A(X,Vi—1,Vi)A(X, Vi, Vit1)’

andA(x1,Xp,x3) denotes the signed area of the triangle with vertiges,, X3,

111
X1 X2 X3|,
Y1Y2Y3

1
A(X1,X2,X3) i= >

wherexx = (X, Yk); see Figure 3. The original proof that these coordinates are
barycentric was based on the so-called adjoir®;afee Wachspress [30], and War-
ren [32]. The following proof is due to Meyer et al. [22]. Due(#), it is sufficient

to show that

'iWi (X)(vi —x) =0. (5)
Fix x € P and let

A =AX) =AXVi,viz1) and  Bi =A(Vi_1,Vi,Vis1).



4 M. S. Floater

Vi+1

Vi-1

Fig. 3 Triangles defining Wachspress coordinates.

Then we can expressas a barycentric combination @f_1,v;, Vi 1:

_ A Bi—A1-A) A
X—BiV|,1—|— B Vi + B,

Vit1,
regardless of whethet lies inside or outside the triangle formed Wy 1,V;, Vi 1.
This equation can be rearranged in the form
B; B
A_1A A_1

Summing both sides of this overand observing that the right hand side then cancels
to zero, gives

(Vi —X)

(Vi —Vi—1) — Aii(Vi-s-l—Vi)-

n Bi - B
iZ\AiflAi (vi—x) =0,

which proves (5).

3.1 Rational functions
Another way of expressing these coordinates is clearlyerfaim

_ W) o) R _
‘H(X)*m, WI(X)*BII_ ifl.iAJ(X), (6)

and since each arég(x) is linear inx, we see from this thap is a rational (bivari-
ate) function, with total degre€ n— 2 in the numerator and denominator. In fact,
the denominatoW = y7_; Wj, has total degreec n— 3 due to linear precision:
since (5) holds wittw; replaced by, it implies that

n

_Z‘Wi (X)vi =W (X)X.
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The left hand side is a (vector-valued) polynomial of degree— 2 in x and since
x has degree 1, the degreedfmust be at most — 3.

The degrees)— 2 andn — 3, of the numerator and denominatorgfagree with
the triangular case where= 3 and the coordinates are linear functions.

We note that the ‘global’ form ofy(x) in (6) is also valid forx € dP, unlike the
‘local’ form (4), though it requires more computation fordan.

3.2 Perpendicular distancesto edges

An alternative way of expressing Wachspress coordinatieséms of the perpen-
dicular distances of to the edges of. This is the form used by Warren et al. [33]
and it generalizes in a natural way to higher dimension.

Fig. 4 Perpendicular distances.
For each, letn; € R? be the outward unit normal to the edge= [Vi, Vi+1], and
for anyx € P let hj(x) be the perpendicular distanceofo the edges, so that
hi(x) = (Vi =) - nj = (Vig1—X) - ni;

see Figure 4. Then the coordinates in (4) can be expressed as

_ W) 7
ax Y Wi(x)’ ()
where o nlaxn .
WI (X) L hifl(x)hi (X) ) ( )
d
" XX
X1 X X2 i1= Vi Y2 .

for xix = (X, Yk). To see this, observe that with = |vj1—vj| (and|-| the Euclidean
norm) andB; the interior angle of the polygon &,
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1 .
A(Vi—1,Vi,Vit1) = ésmﬁi Li—aLi,

and 1 1
A(X,Vi_1,Vj) = éhi—l(X)LFL A(X,Vi,Viy1) = éhi (x)Li,
so that
Wi (X) = 2Wi(X).
3.3 Gradients

The gradient of a Wachspress coordinate can be found gty &am the perpen-
dicular form (7-8). Sincélh;(x) = —n;, the gradient ofv{"is [6]

D0 (X) = i () (hi”il‘(lx> + hi”(‘x)) . ©)
Thus the (vector-valued) ratie; := OW; /W; is simply
L nj
RO = R0 T oo
Using the formula [6]
Da=aRi- > @R)) (10)
=1

for any functiong of the form (7), we thus obtailg(x) for x € P.

3.4 Curve deformation

While Wachspress’s motivation for these coordinates watefielement methods
over polygonal partitions, Warren suggested their use fardeng curves. The co-
ordinates can be used to define a barycentric mapping of dgggroto another,
and such a mapping will then map, or deform, a curve embedd#tkifirst poly-
gon into a new one, with the vertices of the polygon actingasrol points, with
an effect similar to those of@&ier and spline curves and surfaces.

Assuming the second polygonfswith verticesv, ..., Vv;, the barycentric map-
pingg: P — P is defined as follows. Giver € P,

1. expresx in Wachspress coordinates= S ; @(X)vi,
2. setg(x) = Ly @(X)Vi.

Figure 5 shows such a mapping. Figure 6 shows the effect n§ube mapping to
deform a curve (a circle in this case).
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A

Fig. 5 Barycentric mapping.

Fig. 6 Curve deformation.

It is now known that Wachspress mappings between convexjpoyare always
injective; as shown in [9]. The basic idea of the proof is towlthatg has a positive
Jacobian determinadtg). To do this one first shows thatg) can be expressed as

@ @ %
Jo)=2 5 |01@ 01y OLqh| AV, V] Vi)
1<i<j<ksn|do@ O T2
By the convexity of’, the signed area&(vi, v, v,) in the sum are all positive, and
so0J(g) > 0 if all the 3x 3 determinants in the sum are positive, and this turns out
to be the case for Wachspress coordingies

4 Mean value coordinates

As we have seen, Wachspress coordinates are relativeljesiomgtions, and lead to
well-behaved barycentric mappings. They are, howeveitdohio convex polygons.
For a non-convex polygon they are not well-defined, sincedér@minator in the
rational expression becomes zero at certain points in tlygpo. An alternative set

of coordinates for convex polygons is the mean value coatd[4], which have a
simple generalization to non-convex polygons, thoughtjptsyiis in general lost.
Suppose initially thaP is convex as before. Then the mean value (MV) coordinates
are defined by (4) and
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_ tan(ai_1/2) +tan(ai/2)

Vi — X| ’ (11)

w; (X)

with the anglesx; = aj(x), with 0 < aj < 1, as shown in Figure 7. To show that

Vi+1

aV,

Fig. 7 Notation for mean value coordinates.

these coordinates are barycentric, it is sufficient, asentMachspress case, to show
that thew; in (11) satisfy (5). This can be done in four steps:

1. Express the unit vectoes:= (v; — X)/|vi —X| in polar coordinates:
& = (cos,sinG),

and note thatr; = 6,1 — 6.
2. Use the fact that the integral of the unit norma(8) = (cos6,sin@) on a circle
is zero:

"2TT
/O n(6)de = o.
3. Split this integral according to the:
2m n (6
/o n(e)de:;/& n(6)de. (12)
4. Show by trigonometry that

n(6)de

6iv1 1— cosaj
= =tan(a;/2 .
/. e (@ @) = tan(ai/2)(e +6)

Substituting this into the sum in (12) and rearranging gi#&®s

We can compute tdn; /2) from the formulas
COSQi =& -€4+1,  SiNOj =6 X &1 (13)

Figure 8 compares the contour lines of a Wachspress cotedioa the left, with
the corresponding MV coordinate, on the right.
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Fig. 8 Wachspress (left). Mean value (right).

4.1 Gradients

Similar to the Wachspress case, the gradieqt of the MV coordinateg can be
computed from the formula (10) if we can find the rap:= Ow; /wi, with w; in
(11). Letr; = |vi — x| andt; = tan(aj/2) so that

ti_1+7%
Wi = i—1+ |.
Fi
Further, define
€& 61
Ci = - )
i riq

and for a vector = (aj,a) € R?, leta := (—ap,ay).

Theorem 1. For the MV coordinates,

o tia Gy t ¢t &
R| — . + - + .
ti—1+ti /) sinaj—1 ti_g+ti / sina;  rj

We will show this using two lemmas.
Lemma 1. For u € R? lete= (e1,&) = (U—Xx)/|u—x| andr = |u—x|. Then

S22 g%

Oey
Proof. If d = (dy,d2) = u—x, then using the fact that
Ody = (—1,0), Ody=(0,—1), and Or=-—d/r,

the result follows from the quotient rule:

DQ(ZDG") :M, k=12
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Lemma 2. Suppose u,v € R?, and let

e:(U—X)/|U—X‘, r:|U—X|,
f=(v-x)/|v—x|, s=|v—x|.
Then
Oe-fy=—(exfict  and  DO(exf)=(e-f)ct,
where

C=-—

e_f
r s
Proof. With e= (ey,e2) andf = (fy, f2),

O(e-f) = filles + e 0f1 + f2le; + 012
D(ex f) = fole; + e 0fy — f106e — 01y,

and applying Lemma 1 tble, andOfy, k= 1,2, gives the result. O
We now prove Theorem 1. Recalling (13), Lemma 2 shows that
O(cosai) = —(sinaj)ct,  O(sina;) = (cosa;)G; . (14)

From this it follows that

Since,dr; = —g, this means that

t\ t [ o o
D<J):J<_J+a>, j=1—=11.
I ri \ sIing; I
ti_ ct t / ct
Dwi:'1<,'l >+'<.' )+wia7
I Sinaj—1 ri \ sInag; I

which, after dividing byw;, proves Theorem 1.
Incidentally, though we did not use it, we note that both ¢igaa in (14) imply
that

Therefore,

Uaj :CiL.

Another derivative formula for MV coordinates can be found28].

4.2 Alternative formula

We saw that Wachspress coordinates can be expressed indbal‘éprm’ (6) in
which @(x) is well-defined forx € dP as well as forx € P. It turns out that MV
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coordinates also have a global form with the same propérygh for largen, the
resulting expression requires more computation, and wegmore square roots,
than the local form based on (11). lagt=v; —x,i=1,...,n.

Theorem 2. The MV coordinatesin (4) can be expressed as

Wi (x)
X = = 15
a0 g Wi (x) (15)
where
Wi = (ri_1fis1 —di—1 - diy1) Y2 J_l (rjrja+dj-dj)t2 (16)
AL

Proof. From the addition formula for sines, we have

1 /sin(ai—1/2) | sin(ai/2)\  sin((ai—1+0i)/2)
T <cos(ai1/2) cos(ai/2)>

i ~ ricoqai_1/2)cogqi/2)’
Then, to get rid of the half-angles we use the identities

sin(A/2) = +/(1—cosA)/2,

cogA/2) = +/(1+cosA)/2,

to obtain

1/ 2(1—cogai1+a)) \Y?
(< )) |

"7 1 \ (14 cosai_1)(1+ cosa;
Now we substitute in the scalar product formula,
di_1-dj
Coiaifl+ai) — &7
li—1li+1
and similarly for cosri_1 and cosr, and the ¥r; term cancels out:

Wi = ( 2(ri—1fiy1—di—1-diy1) >1/2
o\ (icari+dioad)(riripa+di-dia) )

which gives (15-16). O

One can easily check that this formula gives the correctega(@) forx € dP.

4.3 Star-shaped polygons

The original motivation for these coordinates was for patamzing triangular
meshes [29, 3, 5]. In this application, the points a vertex in a planar triangu-
lation, with vy, ... v, its neighbouring vertices. Thus, in this case, the polyBon
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(with verticesvy,...,Vvy) is not necessarily convex, but always star-shaped, xvith
point in its kernel, i.e., every vertex is ‘visible’ from x; see Figure 9. In this case

Fig. 9 A star-shaped polygon and its kernel.

the anglesy; in (11) are again positive, and the weightx) is again positive. Thus
the MV coordinates ok remain positive in this star-shaped case. The advantage of
this is that when these coordinates are applied to the paeairetion of triangular
meshes, the piecewise linear mapping is guaranteed todwsiig, i.e., none of the
triangles ‘fold over’, when the boundary of the mesh is majtpea convex polygon.

4.4 Arbitrary polygons

It was later observed, in [13], that the coordinates aré¢ wtll-defined, though
not necessarily positive, whdnis an arbitrary polygon, provided that the angles
a; are treated as signed angles: i.e., we takén (11) to have the same sign as
€ x g1, which will be the case if we use the formulas (13). The redsorthis

is that even thoughvi(x) in (11) may be negative for somewhenP is arbitrary,
the sumy ' ; wi(x) is nevertheless positive for amyin P. This was shown in [13],
where it was also shown that these more general MV coordiretee the Lagrange
and piecewise linearity properties oR.

This generalization of MV coordinates allows the curve defation method to
be extended to arbitrary polygons. It was further obsermefd 8] that MV coor-
dinates even have a natural generalization to any set ofpnol; as long as the
polygons do not intersect one another. The polygons may grmoabe nested.
These generalized MV coordinates were applied to imageingip [13].
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5 Polygonal finite elements

There has been steadily growing interest in using genechlzarycentric coordi-
nates for finite element methods on polygonal (and polyhedreshes [11, 23, 26,
34, 6]. In order to establish the convergence of the finitmmelg method one would
need to derive a bound on the gradients of the coordinatesrimstof the geometry
of the polygonP. Various bounds on

sup|Da(x)|

xeP
were derived in [11] for Wachspress (and other) coordinaed in [23] for MV
coordinates. For the Wachspress coordinates, a simpledbeas derived in [6]. If

we define, foix € P,
n

A(x) =3 [Bax), (17)
2
thenA plays a role similar to the Lebesgue function in the theorpalynomial
interpolation because fayin (3),

9961 < 3 [BROOI1F(v)] <A 00, max ().
It was shown in [6] that with
A :=supA(x) (18)

xeP

the corresponding ‘Lebesgue constant’, and wjtthe Wachspress coordinates,
4
N< —
= h*>

where

h.= min_min hi(vj).
i=1..nj#Aii+1

6 Curved domains

Consider again the barycentric interpolgin (3). Sinceg is piecewise linear on the
boundarydP, it interpolatesf ondP if f itself is piecewise linear odP. Warren et

al. [33] proposed a method of interpolating any continuausfionf defined on the
boundary of any convex domain, by, roughly speaking, takingntinuous ‘limit’ of

the polygonal interpolantgin (3). Specifically, suppose that the boundary of some
convex domairP C R? is represented as a closed, parametric carv, b] — R?,
with c(b) = c(a). Then any sequence of parameter valtgs, . ,t,, with a <t; <

ty < --- <ty < b, with mesh sizéh = max (ti;1 —t;), defines a convex polygad,
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with verticesv; = c(tj); see Figure 10. The barycentric interpolanin (3) with

ctir1)
c(ti)
Fig. 10 From polygons to curved domains.
respect to this polygon is then
n
%@ﬁazm@ﬁ@@» (19)
1=

Taking the limitg = limy_o g, over a sequence of such polygons, and lettingghe
be the Wachspress coordinates, gives

g(x):/bw(x,t)f(c(t))dt//bw(x,t)dt, xeP, (20)

where
(c'(t) xc"(1))

((c(t) =x) x c/(t))?
It was shown in [33] that the barycentric property also hdétdshisg: if f: R? — R
is linear, i.e.,f(x) = ax+by+c, theng = f. However, it also follows from the fact
that if f is linear,g, = f for all h.

There is an analogous continuous MV interpolant, witdso given by (20), but
with the weight functiorw(x,t) replaced by

(c(t) =x) xc'(t)
lo(t) —x[?

w(x,t) =

w(x,t) = (21)
One can also derive the barycentric property of this cowstisuinterpolant by ap-
plying the unit circle construction of Section 4 directly ttee curved domait.
Figure 11 shows the MV interpolant to the function @8), 0 < 8 < 2m, on the
boundary of the unit circle.

Similar to the generalization of MV coordinates to non-aanypolygons, the
continuous MV interpolant also extends to arbitrarily siygurve domains: one
simply applies the same formula (21). Even though the crosduyat,

(c(t) —x) x /(1)
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Fig. 11 An MV interpolant on a circle.

may be negative for some valuestothe integralf;’w(x,t) dt of win (21) remains
positive [2].

6.1 Hermite interpolation

If the normal derivative of is also known on the boundary of the domain, we could
consider matching both the values and normal derivativefs bf [2] and [10] two
distinct approaches were used to construct such a Hermégpwoiant, both based
on the construction of MV interpolants. To motivate thid, #g denote the linear
space of polynomials of degreen in one real variable. Suppose that[0,1] — R
has a first derivative at= 0 andx = 1. Then there is a unique cubic polynomial,
p € 18, such that

pM(i)=ft®3i), i=01, k=01
There are various ways of expressingOne is as
p=lo(X) + w(x)11(x),
where
lo(X) = (1—x)f(0) +xf(1), w(X)=x(L—x), l1(x)=(1—X)mp-+xmy,

and
mo = f'(0) - (f(1) - f(0)),  m=(f(1)—f(0)—f'(2).

The basic idea of the Hermite interpolant in [2] is to genieeathis construction
to a general planar domain, replacing the linear intergslgnandl; by MV in-
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terpolants, and replacing the weight functi@by an MV ‘weight’ function. This
gives a Hermite interpolant in 2-D, but it does not in genéeale cubic precision.
Another way of expressing above is as the minimizer of a functional. For a fixed
x € (0,1), p(x) is the values(x) of the splinesthat minimizes the functional

£ = [ (<)
in the spline space
S={seCY0,1] : 5/j0.q:Slx1 € B},
subject to the boundary conditions
sKiy=fM3i), i=01 k=01

A generalization of this minimization was used in [10] to geate a function on
a curved domain that appears, numerically, to interpola¢eboundary data, but
a mathematical proof of this is still missing. The cubic domgtion in [10] was
recently derived independently through certain mean vailaperties of biharmonic
functions by Xianying Li et al. [19]. They also give a closftm expression for the
coordinates on a polygonal domain when a suitable defingfahe boundary data
is used along the edges.

7 Coordinates in higher dimensions

So far we have only considered coordinates for poinf&anbut there are applica-
tions of barycentric coordinates for points in a polyhedimiR3, such as in Fig-
ure 12, or more generally for points in a polytopeRfi. Both Wachspress and MV
coordinates have been generalized to higher dimensions.

Fig. 12 Simple, convex polyhedron.
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7.1 Wachspress coordinatesin 3-D

Warren [32] generalized the coordinates of Wachspressrplsiconvex polyhedra:
convex polyhedra in which all vertices have three incidenes. In [33], Warren et
al. derived the same coordinates in a different way (avgitlie so-called ‘adjoint’),
generalizing (7) as follows. L& c R® be a simple convex polyhedron, with faces
F and verticed/. For each facd € F, letns € R3 denote its unit outward normal,
and for anyx € P, let h; (x) denote the perpendicular distancexdb f, which can
be expressed as the scalar product

hi(x) = (v=X) - ng,

for any vertexv € V belonging tof. For each vertex €V, let fy, fo, f3 be the three
faces incident tor, and forx € P, let

det(nt,,nt,,Nt,)
Wy (X) = , 22
Y0 = R G0he 00 () @)
where it is understood thét, fp, f3 are ordered such that the determinant in the
numerator is positive. Here, for vecta, ¢ € R3,

ap by
det(a,b,c) := |az by Cy|.
as b3 C3

Thus the ordering ofy, f2, f3 must be anticlockwise around seen from outsidp.
In this way,wy, (x) > 0, and it was shown in [33] that the functions

Wy (X)
X)i= ———>— 23
L T EY 29
are barycentric coordinates fore P in the sense that
@ (x) =1, @ (X)V = X. (24)

To deal with non-simple polyhedra, it was suggested in [Bdf bne might de-
compose a non-simple vertex into simple ones by perturlim@djacent facets.
Later, Ju et al. [15] found a cleaner solution, using pragsiaf the so-callegolar
dual. With respect to eackin a general convex polyhedréhc R3, there is a dual
polyhedron,

Bo={yeR®:y-(z—x)<1,zeP}.

It contains the origiry = 0, and its vertices are the endpoints of the vectors

ps(X):= feF,
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when placed at the origin. Suppose that a vevteX/ hask incident facesfs, ..., fx,
for somek > 3, where we again assume they are ordered in some anticleekash-
ion aroundv, as seen from outsid® The endpoints of thievectorspy, (), ... pf, (X)
form ak-sided polygon. This polygon is the face i&f, dual to the vertex of P.
This face and the origin i3 form a polygonal pyramidQ, c P,. It was shown in
[15] that if we define

W, (x) = vol(Q),

then the functiong, in (23) are again barycentric coordinates. In practice wedco
triangulate the face dual toby connecting the endpoint pf, (x) to the endpoints
of all the othermpy,(x), and so compute v, ) as a sum of volumes of tetrahedra.
Thus, we could let

k-1
W(X) = 3 detp, ()P (.1 () (25)

Some matlab code for evaluating these coordinates andgitaelients can be found
in [6].

7.2 MV coordinatesin 3-D

MV coordinates were generalized to three dimensions inij8][46], the basic idea
being to replace integration over the unit circle, as in 8act, by integration over
the unit sphere.

Consider first the case thBtc R is a convex polyhedron with triangular faces
(though it does not need to be simple). Kix P and consider the radial projection
of the boundary oP onto the unit sphere centredxatA vertexv € V is projected to
the point (unit vectorp, := (v—x)/|v—X|. Aface f € F is projected to a spherical
triangle fx whose vertices are,, v € Vi, whereV; C V denotes the set of (three)
vertices off. Let | ; denote the (vector-valued) integral of its unit normals,

lf:= /f n(y)dy.
Since the three vectors, v € Vs, are linearly independent, there are three unique
weightswy ¢ > 0 such that

=Y wre. (26)

VeVE

The weights can be found as ratios of 3 determinants from Cramer’s rule. Since
the integral of all unit normals of the unit sphere is zeraj keitingF, C F denote
the set of faces that are incident on the vektewe find, by switching summations,

that
OZ(Z:If ngp Z Wy 8y = % ;Wv,f&/,
<€ ek veVs VEV fe
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and so the functions
Wy, f

Wy = L (27)
v f; v —x|

Wy (X)(Vv—x) =0.
ng v(X)(V—X)
It follows that the functiongg, given by (23) withwy, given by (27) are barycentric
coordinates, i.e., they are positiveRrand satisfy (24).

It remains to find the integrdlk in terms of the pointy € Vi andx. We follow
the observation made in [8]. The spherical trianfjl@nd the poink form a wedge
of the solid unit sphere centred»tSince the integral of all unit normals over this
wedge is zero, the integrhf is minus the sum of the integrals over the three planar
faces of the wedge. Suppogg v, Vv3 are the vertices of in anticlockwise order,
and letg = e,;. Fori = 1,2,3, thei-th side of the wedge is the sector of the unit
circle formed by the two unit vectoss ande | 1, with the cyclic notatiorvj, 3 :=v;.
If B € (0, m) is the angle betweeg ande ;1 then the area of the sectorfls/2, and
hence

satisfy

1 3
|f:§ Bimi, (28)
i=
where e xq
X +1
' lax e
Equating this with (26) gives
" 13 g, MMt
Vi f= 2;1 J ei'mi+l

These 3-D MV coordinates were used for surface deformati¢hd] when the sur-
face is represented as a dense triangular mesh. Some cplutsuof the coordinate
functions can be found in [8].

For a polyhedron with faces having arbitrary numbers ofigest the same ap-
proach can be applied, but there is no longer uniquenesgoSeap € F is a face
with k > 3 vertices. The integrdls is again well-defined, and can be computed as
the sum ofk terms, generalizing (28). However, there is no unique @hoicthe
local weightsw, ¢ in (26) for k > 3, since there ark of these. Langer et al. [17]
proposed using a certain type of spherical polygonal MV duates to determine
thewy ¢, but other choices are possible.

8 Final remarks

We have not covered here other kinds of generalized banjcenbrdinates, and re-
lated coordinates, which include Sibson’s natural neiginisoordinates [24], Suku-
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mar's maximum entropy coordinates [25], Gordon and Wixorardmates [12],
spherical barycentric coordinates [17], harmonic coatéim [14], Green coordi-
nates [21], Poisson coordinates [18], and others. A morergésurvey paper is
being planned in which some of these other coordinates wilhbluded.
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