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1 Variational algorithms
• Optimisation problem we are trying to tackle: Equation 1.

• Fixed point equation of the Forward-backward splitting (FB): Equation 2.

• Definition of the proximal operator: Equation 3.

x∗ = argmin
x∈Σ

[f(x) + g(x)]︸ ︷︷ ︸
h(x)

, (1)

x = Proxγg [x− γ∇f(x)] , (2)

Proxγg(y) = argmin
x∈Σ

[
γg(x) +

1

2
∥x− y∥22

]
, (3)

1.1 Optimisation
The FB implementation shown in Algorithm 1 follows the relaxation from Combettes et al. [CW05],
which is why it differs from the classic formulation from Equation 2. The difference can be seen in the
application of the prox in line 6.
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Algorithm 1 Forward-Backward (FB) [CW05]

1: Fix ε ∈]0,min{1, 1/β}[

2: for n = 0 to nmax do
3: γn ∈ [ε, 2/β − ε]
4: yn = xn − γn∇f(xn)
5: λn ∈ [ε, 1]
6: xn+1 = xn + λn(Proxγng(yn)− xn)
7: if Converged then
8: Break

2 Convex Ridge Regulariser
The convex ridge regulariser (CRR) has been recently introduced in Goujon et al. [Gou+22]. The CRR has
three main features that make it very relevant to our problem, it is learned (or data-driven), it is convex,
and its potential (or cost) is explicit. This last feature means that for a given image we can compute
the potential of the regulariser, which is of particular importance for our uncertainty quantification
techniques.

The training of the regulariser Rθ has two main hyperparameters, which are the noise level σ used to
corrupt images during the training, and the amount of denoising steps used t (from the t-step denoiser
seen in Goujon et al. [Gou+22]). Once the model is trained, we can use it as a proximal denoiser and use
it to solve Equation 1.

Replacing the general regulariser term g from Equation 1 with the CRR we obtain

x∗ = argmin
x∈Σ

[
f(x) + λ/µRθ(µx)︸ ︷︷ ︸

g(x)

]
, (4)

where the λ ∈ R+ hyperparameter is interpreted as the regularisation strength, and µ ∈ R+ as a tunable
scaling parameter.

For optimisation and UQ, we will need to use g(x), ∇g(x) and the Lipschitz constant of g denoted Lg.
These variables can be computed as follows:

• g(x)→ λ/µRθ(µx) where Rθ(x) = model.cost(x)

• ∇g(x)→ λ∇Rθ(µx) where ∇Rθ(x) = model(x) = model.grad(x)

• Lg → λµLRθ
where LRθ

= model.precise_lipschitz_bound()

As the regulariser g is smooth, we do not need to use a proximal algorithm to solve our optimisation
problem. Recall that the use of proximal algorithms is to optimise a non-smooth function, which is often
the case when using Total Variation (TV) or ℓ1 penalties with wavelet representation. Consequently, a
simple gradient descent method is enough if the CRR is used as the regulariser. Nevertheless, to leverage
the existing code and the proximal algorithms implemented, we can reformulate the CRR regulariser to
act as a proximal operator. In this case, we would define the prox operator as

Proxγg(x) = x− γg(x) = x− γλ∇Rθ(µx) , (5)

where γ is a constant multiplying the regulariser g (possibly the optimisation step size).

2.1 Examples
Examples of optimisation are shown in Figure 1.

3 MAP-based uncertainty quantification
Figure 4 shows an overview of the MAP-based uncertainty quantification.

Once we have obtained the MAP estimation, xMAP through the optimisation procedure we can go
ahead and compute an approximation of the High Posterior Density (HPD) region.
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Figure 1: Image reconstructions for M31.

Figure 2: Overview of MAP-based UQ from Cai et al. [CPM18].
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Figure 3: Pixel-based uncertainty quantification for M31 with the learned convex regulariser.

The HPD region is defined as

C ′
α = {x : f(x) + g(x) ≤ γ′

α} , (6)

where γ′
α ∈ R is a threshold value computed as

γ′
α = f(xMAP) + g(xMAP) + τα

√
N +N , (7)

where N is the number of dimensions of the image, e.g., if x ∈ Rp×p then N = p2, and τα ∈ R is a
constant computed as

τα =
√
16 log(3/α) , (8)

where α defines the credible level as 100(1− α)%. We usually use 0.01 or 0.05 as values of α, which gives
us credible levels of 99% and 95%, respectively.

3.0.1 Example

3.1 Pixel-based UQ maps
Some useful references where the pixel-based UQ maps have already been defined and used are [CPM18;
Pri+19].

We want to generate
We use some type of root-finding algorithm, used to find the zero of a 1D function. At the moment

we are using the bisection method. There are other methods with better properties, but we have not
implemented them yet. An example is the Interpolate Truncate and Project (ITP) method.

The pseudocode of the bisection method is presented in algorithm 2.

3.2 Hypothesis tests
The hypothesis test procedure is presented in Figure 4, and presented in more detail in Cai et al. [CPM18]
and Price et al. [Pri+21].
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Algorithm 2 Bisection method
1: Endpoint values: a and b
2: Function to bisect: f

3: for n = 0 to nmax do
4: c← (a+ b)/2 Compute midpoint
5: if Tolerance reached then
6: Break
7: if sign(f(c)) == sign(f(a)) then
8: a← c
9: else

10: a← b
11: Output c

Figure 4: Hypothesis test flow from Price et al. [Pri+19].
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