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Motivation: SKA’s radio interferometer
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Radio interferometric imaging

Linear observational model

y = Φx+ n

y ∈ CM : Observed Fourier coefficients

n ∈ CM : Observational noise (White and Gaussian)

x ∈ RN : Sky intensity image

Φ ∈ CM×N : Linear measurement operator

− FFT and Fourier mask

Due to n and Φ the inverse problem is ill-posed

We need to estimate x̂ from y
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Uncertainty quantification: more than a point estimate

Image reconstruction: x̂
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Is this blob physical?

→ Is it a reconstruction artefact?

→ Is it backed by the data?

Several reasons to develop uncertainty quantification (UQ)
techniques for the reconstruction

Usual UQ techniques from the Bayesian framework rely on
interrogating the posterior exploiting Bayes’ theorem:

p(x|y)︸ ︷︷ ︸
Posterior

∝ p(y|x)︸ ︷︷ ︸
Likelihood

p(x)︸︷︷︸
Prior

Represent the posterior through samples drawn from ∼ p(x|y)
obtained through Markov chain Monte Carlo (MCMC)

For example, Cai et al. (2018) applies this for radio imaging
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Uncertainty quantification: more than a point estimate

Cai et al. (2018) approach:

1. Define a likelihood p(y|x) = exp[−f (x, y)]

→ The Gaussian likelihood f (x, y) is known: ∥y −Φx∥22/2σ2

2. Define a prior p(x) = exp[−g(x)]

→ Solution x is sparse in a wavelet dictionary Ψ. The prior g(x) is: λ∥Ψ†x∥1
3. Choose a point estimate

→ Use the Maximum-a-posteriori (MAP) estimation:

x̂MAP = argmax
x∈RN

p(x|y) = argmin
x∈RN

− log p(y|x)− log p(x),

x̂MAP = argmin
x∈RN

∥y −Φx∥22/2σ2 + λ∥Ψ†x∥1.

→ Estimate x̂MAP through convex optimisation using a proximal algorithm

4. Sample from the posterior which is non-smooth to obtain {x(j)}Kj=1, x
(j) ∼ p(x|y)

→ Proximal MCMC algorithm (Pereyra, 2016) following Langevin dynamics

Is the problem solved?
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The problem is not solved

Difficulties in the high-dimensional setting:

1. Even if we know the likelihood, applying Φ is computationally expensive

2. Handcrafted priors like wavelets are not expressive enough

3. Sampling-based techniques are prohibitively expensive in this setting

How can we obtain information from the high-dimensional posterior p(x|y) without sampling
from it?

If we restrict to log-concave posteriors something beautiful happens!
→ A concentration phenomenom (Pereyra, 2017)

log-concave posterior p(x|y) = exp[−f (x)− g(x)]/Z → convex potential f (x) + g(x)
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Highest posterior density region

Posterior credible region:

p(x ∈ Cα|y) =
∫
x∈RN

p(x|y)1Cαdx = 1− α,

We consider the highest posterior density (HPD) region

C∗
α =

{
x : f (x) + g(x)︸ ︷︷ ︸

potential

≤ γα
}
, with γα ∈ R, and p(x ∈ C∗

α|y) = 1− α holds,

Theorem 3.1 (Pereyra, 2017)

Suppose the posterior p(x|y) = exp[−f (x)− g(x)]/Z is log-concave on RN . Then, for any
α ∈ (4 exp[(−N/3)], 1), the HPD region C∗

α is contained by

Ĉα =
{
x : f (x) + g(x) ≤ γ̂α = f (x̂MAP) + g(x̂MAP) +

√
Nτα + N

}
,

with a positive constant τα =
√
16 log(3/α) independent of p(x|y).

We only need to evaluate f + g on the MAP estimation x̂MAP!
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MAP-based uncertainty quantification

Hypothesis test with significance α:

1. Calculate the MAP: xMAP

2. Compute HPD region threshold γ̂α

3. Construct a surrogate image xsgt

4. Compute E = f (xsgt) + g(xsgt)

5. If E ≤ γ̂α → inconclusive test

6. If E > γ̂α → reject hypothesis

Pixel-level UQ visualisation
Local credible intervals (LCI)
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Scalable Bayesian uncertainty quantification

1. Scalability → Need to rely on optimisation sampling, use the MAP estimator

2. Uncertainty quantification → Need the potential to be convex and explicit

3. Good reconstruction → Need to use data-driven (learned) approaches

The approach requires our prior to be convex and with an explicit potential

We constrain our prior to be convex, but we gain an effortless UQ!

Tob́ıas I. Liaudat 8



Scalable Bayesian uncertainty quantification

1. Scalability → Need to rely on optimisation sampling, use the MAP estimator

2. Uncertainty quantification → Need the potential to be convex and explicit

3. Good reconstruction → Need to use data-driven (learned) approaches

The approach requires our prior to be convex and with an explicit potential

We constrain our prior to be convex, but we gain an effortless UQ!

Tob́ıas I. Liaudat 8



Scalable Bayesian uncertainty quantification

1. Scalability → Need to rely on optimisation sampling, use the MAP estimator

2. Uncertainty quantification → Need the potential to be convex and explicit

3. Good reconstruction → Need to use data-driven (learned) approaches

The approach requires our prior to be convex and with an explicit potential

We constrain our prior to be convex, but we gain an effortless UQ!

Tob́ıas I. Liaudat 8



Scalable Bayesian uncertainty quantification

1. Scalability → Need to rely on optimisation sampling, use the MAP estimator

2. Uncertainty quantification → Need the potential to be convex and explicit

3. Good reconstruction → Need to use data-driven (learned) approaches

The approach requires our prior to be convex and with an explicit potential

We constrain our prior to be convex, but we gain an effortless UQ!

Tob́ıas I. Liaudat 8



Scalable Bayesian uncertainty quantification

1. Scalability → Need to rely on optimisation sampling, use the MAP estimator

2. Uncertainty quantification → Need the potential to be convex and explicit

3. Good reconstruction → Need to use data-driven (learned) approaches

The approach requires our prior to be convex and with an explicit potential

We constrain our prior to be convex, but we gain an effortless UQ!

Tob́ıas I. Liaudat 8



Learned convex regulariser

We use the convex ridge regulariser R from Goujon et al. (2022), where

R : RN 7→ R, R(x) =
NC∑
n=1

∑
k

ψn ((hn ∗ x) [k]) ,

- ψn are learned convex profile functions with Lipschitz continuous derivate

- There are NC learned convolutional filters hn

- R is trained as a (multi-)gradient step denoiser

Properties:

1. Explicit cost

2. Convex

3. Smooth regulariser with known Lipschitz constant
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MAP reconstructions

MAP estimations were computed using the Forward-Backward splitting algorithm
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SNR = 5.01 dB SNR = 26.69 dB SNR = 32.82 dB

Improved the reconstruction by 6 dB!
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Posterior standard deviation

Computed using 104 samples obtained from the sampling algorithm SK-ROCK (Pereyra et al.,
2020)
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Improved quality of the posterior St Dev
The learned convex regulariser was trained on natural images not RI images
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Pixel-based uncertainty quantification

The local credible intervals (LCI) give a local measure of uncertainty
LCI− < LCI >

SNR = 32.82 dB
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Hypothesis test

Scalable hypothesis testing for structure in the reconstruction
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Conclusions

- Scalable uncertainty quantification

- We exploit a concentration phenomenon of log-concave posteriors
- Focus on hypothesis test and local credible intervals

- Only rely on optimisation to compute the MAP and avoid sampling

- We used learned convex regularisers

- Considerably decreased reconstruction errors
- Improved quality of the posterior St Dev
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