📡 Organized & Useful Resources about Deep Learning with TensorFlow
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
_img/mainpage asd Oct 23, 2017
docs complete readme Jul 10, 2017
.gitattributes python Jul 12, 2017
.gitignore complete readme Jul 10, 2017
.travis.yml
CODE_OF_CONDUCT.rst
CONTRIBUTING.rst readme.rst Jul 9, 2017
LICENSE
README.rst added distributed TF guide Jan 11, 2018
conf.py python Jul 12, 2017
requirements.txt complete readme Jul 10, 2017

README.rst

TensorFlow-World-Resources - Project Page

https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat https://badges.frapsoft.com/os/v2/open-source.svg?v=102 https://coveralls.io/repos/github/astorfi/TensorFlow-World-Resources/badge.svg?branch=master

_img/mainpage/TensorFlow_World.gif

Table of Contents

Introduction

The purpose of this project is to introduce a shortcut to developers and researcher for finding useful resources about TensorFlow.

Motivation

There are different motivations for this open source project.

Why using TensorFlow?

A deep learning is of great interest these days, the crucial necessity for rapid and optimized implementation of the algorithms and designing architectures is the software environment. TensorFlow is designed to facilitate this goal. The strong advantage of TensorFlow is it flexibility is designing highly modular model which also can be a disadvantage too for beginners since lots of the pieces must be considered together for creating the model. This issue has been facilitated as well by developing high-level APIs such as Keras and Slim which gather lots of the design puzzle pieces. The interesting point about TensorFlow is that its trace can be found anywhere these days. Lots of the researchers and developers are using it and its community is growing with the speed of light! So the possible issues can be overcame easily since they might be the issues of lots of other people considering a large number of people involved in TensorFlow community.

What's the point of this open source project?

There other similar repositories similar to this repository and are very comprehensive and useful and to be honest they made me ponder if there is a necessity for this repository! A great example is awesome-tensorflow repository which is a curated list of different TensorFlow resources.

The point of this repository is that the resources are being targeted. The organization of the resources is such that the user can easily find the things he/she is looking for. We divided the resources to a large number of categories that in the beginning one may have a headache!!! However, if someone knows what is being located, it is very easy to find the most related resources. Even if someone doesn't know what to look for, in the beginning, the general resources have been provided.

How to make the most of this effort

The written and visual resources have been split. Moreover, As one can search in the documentation, the number of categories might look to be too much. For finding the most relevant resources, please at first look through the general resources.

Entrance to TensorFlow World

In this section, different TensorFlow topics and their associated resources will be addressed.

Installation

_img/mainpage/installation.gif

First of all, the TensorFlow must be installed!

Getting Started

_img/mainpage/gettingstarted.gif

This part points to resources on how to start to code with TensorFLow

Going Deeper in TensorFLow

_img/mainpage/goingdeep.gif

Advanced machine learning users can go deeper in TensorFlow in order to hit the root. Scratching the surface may never take us too further!

Programming with TensorFlow

The references here, deal with the details of programming and writing TensorFlow code.

Reading data and input pipeline

_img/mainpage/readingdata.gif

The first part is always how to prepare data and how to provide the pipeline to feed it to TensorFlow. Usually providing the input pipeline can be complicated, even more than the structure design!

Variables

_img/mainpage/variables.gif

Variables are supposed to hold the parameters and supersede by new values as the parameters are updated. Variables must be clearly set and initialized.

Creation, Initialization
Saving and restoring
Sharing Variables

TensorFlow Utilities

_img/mainpage/utility.png

Different utilities empower TensorFlow for faster computation in a more monitored manner.

Supervisor
TensorFlow Debugger
MetaGraphs
Tensorboard

TensorFlow Tutorials

This section is dedicated to provide tutorial resources on the implementation of different models with TensorFlow.

Linear and Logistic Regression

_img/mainpage/logisticregression.png

Convolutional Neural Networks

_img/mainpage/CNNs.png

Recurrent Neural Networks

_img/mainpage/RNN.png

Autoencoders

_img/mainpage/autoencoder.png

Generative models

_img/mainpage/generative_model.png

Multiple GPUs

_img/mainpage/multiple_gpu.png

TensorFlow Projects

This section is dedicated to provide resources that are mainly open source projects developed by TensorFlow. Those might be comprehensive tutorials on working example.

Comprehensive Tutorials

_img/mainpage/tutorial.png

Models

_img/mainpage/models.png

Published Resources

This section is dedicated to provide published resources on TensorFlow, Such as websites, blogs, and books.

Online Courses and Documentations

_img/mainpage/online.png

Books

_img/mainpage/books.jpg

Contributing

For typos, please do not create a pull request. Instead, declare them in issues or email the repository owner. Please note we have a code of conduct, please follow it in all your interactions with the project.

Pull Request Process

Please consider the following criterions in order to help us in a better way:

  1. The pull request is mainly expected to be a link suggestion.
  2. Please make sure your suggested resources are not obsolete or broken.
  3. Ensure any install or build dependencies are removed before the end of the layer when doing a build and creating a pull request.
  4. Add comments with details of changes to the interface, this includes new environment variables, exposed ports, useful file locations and container parameters.
  5. You may merge the Pull Request in once you have the sign-off of at least one other developer, or if you do not have permission to do that, you may request the owner to merge it for you if you believe all checks are passed.

Final Note

We are looking forward to your kind feedback. Please help us to improve this open source project and make our work better. For contribution, please create a pull request and we will investigate it promptly. Once again, we appreciate your kind feedback and support.