QMA AND THE POWER OF "POSITIVITY"

Kunal Marwaha

University of Chicago

joint with Roozbeh Bassirian, Bill Fefferman (arXiv) see also Jeronimo and Wu (STOC '23)

QMA AND THE POWER OF "POSITIVITY"

Kunal Marwaha

University of Chicago

joint with Roozbeh Bassirian, Bill Fefferman (arXiv) see also Jeronimo and Wu (STOC '23)

OUTLINE

1. An introduction to QMA^+ 2. Proof outline

OUTLINE

An introduction to QMA⁺ Proof outline

CONTEXT: QMA AND QMA(2)

What is the power of *unentangled* proofs?

REVIEW: $QMA_{c,s}$

Set of decision problems such that:

- If YES (completeness): $\exists \operatorname{poly}(n)$ -qubit $|\psi
 angle$ input to BQP machine, accepts w.p. $\geq c(n)$.
- If NO (soundness): $orall \operatorname{poly}(n)$ -qubit $|\psi
 angle$ input to BQP machine, accepts w.p. $\leq s(n)$.

REVIEW: $QMA(2)_{c,s}$

Set of decision problems such that:

- If YES (completeness): $\exists \operatorname{poly}(n)$ -qubit $|\psi_1\rangle \otimes |\psi_2\rangle$ input to BQP machine, accepts w.p. $\geq c(n)$.
- If NO (soundness): $orall \operatorname{poly}(n)$ -qubit $|\psi_1
 angle\otimes|\psi_2
 angle$ input to BQP machine, accepts w.p. $\leq s(n)$.

FACTS ABOUT QMA, QMA(2)Gap amplification (as long as $c(n) - s(n) \geq rac{1}{ ext{poly}(n)}$):

- $\bullet \ QMA: \mbox{via parallel repetition}$
- QMA(2): using the *product test* [HM10]

Upper bounds (better than NEXP):

- $QMA \subseteq PSPACE$ using semidefinite programming (in fact, $\subseteq PP$ by Kitaev and Watrous)
- Only $QMA(2) \subseteq NEXP$. Why can't we do better?

[JW23]: QMA $_{c,s}^+$

Set of decision problems such that:

- If YES (completeness): $\exists \operatorname{poly}(n)$ -qubit $|\psi\rangle$ with non-negative amplitudes input to BQP machine, accepts w.p. $\geq c(n)$.
- If NO (soundness): $\forall poly(n)$ -qubit $|\psi\rangle$ with nonnegative amplitudes input to BQP machine, accepts w.p. $\leq s(n)$.

[JW23]: QMA
$$^+(2)_{c,s}$$

Set of decision problems such that:

- If YES (completeness): $\exists \operatorname{poly}(n)$ -qubit $|\psi_1\rangle \otimes |\psi_2\rangle$ with non-negative amplitudes input to BQP machine, accepts w.p. $\geq c(n)$.
- If NO (soundness): $\forall \operatorname{poly}(n)$ -qubit $|\psi_1\rangle \otimes |\psi_2\rangle$ with non-negative amplitudes input to BQP machine, accepts w.p. $\leq s(n)$.

HAVEN'T I SEEN THIS BEFORE?

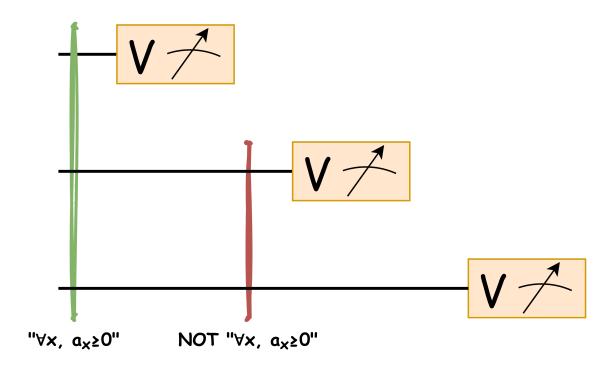
[GKS14] show that SQMA = QMA, where we restrict to *subset states* **only in completeness**.

Lesson: Promise-symmetric restrictions can increase power, since they *restrict* Merlin's cheating in soundness.

"FACTS" ABOUT QMA^+ , $QMA^+(2)$

Gap amplification: Parallel repetition **fails**.

Reason: Partial measurements can reintroduce complex phases into remaining state.



"FACTS" ABOUT QMA^+ , $QMA^+(2)$

Upper bounds (better than NEXP): Using a semidefinite program **fails**.

Reason: Copositive programming is hard! Optimizing $\max_{x\geq 0} x^{\dagger}Ax$ can compute independence numbers of graphs, etc.

HOW POWERFUL IS THE $(^+)$?

Every state $|\psi\rangle$ has $\frac{1}{4}$ overlap with some state with non-negative amplitudes.

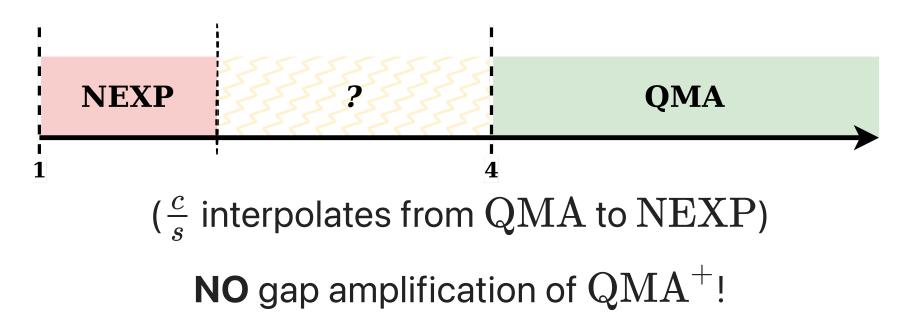
$$\Longrightarrow \exists ext{ constants } 1 > c' > s' > 0 ext{ s.t.} \ ext{QMA}^+_{c',s'} = ext{QMA} ext{ and } ext{QMA}^+(2)_{c',s'} = ext{QMA}(2).$$

$\begin{array}{l} \textbf{[JW23]: ON QMA}^+(2) \\ \exists \textit{ other constants } 1 > c > s > 0, \textit{ s.t.} \\ \text{QMA}^+(2)_{c,s} = \text{NEXP.} \end{array}$

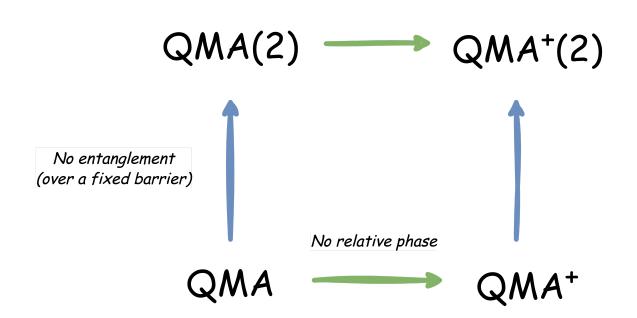
New way to understand QMA(2): $QMA^+(2)$ gap amplification $\implies QMA(2) = NEXP!$

OUR WORK: ON QMA^+

 \exists other constants 1 > c > s > 0, s.t. $\mathrm{QMA}^+_{c,s} = \mathrm{NEXP!}$



INTERPRETING THESE RESULTS



"Perhaps the power lies in the $^+$, not the (2)..." Any technique to amplify the promise gap in ${
m QMA}^+(2)$

must **fail** for QMA^+ .

OUTLINE

An introduction to QMA⁺
 Proof outline

OUTLINE

- 1. An introduction to QMA^+
- 2. Proof outline:
 - $\operatorname{NP} \subseteq \operatorname{QMA}^+$ with $O(\log n)$ -qubit proof
 - Scaling up to $NEXP \subseteq QMA^+$

$\textbf{CHOOSING A} \ NP\textbf{-HARD PROBLEM}$

Input: CSP instance (*n* variables, bounded alphabet Σ , *q*-uniform constraints { C_1, \ldots, C_R })

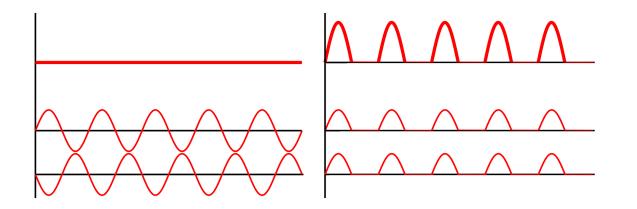
Output: Is instance fully satisfiable (for some $x \in \Sigma^n$)?

PCP Theorem: NP-hard for q = O(1), with completeness c = 1 and soundness $s = \frac{1}{2}$ (i.e. *constant* gap).

Plan: Solve this in QMA^+ with $O(\log n)$ -sized proof.

AMPLITUDE AND INTERFERENCE

edited from Wikipedia



Intuition: non-negative amplitudes "take the interference" out of $|\psi\rangle$ (they don't "cancel out"!)

THE POWER OF PLUS $(^+)$

Goal: *require* Merlin to send a certain type of state.

Big idea of [JW23]: $\langle \psi | + \rangle \propto || \psi \rangle ||_1$. ($\Pi_+ := |+\rangle \langle +|$ accepts $|\psi \rangle$ according to its ℓ_1 norm)

This is the **only use** of the $(^+)$ assumption in both papers.

[JW23]'S USE OF (⁺)

- 1. Notice that ${
 m QMA}^+(2)={
 m QMA}^+(k)$ by [HM10] (so we can assume many copies of $|\psi
 angle$).
- 2. Project $\Pi_+ |\psi
 angle$ on each copy; count the fraction that accept. (This *estimates* the ℓ_1 norm of $|\psi
 angle$)

 \longrightarrow check closeness to states of a *target* ℓ_1 norm.

OUR USE OF $(^+)$

Consider two registers: question ($\log n$ qubits) and answer (O(1) qubits)

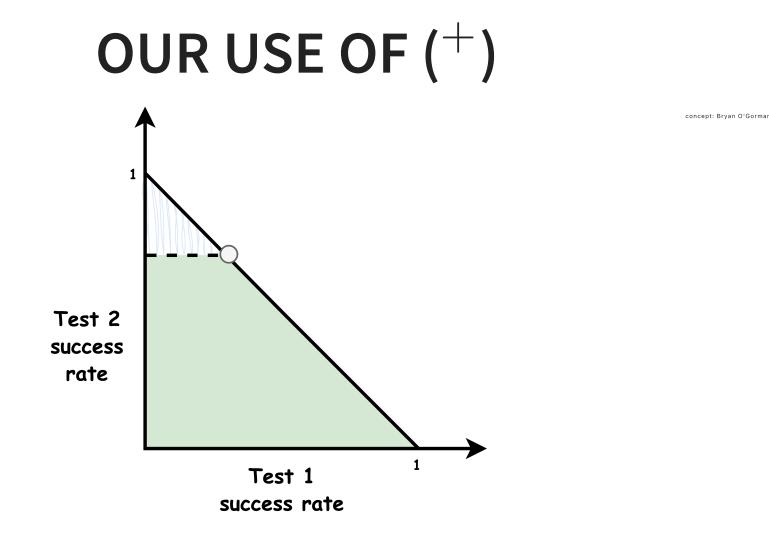
We choose one of two tests:

1. $\Pi_+\otimes\Pi_+$: (dense as possible) 2. $\mathbb{I}\otimes(\mathbb{I}-\Pi_+)$

States with **non-negative amplitudes** can't perfectly pass Test 2. The best have *one answer per question*.

 \longrightarrow check closeness to states of a *rigid* form:

$$rac{1}{\sqrt{n}}\sum_{j=1}^n |j
angle |f(j)
angle$$



- Tests are orthogonal, so sum of success rates ≤ 1 .
- Non-negative amplitude states live in green region.
- *Rigid* states at the circled point.

HOW CAN WE USE THIS POWER?

 $questions \rightarrow constraints$ $answers \rightarrow assignments of associated variables$

In completeness,
$$\exists$$
 satisfying assignment $f:[R] o \Sigma^q$ and proof $|\psi
angle:=rac{1}{\sqrt{R}}\sum_{j=1}^R|j
angle|f(j)
angle.$

With some probability, we test for this *rigid* form. Otherwise, we check the *constraints* $\{C_j\}$.

TESTING THE CONSTRAINTS

For rigid states, checking the constraints is easy: measure in computational basis, and test $C_j(f(j))$.

But Merlin can cheat: sending different values for the same variable depending on the constraint.

So (with some probability), need to check for consistency.

CHECKING "CONSISTENCY"

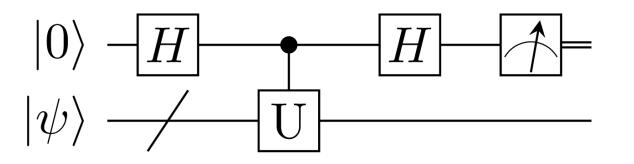
Goal: Construct unitaries $\{U_1, \ldots, U_d\}$ such that:

- Honest: $|\psi
 angle = U_k |\psi
 angle$ for all k
- Cheating: $|\psi
 angle$ "far" from $U_k|\psi
 angle$ for some k

Then, the consistency protocol would:

1. Choose uniform $k \in \{1,\ldots,d\}$ 2. Run "Hadamard test" on $(|\psi
angle, U_k|\psi
angle)$

source: Victory Omole

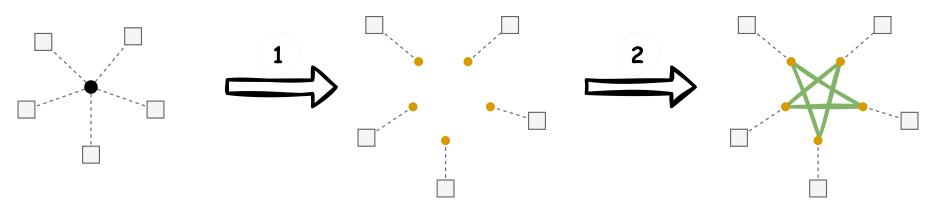


THE "CONSISTENCY" UNITARIES

We build the graph G using a step from [Dinur07]:

- 1. Turn each variable $i \in [n]$ into a *cluster* of vertices. (One vertex \bullet per constraint \bullet involving i.)
- 2. Add a *d*-regular *expander* graph \star within each cluster.

Illustration for one variable ullet and d=2:



G is the *union* of all expander graphs ($R \cdot q$ vertices).

THE "CONSISTENCY" UNITARIES

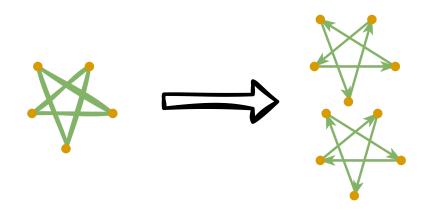
Recall that a *rigid* state is of the form $|\psi\rangle := rac{1}{\sqrt{R}} \sum_{j=1}^R |j\rangle |f(j)\rangle.$

It is convenient to separate the variable assignments: $|\phi\rangle := \frac{1}{\sqrt{R \cdot q}} \sum_{j=1}^{R} \sum_{\iota=1}^{q} |j, \iota\rangle |f(j)[\iota]\rangle.$ (Then all vertices of G are in superposition!)

The map $|\psi
angle\mapsto |\phi
angle$ is efficient; see paper for details.

THE "CONSISTENCY" UNITARIES

We can always decompose a d-regular graph into d permutations $\{\pi_1, \ldots, \pi_d\}$.



For $k\in [d]$, let $U_k:|j,\iota
angle|value
angle\mapsto |\pi_k(j,\iota)
angle|value
angle$ for each constraint $j\in [R]$ and variable index $\iota\in [q]$.

Honest assignment $\implies |\phi\rangle = U_k |\phi\rangle$ for all k!

OUTLINE

- 1. An introduction to QMA^+
- 2. Proof outline:
 - $\operatorname{NP} \subseteq \operatorname{QMA}^+$ with $O(\log n)$ -qubit proof
 - Scaling up to $NEXP \subseteq QMA^+$

A NEXP-hard problem

Input: Succinct CSP instance ($N := 2^n$ variables, bounded alphabet Σ , q-uniform constraints $\{C_1, \ldots, C_R\}$) Output: Is instance fully satisfiable (for some $x \in \Sigma^{2^n}$)? PCP Theorem: NEXP-hard for q = O(1), completeness c = 1 and soundness $s = \frac{1}{2}$ (i.e. constant gap).

Plan: Solve this in QMA^+ with O(poly(n))-sized proof.

THE NP protocol almost works

Arthur's protocol needs to be efficient.

Only issue: how to do "consistency" test?

- expanders are exponentially large
- could be exponentially many expanders
- adjacency lists could be exponentially large

SOLUTIONS ([JW23])

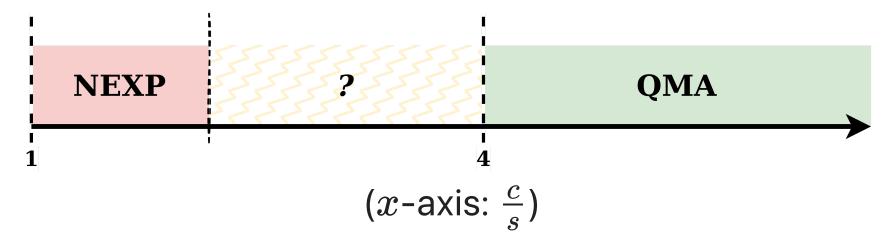
- expanders are exponentially large Doubly explicit expander constructions, to build the expanders and decompose them in polylog(N) time.
- could be exponentially many expanders Use a O(1)-strongly uniform PCP.
- adjacency lists could be exponentially large Use a $\operatorname{polylog}(N)$ -doubly explicit PCP.

Everything else works after making these adjustments!

CONCLUSIONS

Promise-symmetric classes can be very powerful.

But the promise gap *really matters*: $QMA_{c,s}^+$ interpolates from QMA to NEXP for **constant** c, s.



Is there a phase transition in constants?

CONCLUSIONS

Suppose you use $QMA^+(2)$ to study QMA(2)... Any technique to amplify the promise gap in $QMA^+(2)$ must **fail** for QMA^+ .

What does ${
m QMA}^+(2)$ have that ${
m QMA}^+$ doesn't have?

THANK YOU

Kunal Marwaha

https://kunalmarwaha.com/about kmarw@uchicago.edu

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1746045. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.