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CONTEXT: QMA AND QMA (2)

What is the power of unentangled proofs?



REVIEW: QMA_

Set of decision problems such that:

e If YES (completeness): 3 poly(n)-qubit |¢) input to
BQP machine, accepts w.p. > ¢(n).

e If NO (soundness): V poly(n)-qubit |¢) input to BQP
machine, accepts w.p. < s(n).



REVIEW: QMA (2)..

Set of decision problems such that:

e If YES (completeness): d poly(n)-qubit |[11) ® |1)s)
input to BQP machine, accepts w.p. > c¢(n).

e If NO (soundness): V poly(n)-qubit |1/1) ® |1)2)
input to BQP machine, accepts w.p. < s(n).




FACTS ABOUT QMA, QMA (2)

L B Y
Gap amplification (as long as ¢(n) — s(n) > oy )

e QMA. via parallel repetition
o QMA(2): using the product test [HM10]

Upper bounds (better than NEXP):

e QMA C PSPACE using semidefinite programming
(in fact, C PP by Kitaev and Watrous)
e Only QMA (2) C NEXP. Why can’t we do better?



https://arxiv.org/abs/1001.0017

[JW23]: QMA_,

Set of decision problems such that:

e If YES (completeness): 3 poly(n)-qubit |¢/) with
non-negative amplitudes input to BQP machine,
accepts w.p. > ¢(n).

o [f NO (soundness): ¥V poly(n)-qubit |¢/) with non-
negative amplitudes input to BQP machine, accepts
w.p. < s(n).



https://dl.acm.org/doi/abs/10.1145/3564246.3585248

[JW23]: QMA ™ (2),.,

Set of decision problems such that:

e If YES (completeness): 3 poly(n)-qubit |th1) & |1ha)
with non-negative amplitudes input to BQP
machine, accepts w.p. > c(n).

e If NO (soundness): V poly(n)-qubit |1/1) ® [1)2)
with non-negative amplitudes input to BQP
machine, accepts w.p. < s(n).



https://dl.acm.org/doi/abs/10.1145/3564246.3585248

HAVEN’T | SEEN THIS BEFORE?

[GKS14] show that SQMA = QMA,
where we restrict to subset states only in completeness.

Lesson: Promise-symmetric restrictions can increase
power, since they restrict Merlin's cheating in soundness.



https://arxiv.org/abs/1410.2882

“FACTS” ABOUT QMA ™", QMA ™ (2)

Gap amplification:
Parallel repetition fails.

Reason: Partial measurements can reintroduce complex
phases into remaining state.

=V~

V7~

VA

"Vx, ax20" NOT "Vx, ax20"




“FACTS” ABOUT QMA ", QMA " (2)

Upper bounds (better than NEXP):
Using a semidefinite program fails.

Reason: Copositive programming is hard!

Optimizing max,>q z! Ax can compute independence
numbers of graphs, etc.



https://ti.inf.ethz.ch/ew/Lehre/ApproxSDP09/notes/copositive.pdf

HOW POWERFUL IS THE (7)?

Every state |1) has 7 overlap with some state with non-
negative amplitudes.

— Jconstants1 > ¢ > s’ > 0st.
QMA:’S, — QMA and QMA—'_(Z)C/’S/ — QMA(Q)




[JW23]: ON QMA ™ (2)

J other constants1 > ¢ > s > 0, s.t.
QMA " (2).s = NEXP.

New way to understand QMA (2):
QMA " (2) gap amplification = QMA(2) = NEXP!



https://dl.acm.org/doi/abs/10.1145/3564246.3585248

OUR WORK: ON QMA ™"

- other constants1 > ¢ > s > 0, s.t.
QMA/, = NEXP!

NEXP ? QMA
_—

1 4
(< interpolates from QMA to NEXP)
NO gap amplification of QMA ™!




INTERPRETING THESE RESULTS

QMA(2) QMA*(2)
(o:\e{ro" zn;i%%ig;r) ] l
QMA QMA*

n

"Perhaps the power lies in the *, not the (2)...

Any technique to amplify the promise gap in QMA ™ (2)
must fail for QMA ™.
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1. An introduction to QMA ™

2. Proof outline:
« NP C QMA™ with O(log n)-qubit proof
e Scalingupto NEXP C QMA™




CHOOSING A NP-HARD PROBLEM

Input: CSP instance (n variables, bounded alphabet 2.,
g-uniform constraints {C1,...,Cgr})

Output: Is instance fully satisfiable (for some x € ».")?

PCP Theorem: NP-hard for ¢ = O(1), with completeness

c = 1 and soundness s = % (i.e. constant gap).

Plan: Solve this in QMA ™ with O(log n)-sized proof.




AMPLITUDE AND INTERFERENCE

eeeeeeeeeeeeeeeee

ANNAN
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\VARVARVERV/

Intuition: non-negative amplitudes “take the
interference” out of |1) (they don't “cancel out"!)



https://upload.wikimedia.org/wikipedia/commons/8/8a/Interference_of_two_waves.png

THE POWER OF PLUS ()

Goal: require Merlin to send a certain type of state.

Big idea of [JW23]: (v|+) o< |||¢)||1.
(IT. := |4+)(-+| accepts |1)) according to its £; norm)

This is the only use of the () assumption in both papers.



https://dl.acm.org/doi/abs/10.1145/3564246.3585248

[JW23]'S USE OF ()

1. Notice that QMA " (2) = QMA ™ (k) by [HM10]
(so we can assume many copies of |1)).

2. Project I1; |1) on each copy; count the fraction that
accept. (This estimates the £1 norm of 1))

—— check closeness to states of a target £1 norm.



https://dl.acm.org/doi/abs/10.1145/3564246.3585248
https://arxiv.org/abs/1001.0017

OUR USE OF (™)

Consider two registers:
question (log n qubits) and answer (O(1) qubits)

We choose one of two tests:

1.11, ® Il : (dense as possible)
2.1 ® (I —1II,)

States with non-negative amplitudes can't perfectly
pass Test 2. The best have one answer per question.

—— check closeness to states of a rigid form:

LSRG




OUR USE OF (™)

A ccccccc : Bryan O ‘Gorman

1

Test 2
success
rate

Test 1
success rate

e Tests are orthogonal, so sum of success rates < 1.
e Non-negative amplitude states live in green m region.
e Rigid states at the circled  point.




HOW CAN WE USE THIS POWER?

questions — constraints
answers — assignments of associated variables

In completeness, satisfying assignment f:|R] — X4

and proof 1)) := \/— ZJ A F ()

With some probability, we test for this rigid form.
Otherwise, we check the constraints {C;}.




TESTING THE CONSTRAINTS

For rigid states, checking the constraints is easy:
measure in computational basis, and test C;( f(7))

But Merlin can cheat: sending different values for the same
variable depending on the constraint.

So (with some probability), need to check for consistency.




CHECKING “CONSISTENCY?”

Goal: Construct unitaries {U1, ..., Uy} such that:

e Honest: |¢) = Ug|v) for all k
e Cheating: |¢)) “far” from Uy 1)) for some k

Then, the consistency protocol would:

1.Choose uniform k € {1,...,d}
2. Run “"Hadamard test” on (|v), U|1)))

0) 4 H +—1H A
) // U

source: Victory Omole


https://upload.wikimedia.org/wikipedia/commons/f/f2/Hadamard_test_measure_real.png

THE “CONSISTENCY” UNITARIES
We build the graph G using a step from [DinurQ7]:

1. Turn each variable ¢ € |n/| into a cluster of vertices.

(One vertex @ per constraint - involving 7.)
2. Add a d-regular expander graph = within each cluster.

lllustration for one variable @ and d = 2:

s ~
L. L L L
/ 1 \ , 2 : ,

(5 is the union of all expander graphs (R - g vertices).



https://dl.acm.org/doi/abs/10.1145/1236457.1236459

THE “CONSISTENCY” UNITARIES

Recall that a rigid state is of the form

¥) = = S 15)£0)).

It is convenient to separate the variable assignments:
9) = = 30 S 1, 0 £ () ),

(Then all vertices of G are in superposition!)

The map |¢) — |@) is efficient; see paper for details.




THE “CONSISTENCY” UNITARIES

We can always decompose a d-regular graph into d
permutations {7y, ..., 74 }.

=

Fork € [d], let Uy, : |7, ¢)|value) — |7 (7, L)) |value) for
each constraint j € |R| and variable index ¢ € |q].

Honest assignment = |¢) = Uyg|¢) for all k!




OUTLINE

1. An introduction to QMA ™
2. Proof outline:

e NP C QMA " with O(log n)-qubit proof
e Scalingup to NEXP C QMA™




A NEXP-HARD PROBLEM

Input: Succinct CSP instance (IN := 2" variables,
bounded alphabet 3, g-uniform constraints {C1,...,Cgr})

Output: Is instance fully satisfiable (for some & & Ezn)?

PCP Theorem: NEXP-hard for ¢ = O(1), completeness

1

c = 1 and soundness s = 5 (i.e. constant gap).

Plan: Solve this in QMA ™ with O(poly(n))-sized proof.




THE NP PROTOCOL ALMOST WORKS

Arthur’s protocol needs to be efficient.
Only issue: how to do “consistency” test?

e expanders are exponentially large
e could be exponentially many expanders
e adjacency lists could be exponentially large




SOLUTIONS ([JW23])

e expanders are exponentially large
Doubly explicit expander constructions, to build the
expanders and decompose them in polylog (V) time.

e could be exponentially many expanders
Use a O(1)-strongly uniform PCP.

e adjacency lists could be exponentially large
Use a polylog(N)-doubly explicit PCP.

Everything else works after making these adjustments! @



https://dl.acm.org/doi/abs/10.1145/3564246.3585248

CONCLUSIONS

Promise-symmetric classes can be very powerful.

But the promise gap really matters: QMAZS interpolates
from QMA to NEXP for constant ¢, s.

™

NEXP OMA

)

(z-axis: )

Is there a phase transition in constants?




CONCLUSIONS

Suppose you use QMA " (2) to study QMA (2)..

Any technique to amplify the promise gap in QMA+(2)
must fail for QMA ™.

What does QMA " (2) have that QMA " doesn't have?
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