QMA AND THE POWER OF "POSITIVITY"

Kunal Marwaha

University of Chicago

joint with Roozbeh Bassirian, Bill Fefferman (arXiv)

see also Jeronimo and Wu (STOC '23)

OUTLINE

- 1. An introduction to QMA^+
- 2. Proof outline

OUTLINE

- 1. An introduction to QMA^+
- 2. Proof outline

CONTEXT: QMA AND QMA(2)

What is the power of *unentangled* proofs?

REVIEW: $\mathrm{QMA}_{c,s}$

Set of decision problems such that:

- ullet If YES (completeness): $\exists \operatorname{poly}(n) ext{-qubit} \ket{\psi}$ input to BQP machine, accepts w.p. $\geq c(n)$.
- If NO (soundness): $\forall \operatorname{poly}(n)$ -qubit $|\psi\rangle$ input to BQP machine, accepts w.p. $\leq s(n)$.

REVIEW: $QMA(2)_{c,s}$

Set of decision problems such that:

- ullet If YES (completeness): $\exists \ \mathrm{poly}(n)$ -qubit $|\psi_1
 angle \otimes |\psi_2
 angle$ input to BQP machine, accepts w.p. $\geq c(n)$.
- If NO (soundness): $\forall \ \mathrm{poly}(n)$ -qubit $|\psi_1\rangle \otimes |\psi_2\rangle$ input to BQP machine, accepts w.p. $\leq s(n)$.

FACTS ABOUT QMA, QMA(2)

Gap amplification (as long as $c(n) - s(n) \geq \frac{1}{\operatorname{poly}(n)}$):

- QMA: via parallel repetition
- QMA(2): using the *product test* [HM10]

Upper bounds (better than NEXP):

- QMA \subseteq PSPACE using semidefinite programming (in fact, \subseteq PP by Kitaev and Watrous)
- Only $\mathrm{QMA}(2) \subseteq \mathrm{NEXP}$. Why can't we do better?

[JW23]: QMA $_{c,s}^+$

Set of decision problems such that:

- If YES (completeness): $\exists \ \mathrm{poly}(n)$ -qubit $|\psi\rangle$ with non-negative amplitudes input to BQP machine, accepts w.p. $\geq c(n)$.
- If NO (soundness): \forall poly(n)-qubit $|\psi\rangle$ with nonnegative amplitudes input to BQP machine, accepts w.p. $\leq s(n)$.

[JW23]: QMA $^+(2)_{c,s}$

Set of decision problems such that:

- If YES (completeness): $\exists \ \mathrm{poly}(n)$ -qubit $|\psi_1\rangle \otimes |\psi_2\rangle$ with non-negative amplitudes input to BQP machine, accepts w.p. $\geq c(n)$.
- If NO (soundness): $\forall \operatorname{poly}(n)$ -qubit $|\psi_1\rangle \otimes |\psi_2\rangle$ with non-negative amplitudes input to BQP machine, accepts w.p. $\leq s(n)$.

HAVEN'T I SEEN THIS BEFORE?

[GKS14] show that SQMA = QMA, where we restrict to subset states only in completeness.

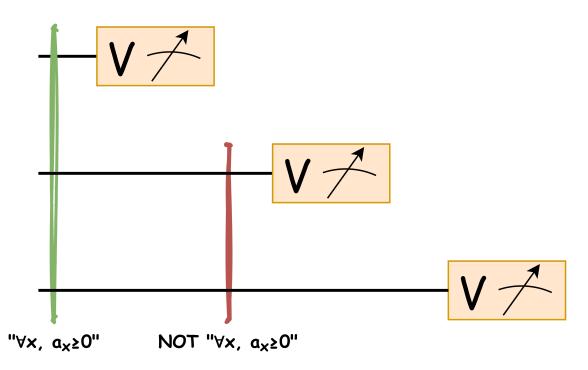
Lesson: Promise-symmetric restrictions can increase power, since they restrict Merlin's cheating in soundness.

"FACTS" ABOUT QMA^+ , $QMA^+(2)$

Gap amplification:

Parallel repetition fails.

Reason: Partial measurements can reintroduce complex phases into remaining state.



"FACTS" ABOUT QMA^+ , $QMA^+(2)$

Upper bounds (better than NEXP): Using a semidefinite program **fails**.

Reason: Copositive programming is hard!

Optimizing $\max_{x\geq 0} x^\dagger A x$ can compute independence numbers of graphs, etc.

HOW POWERFUL IS THE (+)?

Every state $|\psi\rangle$ has $\frac{1}{4}$ overlap with some state with nonnegative amplitudes.

$$\Longrightarrow \exists$$
 constants $1>c'>s'>0$ s.t. $\mathrm{QMA}^+_{c',s'}=\mathrm{QMA}$ and $\mathrm{QMA}^+(2)_{c',s'}=\mathrm{QMA}(2)$.

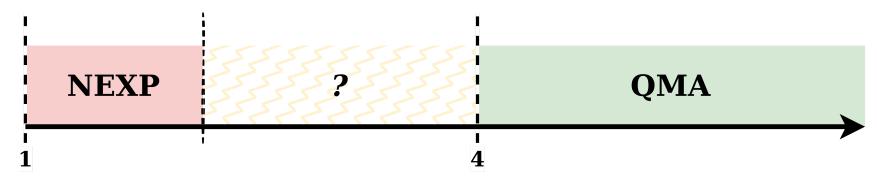
[JW23]: ON $QMA^{+}(2)$

$$\exists$$
 other constants $1>c>s>0$, s.t. $\mathrm{QMA}^+(2)_{c,s}=\mathrm{NEXP}.$

New way to understand QMA(2): $QMA^+(2)$ gap amplification $\implies QMA(2) = NEXP!$

OUR WORK: ON QMA⁺

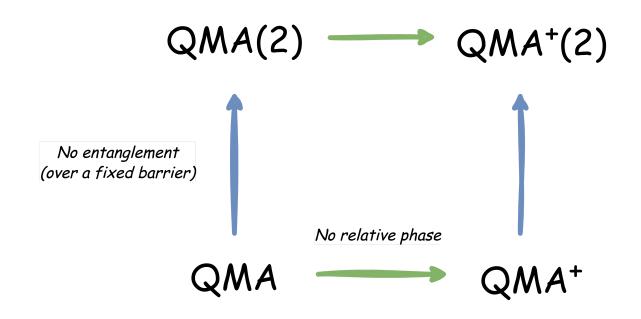
$$\exists$$
 other constants $1>c>s>0$, s.t. $\mathrm{QMA}_{c,s}^+=\mathrm{NEXP!}$



 $(\frac{c}{s}$ interpolates from QMA to NEXP)

NO gap amplification of $\mathrm{QMA}^+!$

INTERPRETING THESE RESULTS



"Perhaps the power lies in the $^+$, not the (2)..."

Any technique to amplify the promise gap in $\mathrm{QMA}^+(2)$ must **fail** for QMA^+ .

OUTLINE

- 1. An introduction to QMA^+
- 2. Proof outline

OUTLINE

- 1. An introduction to QMA⁺
- 2. Proof outline:
 - $ext{NP} \subseteq ext{QMA}^+$ with $O(\log n)$ -qubit proof
 - ullet Scaling up to $\overrightarrow{NEXP}\subseteq\overrightarrow{QMA}^+$

CHOOSING A NP-HARD PROBLEM

Input: CSP instance (n variables, bounded alphabet Σ , q-uniform constraints $\{\mathcal{C}_1,\ldots,\mathcal{C}_R\}$)

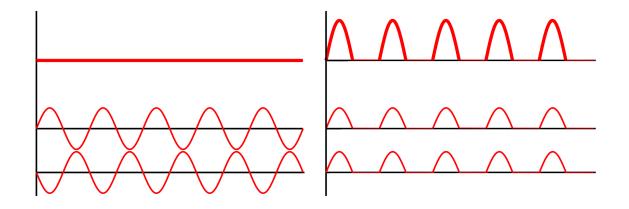
Output: Is instance fully satisfiable (for some $x \in \Sigma^n$)?

PCP Theorem: NP-hard for q=O(1), with completeness c=1 and soundness $s=\frac{1}{2}$ (i.e. constant gap).

Plan: Solve this in QMA^+ with $O(\log n)$ -sized proof.

AMPLITUDE AND INTERFERENCE

edited from Wikipedia



Intuition: non-negative amplitudes "take the interference" out of $|\psi\rangle$ (they don't "cancel out"!)

THE POWER OF PLUS (+)

Goal: require Merlin to send a certain type of state.

Big idea of [JW23]:
$$\langle \psi | + \rangle \propto ||\psi\rangle||_1$$
.

($\Pi_+:=|+
angle\langle+|$ accepts $|\psi
angle$ according to its ℓ_1 norm)

This is the **only use** of the $(^+)$ assumption in both papers.

[JW23]'S USE OF (+)

- 1. Notice that ${
 m QMA}^+(2)={
 m QMA}^+(k)$ by [HM10] (so we can assume many copies of $|\psi
 angle$).
- 2. Project $\Pi_+|\psi\rangle$ on each copy; count the fraction that accept. (This estimates the ℓ_1 norm of $|\psi\rangle$)
 - \longrightarrow check closeness to states of a *target* ℓ_1 norm.

OUR USE OF (+)

Consider two registers: question ($\log n$ qubits) and answer (O(1) qubits)

We choose one of two tests:

1. $\Pi_+ \otimes \Pi_+$: (dense as possible)

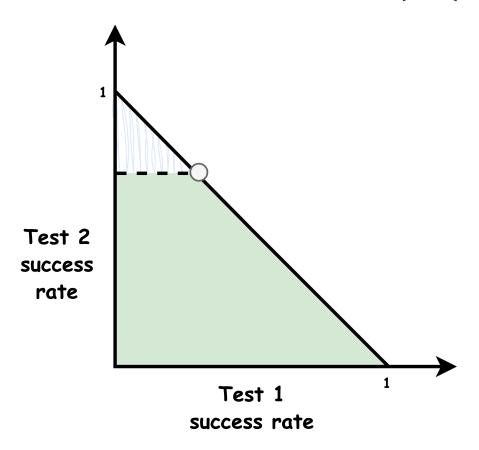
$$2.\mathbb{I}\otimes (\mathbb{I}-\Pi_+)$$

States with **non-negative amplitudes** can't perfectly pass Test 2. The best have *one answer per question*.

— check closeness to states of a *rigid* form:

$$rac{1}{\sqrt{n}} \sum_{j=1}^n |j
angle |f(j)
angle$$

OUR USE OF (+)



- Tests are orthogonal, so sum of success rates ≤ 1 .
- Non-negative amplitude states live in green region.
- Rigid states at the circled point.

concept: Brvan O'Gorman

HOW CAN WE USE THIS POWER?

 $extit{questions}
ightarrow ext{constraints}$ answers ightarrow assignments of associated variables

In completeness, \exists satisfying assignment $f:[R] \to \Sigma^q$ and proof $|\psi\rangle:=\frac{1}{\sqrt{R}}\sum_{j=1}^R|j\rangle|f(j)\rangle$.

With some probability, we test for this *rigid* form. Otherwise, we check the *constraints* $\{C_j\}$.

TESTING THE CONSTRAINTS

For rigid states, checking the constraints is easy: measure in computational basis, and test $C_j(f(j))$.

But Merlin can cheat: sending different values for the same variable depending on the constraint.

So (with some probability), need to check for consistency.

CHECKING "CONSISTENCY"

Goal: Construct unitaries $\{U_1,\ldots,U_d\}$ such that:

- ullet Honest: $|\psi
 angle = U_k |\psi
 angle$ for all k
- Cheating: $|\psi\rangle$ "far" from $U_k|\psi\rangle$ for some k

Then, the consistency protocol would:

- 1. Choose uniform $k \in \{1,\ldots,d\}$
- 2. Run "Hadamard test" on $(|\psi\rangle, U_k|\psi\rangle)$

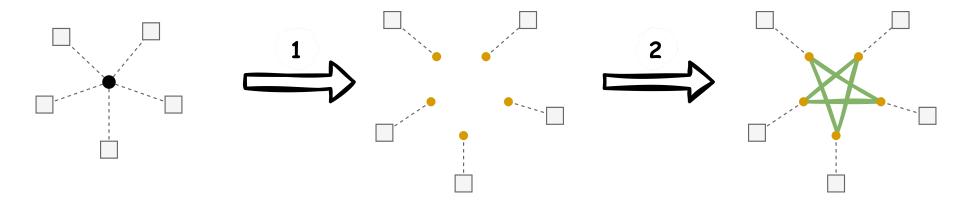
$$|0\rangle$$
 H H ψ

THE "CONSISTENCY" UNITARIES

We build the graph G using a step from [Dinur07]:

- 1. Turn each variable $i \in [n]$ into a *cluster* of vertices. (One vertex ullet per constraint ullet involving i.)
- 2. Add a d-regular expander graph * within each cluster.

Illustration for one variable ullet and d=2:



G is the *union* of all expander graphs ($R \cdot q$ vertices).

THE "CONSISTENCY" UNITARIES

Recall that a *rigid* state is of the form

$$|\psi
angle := rac{1}{\sqrt{R}} \sum_{j=1}^R |j
angle |f(j)
angle.$$

It is convenient to separate the variable assignments:

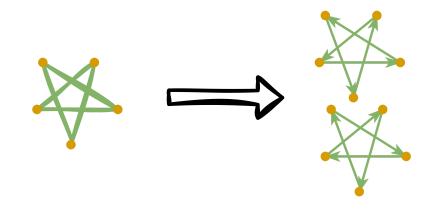
$$|\phi
angle := rac{1}{\sqrt{R\cdot q}} \sum_{j=1}^R \sum_{\iota=1}^q |j,\iota
angle |f(j)[\iota]
angle.$$

(Then all vertices of G are in superposition!)

The map $|\psi\rangle\mapsto|\phi\rangle$ is efficient; see paper for details.

THE "CONSISTENCY" UNITARIES

We can always decompose a d-regular graph into d permutations $\{\pi_1,\ldots,\pi_d\}$.



For $k\in [d]$, let $U_k:|j,\iota\rangle|value
angle\mapsto |\pi_k(j,\iota)
angle|value
angle$ for each constraint $j\in [R]$ and variable index $\iota\in [q]$.

Honest assignment $\implies |\phi\rangle = U_k |\phi\rangle$ for all k!

OUTLINE

- 1. An introduction to QMA⁺
- 2. Proof outline:
 - ullet NP $\subseteq \mathrm{QMA}^+$ with $O(\log n)$ -qubit proof
 - Scaling up to $\overrightarrow{NEXP} \subseteq \overrightarrow{QMA}^+$

A NEXP-HARD PROBLEM

Input: Succinct CSP instance ($N := 2^n$ variables, bounded alphabet Σ , q-uniform constraints $\{C_1, \ldots, C_R\}$)

Output: Is instance fully satisfiable (for some $x \in \Sigma^{2^n}$)?

PCP Theorem: NEXP-hard for q=O(1), completeness c=1 and soundness $s=\frac{1}{2}$ (i.e. constant gap).

Plan: Solve this in QMA^+ with $O(\mathrm{poly}(n))$ -sized proof.

THE NP PROTOCOL ALMOST WORKS

Arthur's protocol needs to be efficient.

Only issue: how to do "consistency" test?

- expanders are exponentially large
- could be exponentially many expanders
- adjacency lists could be exponentially large

SOLUTIONS ([JW23])

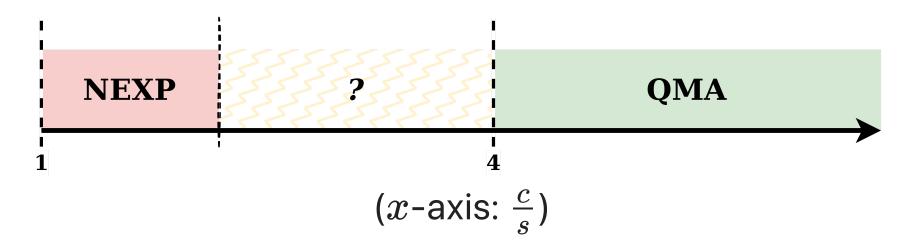
- expanders are exponentially large Doubly explicit expander constructions, to build the expanders and decompose them in $\operatorname{polylog}(N)$ time.
- could be exponentially many expanders Use a O(1)-strongly uniform PCP.
- adjacency lists could be exponentially large Use a polylog(N)-doubly explicit PCP.

Everything else works after making these adjustments!

CONCLUSIONS

Promise-symmetric classes can be very powerful.

But the promise gap *really matters*: $\mathrm{QMA}^+_{c,s}$ interpolates from QMA to NEXP for **constant** c,s.



Is there a phase transition in constants?

CONCLUSIONS

Suppose you use $\mathrm{QMA}^+(2)$ to study $\mathrm{QMA}(2)$...

Any technique to amplify the promise gap in $QMA^+(2)$ must **fail** for QMA^+ .

What does $\mathrm{QMA}^+(2)$ have that QMA^+ doesn't have?

THANK YOU

Kunal Marwaha

https://kunalmarwaha.com/about kmarw@uchicago.edu

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1746045. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.