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CONTEXT:  AND 

What is the power of unentangled proofs?

QMA QMA(2)
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REVIEW: 
Set of decision problems such that:

QMAc,s

If YES (completeness): -qubit  input to
BQP machine, accepts w.p. .

∃ poly(n) |ψ⟩
≥ c(n)

If NO (soundness): -qubit  input to BQP
machine, accepts w.p. .

∀ poly(n) |ψ⟩
≤ s(n)
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REVIEW: 
Set of decision problems such that:

QMA(2)c,s

If YES (completeness): -qubit 
input to BQP machine, accepts w.p. .

∃ poly(n) |ψ1⟩ ⊗ |ψ2⟩
≥ c(n)

If NO (soundness): -qubit 
input to BQP machine, accepts w.p. .

∀ poly(n) |ψ1⟩ ⊗ |ψ2⟩
≤ s(n)
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FACTS ABOUT , 
Gap amplification (as long as ):

QMA QMA(2)
c(n) − s(n) ≥ 1

poly(n)

: via parallel repetitionQMA
: using the product testQMA(2) [HM10]

Upper bounds (better than ):NEXP

 using semidefinite programming
(in fact,  by Kitaev and Watrous)
QMA ⊆ PSPACE

⊆ PP
Only . Why can’t we do better?QMA(2) ⊆ NEXP
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: 
Set of decision problems such that:

[JW23] QMA+
c,s

If YES (completeness): -qubit with
non-negative amplitudes input to BQP machine,
accepts w.p. .

∃ poly(n) |ψ⟩

≥ c(n)
If NO (soundness): -qubit with non-
negative amplitudes input to BQP machine, accepts
w.p. .

∀ poly(n) |ψ⟩

≤ s(n)
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: 
Set of decision problems such that:

If YES (completeness): -qubit
with non-negative amplitudes input to BQP
machine, accepts w.p. .
If NO (soundness): -qubit
with non-negative amplitudes input to BQP
machine, accepts w.p. .

[JW23] QMA+(2)c,s

∃ poly(n) |ψ1⟩ ⊗ |ψ2⟩

≥ c(n)
∀ poly(n) |ψ1⟩ ⊗ |ψ2⟩

≤ s(n)
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HAVEN’T I SEEN THIS BEFORE?
 show that ,

where we restrict to subset states only in completeness.
[GKS14] SQMA = QMA

Lesson: Promise-symmetric restrictions can increase
power, since they restrict Merlin’s cheating in soundness.
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“FACTS” ABOUT , QMA+ QMA+(2)
Gap amplification:

Parallel repetition fails.

Reason: Partial measurements can reintroduce complex
phases into remaining state.
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“FACTS” ABOUT , 
Upper bounds (better than ):
Using a semidefinite program fails.

QMA+ QMA+(2)
NEXP

Reason: Copositive programming is hard!

Optimizing  can compute independence
numbers of graphs, etc.

maxx≥0 x†Ax
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HOW POWERFUL IS THE ( )?
Every state  has  overlap with some state with non-

negative amplitudes.

+

|ψ⟩ 1
4

 constants  s.t.
 and .

⟹ ∃ 1 > c′ > s′ > 0
QMA+

c′,s′ = QMA QMA+(2)c′,s′ = QMA(2)
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: ON 
other constants , s.t.

.

[JW23] QMA+(2)
∃ 1 > c > s > 0

QMA+(2)c,s = NEXP

New way to understand :
 gap amplification !

QMA(2)
QMA+(2) ⟹ QMA(2) = NEXP
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OUR WORK: ON 
other constants , s.t.

!

QMA
+

∃ 1 > c > s > 0
QMA

+
c,s = NEXP

(  interpolates from  to )c

s
QMA NEXP

NO gap amplification of !QMA
+
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INTERPRETING THESE RESULTS

“Perhaps the power lies in the , not the …”+ (2)

Any technique to amplify the promise gap in 
must fail for .

QMA+(2)
QMA+
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OUTLINE
1. An introduction to 
2. Proof outline:

 with -qubit proof
Scaling up to 

QMA+

NP ⊆ QMA+
O(log n)

NEXP ⊆ QMA+
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CHOOSING A -HARD PROBLEMNP
Input: CSP instance (  variables, bounded alphabet ,

-uniform constraints )
n Σ

q {C1, … , CR}

Output: Is instance fully satisfiable (for some )?x ∈ Σn

PCP Theorem: -hard for , with completeness
 and soundness  (i.e. constant gap).

NP q = O(1)
c = 1 s = 1

2

Plan: Solve this in  with -sized proof.QMA+
O(log n)
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edited  from  

AMPLITUDE AND INTERFERENCE
W ik ipedia

Intuition: non-negative amplitudes “take the
interference” out of  (they don’t “cancel out”!)|ψ⟩

5 .  3

https://upload.wikimedia.org/wikipedia/commons/8/8a/Interference_of_two_waves.png


THE POWER OF PLUS ( )
Goal: require Merlin to send a certain type of state.

+

Big idea of : .[JW23] ⟨ψ|+⟩ ∝ ∥|ψ⟩∥1

(  accepts  according to its  norm)Π+ := |+⟩⟨+| |ψ⟩ ℓ1

This is the only use of the ( ) assumption in both papers.+

5 .  4

https://dl.acm.org/doi/abs/10.1145/3564246.3585248


'S USE OF ( )[JW23] +

1. Notice that  by 
(so we can assume many copies of ).

QMA+(2) = QMA+(k) [HM10]
|ψ⟩

2. Project  on each copy; count the fraction that
accept. (This estimates the  norm of )

Π+|ψ⟩
ℓ1 |ψ⟩

 check closeness to states of a target  norm.⟶ ℓ1
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OUR USE OF ( )
Consider two registers:

question (  qubits) and answer (  qubits)

+

log n O(1)

We choose one of two tests:

1. : (dense as possible)
2. 

Π+ ⊗ Π+

I ⊗ (I − Π+)

States with non-negative amplitudes can’t perfectly
pass Test 2. The best have one answer per question.

 check closeness to states of a rigid form:⟶

∑n
j=1 |j⟩|f(j)⟩1

√n
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concept :  Bryan  O 'Gorman

OUR USE OF ( )

Tests are orthogonal, so sum of success rates .
Non-negative amplitude states live in green 🟩  region.
Rigid states at the circled ⚪  point.

+

≤ 1
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HOW CAN WE USE THIS POWER?
questions  constraints

answers  assignments of associated variables
→

→

In completeness,  satisfying assignment 

and proof .

∃ f : [R] → Σq

|ψ⟩ := ∑R

j=1 |j⟩|f(j)⟩1
√R

With some probability, we test for this rigid form.
Otherwise, we check the constraints .{Cj}
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TESTING THE CONSTRAINTS
For rigid states, checking the constraints is easy:
measure in computational basis, and test .Cj(f(j))

But Merlin can cheat: sending different values for the same
variable depending on the constraint.

So (with some probability), need to check for consistency.
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CHECKING “CONSISTENCY”
Goal: Construct unitaries  such that:

Honest:  for all 
Cheating:  “far” from  for some 

{U1, … ,Ud}

|ψ⟩ = Uk|ψ⟩ k

|ψ⟩ Uk|ψ⟩ k

Then, the consistency protocol would:

1. Choose uniform 
2. Run “Hadamard test” on 

k ∈ {1, … , d}
(|ψ⟩,Uk|ψ⟩)

source :  V ictory  Omole
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THE “CONSISTENCY” UNITARIES
We build the graph  using a step from :G [Dinur07]

1. Turn each variable  into a cluster of vertices.
(One vertex 🟠  per constraint ◻️  involving .)

i ∈ [n]
i

2. Add a -regular expander graph ⚝ within each cluster.d

Illustration for one variable ⚫  and :d = 2

 is the union of all expander graphs (  vertices).G R ⋅ q
5 .  11
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THE “CONSISTENCY” UNITARIES
Recall that a rigid state is of the form

.|ψ⟩ := ∑R

j=1 |j⟩|f(j)⟩1
√R

It is convenient to separate the variable assignments:
.

(Then all vertices of  are in superposition!)

|ϕ⟩ := ∑R

j=1∑
q

ι=1 |j, ι⟩|f(j)[ι]⟩1
√R⋅q

G

The map  is efficient; see paper for details.|ψ⟩ ↦ |ϕ⟩
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THE “CONSISTENCY” UNITARIES
We can always decompose a -regular graph into 

permutations .
d d

{π1, … ,πd}

For , let  for
each constraint  and variable index .
k ∈ [d] Uk : |j, ι⟩|value⟩ ↦ |πk(j, ι)⟩|value⟩

j ∈ [R] ι ∈ [q]

Honest assignment  for all !⟹ |ϕ⟩ = Uk|ϕ⟩ k
5 .  13



OUTLINE
1. An introduction to 
2. Proof outline:

 with -qubit proof
Scaling up to 

QMA+

NP ⊆ QMA+
O(log n)

NEXP ⊆ QMA+

6 .  1



A -HARD PROBLEMNEXP
Input: Succinct CSP instance (  variables,

bounded alphabet , -uniform constraints )
N := 2n

Σ q {C1, … , CR}

Output: Is instance fully satisfiable (for some )?x ∈ Σ2n

PCP Theorem: -hard for , completeness
 and soundness  (i.e. constant gap).

NEXP q = O(1)
c = 1 s = 1

2

Plan: Solve this in  with -sized proof.QMA+
O(poly(n))
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THE  PROTOCOL ALMOST WORKS
Arthur’s protocol needs to be efficient.

Only issue: how to do “consistency” test?

NP

expanders are exponentially large
could be exponentially many expanders
adjacency lists could be exponentially large
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SOLUTIONS ( )[JW23]
expanders are exponentially large
Doubly explicit expander constructions, to build the
expanders and decompose them in  time.polylog(N)

could be exponentially many expanders
Use a -strongly uniform PCP.O(1)

adjacency lists could be exponentially large
Use a -doubly explicit PCP.polylog(N)

Everything else works after making these adjustments! 
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CONCLUSIONS
Promise-symmetric classes can be very powerful.

But the promise gap really matters:  interpolates

from  to  for constant .

QMA
+
c,s

QMA NEXP c, s

( -axis: )x
c

s

Is there a phase transition in constants?
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CONCLUSIONS
Suppose you use  to study …

Any technique to amplify the promise gap in 
must fail for .

QMA+(2) QMA(2)

QMA+(2)
QMA+

What does  have that  doesn’t have?QMA+(2) QMA+
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