Scalable Bayesian uncertainty quantification with learned convex regularisers

Tobías I. Liaudat Computer Science department, University College London

In collabortaion with Jason D. McEwen, Marta Betcke and Marcelo Pereyra

CMIC-WEISS Joint seminar series

14th June 2023

Motivation: SKA's radio interferometer

Radio interferometric imaging

Linear observational model

 $\mathbf{y} = \mathbf{\Phi}\mathbf{x} + \mathbf{n}$

 $\mathbf{y} \in \mathbb{C}^M$: Observed Fourier coefficients

 $\mathbf{n} \in \mathbb{C}^M$: Observational noise (White and Gaussian)

 $\mathbf{x} \in \mathbb{R}^N$: Sky intensity image

 $\mathbf{\Phi} \in \mathbb{C}^{M imes N}$: Linear measurement operator

FFT and Fourier mask

Due to \mathbf{n} and $\mathbf{\Phi}$ the inverse problem is ill-posed

We need to estimate $\hat{\boldsymbol{x}}$ from \boldsymbol{y}

Image reconstruction: $\hat{\mathbf{x}}$

Is this blob *physical*? \rightarrow Is it a reconstruction artefact? \rightarrow Is it backed by the data? Several reasons to develop uncertainty quantification (UQ) techniques for the reconstruction

Usual UQ techniques from the Bayesian framework rely on interrogating the posterior exploiting Bayes' theorem:

 $(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{x})p(\mathbf{x})$

erior Likelihood P

Represent the posterior through samples drawn from $\sim p(\mathbf{x}|\mathbf{y})$ obtained through Markov chain Monte Carlo (MCMC)

For example, Cai et al. (2018) applies this for radio imaging

Image reconstruction: $\hat{\mathbf{x}}$

Is this blob *physical*?

- $\rightarrow~$ Is it a reconstruction artefact?
- $ightarrow\,$ Is it backed by the data?

Several reasons to develop uncertainty quantification (UQ) techniques for the reconstruction

Usual UQ techniques from the Bayesian framework rely on interrogating the posterior exploiting Bayes' theorem:

erior Likelihood P

Represent the posterior through samples drawn from $\sim p(\mathbf{x}|\mathbf{y})$ obtained through Markov chain Monte Carlo (MCMC)

For example, Cai et al. (2018) applies this for radio imaging

Image reconstruction: $\hat{\mathbf{x}}$

Several reasons to develop uncertainty quantification (UQ) techniques for the reconstruction

Usual UQ techniques from the Bayesian framework rely on interrogating the posterior exploiting Bayes' theorem:

 $\propto p(\mathbf{y}|\mathbf{x}) p(\mathbf{x})$

Posterior Likelihood Prior

Represent the posterior through samples drawn from $\sim p(\mathbf{x}|\mathbf{y})$ obtained through Markov chain Monte Carlo (MCMC)

For example, Cai et al. (2018) applies this for radio imaging

Is this blob *physical*?

- $\rightarrow~$ Is it a reconstruction artefact?
- $\rightarrow~$ Is it backed by the data?

Cai et al. (2018) approach:

1. Define a likelihood $p(\mathbf{y}|\mathbf{x}) = \exp[-f(\mathbf{x}, \mathbf{y})]$

 \rightarrow The Gaussian likelihood $f(\mathbf{x}, \mathbf{y})$ is known: $\|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_2^2 / 2\sigma^2$

2. Define a prior
$$p(\mathbf{x}) = \exp[-g(\mathbf{x})]$$

ightarrow Solution x is sparse in a wavelet dictionary Ψ . The prior $g(\mathbf{x})$ is: $\lambda \|\Psi^{\dagger}x\|_{1}$

3. Choose a point estimate

 \rightarrow Use the Maximum-a-posteriori (MAP) estimation:

$$\hat{\mathbf{x}}_{\mathsf{MAP}} = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg \max p(\mathbf{x}|\mathbf{y})} = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg \min - \log p(\mathbf{y}|\mathbf{x}) - \log p(\mathbf{x})},$$
$$\hat{\mathbf{x}}_{\mathsf{MAP}} = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg \min \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_{2}^{2}/2\sigma^{2} + \lambda \|\mathbf{\Psi}^{\dagger}\mathbf{x}\|_{1}.$$

ightarrow Estimate \hat{x}_{MAP} through convex optimisation using a proximal algorithm

4. Sample from the posterior which is non-smooth to obtain $\{\mathbf{x}^{(j)}\}_{j=1}^{K}, \ \mathbf{x}^{(j)} \sim p(\mathbf{x}|\mathbf{y})$

ightarrow Proximal MCMC algorithm (Pereyra, 2016) following Langevin dynamics

Is the problem solved?

Cai et al. (2018) approach:

1. Define a likelihood $p(\mathbf{y}|\mathbf{x}) = \exp[-f(\mathbf{x}, \mathbf{y})]$

ightarrow The Gaussian likelihood $f(\mathbf{x},\mathbf{y})$ is known: $\|\mathbf{y}-\mathbf{\Phi}\mathbf{x}\|_2^2/2\sigma^2$

2. Define a prior
$$p(\mathbf{x}) = \exp[-g(\mathbf{x})]$$

 \to Solution **x** is sparse in a wavelet dictionary Ψ . The prior $g(\mathbf{x})$ is: $\lambda \| \Psi^{\dagger} x \|_{1}$

3. Choose a point estimate

 \rightarrow Use the Maximum-a-posteriori (MAP) estimation:

$$\hat{\mathbf{x}}_{\text{MAP}} = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg \max p(\mathbf{x}|\mathbf{y})} = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg \min - \log p(\mathbf{y}|\mathbf{x}) - \log p(\mathbf{x})},$$
$$\hat{\mathbf{x}}_{\text{MAP}} = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg \min \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_{2}^{2}/2\sigma^{2} + \lambda \|\mathbf{\Psi}^{\dagger}\mathbf{x}\|_{1}.$$

ightarrow Estimate \hat{x}_{MAP} through convex optimisation using a proximal algorithm

4. Sample from the posterior which is non-smooth to obtain $\{\mathbf{x}^{(j)}\}_{j=1}^{K}, \ \mathbf{x}^{(j)} \sim p(\mathbf{x}|\mathbf{y})$

ightarrow Proximal MCMC algorithm (Pereyra, 2016) following Langevin dynamics

Is the problem solved?

Cai et al. (2018) approach:

1. Define a likelihood $p(\mathbf{y}|\mathbf{x}) = \exp[-f(\mathbf{x}, \mathbf{y})]$

ightarrow The Gaussian likelihood $f(\mathbf{x},\mathbf{y})$ is known: $\|\mathbf{y}-\mathbf{\Phi}\mathbf{x}\|_2^2/2\sigma^2$

2. Define a prior $p(\mathbf{x}) = \exp[-g(\mathbf{x})]$

 \rightarrow Solution **x** is sparse in a wavelet dictionary Ψ . The prior $g(\mathbf{x})$ is: $\lambda \|\Psi^{\dagger}x\|_{1}$

3. Choose a point estimate

 \rightarrow Use the Maximum-a-posteriori (MAP) estimation:

$$\hat{\mathbf{x}}_{\text{MAP}} = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg \max p(\mathbf{x}|\mathbf{y})} = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg \min - \log p(\mathbf{y}|\mathbf{x}) - \log p(\mathbf{x})}$$

$$\hat{\mathbf{x}}_{\text{MAP}} = \underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg \min \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_{2}^{2}/2\sigma^{2} + \lambda \|\mathbf{\Psi}^{\dagger}\mathbf{x}\|_{1}.$$

ightarrow Estimate \hat{x}_{MAP} through convex optimisation using a proximal algorithm

4. Sample from the posterior which is non-smooth to obtain $\{\mathbf{x}^{(j)}\}_{j=1}^{K}, \ \mathbf{x}^{(j)} \sim p(\mathbf{x}|\mathbf{y})$

ightarrow Proximal MCMC algorithm (Pereyra, 2016) following Langevin dynamics

Is the problem solved?

Cai et al. (2018) approach:

1. Define a likelihood $p(\mathbf{y}|\mathbf{x}) = \exp[-f(\mathbf{x}, \mathbf{y})]$

ightarrow The Gaussian likelihood $f(\mathbf{x}, \mathbf{y})$ is known: $\|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_2^2 / 2\sigma^2$

2. Define a prior $p(\mathbf{x}) = \exp[-g(\mathbf{x})]$

ightarrow Solution **x** is sparse in a wavelet dictionary Ψ . The prior $g(\mathbf{x})$ is: $\lambda \|\Psi^{\dagger}x\|_{1}$

3. Choose a point estimate

 \rightarrow Use the Maximum-a-posteriori (MAP) estimation:

$$\begin{split} \hat{\mathbf{x}}_{\mathsf{MAP}} &= \operatorname*{arg\,max}_{\mathbf{x} \in \mathbb{R}^{N}} p(\mathbf{x}|\mathbf{y}) = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^{N}} - \log p(\mathbf{y}|\mathbf{x}) - \log p(\mathbf{x}), \\ \hat{\mathbf{x}}_{\mathsf{MAP}} &= \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^{N}} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_{2}^{2} / 2\sigma^{2} + \lambda \|\mathbf{\Psi}^{\dagger}\mathbf{x}\|_{1}. \end{split}$$

 $\rightarrow~$ Estimate \hat{x}_{MAP} through convex optimisation using a proximal algorithm

4. Sample from the posterior which is non-smooth to obtain $\{\mathbf{x}^{(j)}\}_{j=1}^{K}$, $\mathbf{x}^{(j)} \sim p(\mathbf{x}|\mathbf{y})$ \rightarrow **Proximal MCMC algorithm** (Pereyra, 2016) following Langevin dynamics

Cai et al. (2018) approach:

1. Define a likelihood $p(\mathbf{y}|\mathbf{x}) = \exp[-f(\mathbf{x}, \mathbf{y})]$

ightarrow The Gaussian likelihood $f(\mathbf{x},\mathbf{y})$ is known: $\|\mathbf{y}-\mathbf{\Phi}\mathbf{x}\|_2^2/2\sigma^2$

2. Define a prior $p(\mathbf{x}) = \exp[-g(\mathbf{x})]$

 \rightarrow Solution **x** is sparse in a wavelet dictionary Ψ . The prior $g(\mathbf{x})$ is: $\lambda \|\Psi^{\dagger}x\|_{1}$

3. Choose a point estimate

 \rightarrow Use the Maximum-a-posteriori (MAP) estimation:

$$\begin{split} \hat{\mathbf{x}}_{\mathsf{MAP}} &= \operatorname*{arg\,max}_{\mathbf{x} \in \mathbb{R}^{N}} p(\mathbf{x}|\mathbf{y}) = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^{N}} - \log p(\mathbf{y}|\mathbf{x}) - \log p(\mathbf{x}), \\ \hat{\mathbf{x}}_{\mathsf{MAP}} &= \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^{N}} \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_{2}^{2} / 2\sigma^{2} + \lambda \|\mathbf{\Psi}^{\dagger}\mathbf{x}\|_{1}. \end{split}$$

 $\rightarrow~$ Estimate \hat{x}_{MAP} through convex optimisation using a proximal algorithm

- 4. Sample from the posterior which is non-smooth to obtain $\{\mathbf{x}^{(j)}\}_{i=1}^{K}, \mathbf{x}^{(j)} \sim p(\mathbf{x}|\mathbf{y})$
 - → Proximal MCMC algorithm (Pereyra, 2016) following Langevin dynamics

Is the problem solved?

Cai et al. (2018) approach:

1. Define a likelihood $p(\mathbf{y}|\mathbf{x}) = \exp[-f(\mathbf{x}, \mathbf{y})]$

ightarrow The Gaussian likelihood $f(\mathbf{x},\mathbf{y})$ is known: $\|\mathbf{y}-\mathbf{\Phi}\mathbf{x}\|_2^2/2\sigma^2$

2. Define a prior $p(\mathbf{x}) = \exp[-g(\mathbf{x})]$

ightarrow Solution **x** is sparse in a wavelet dictionary Ψ . The prior $g(\mathbf{x})$ is: $\lambda \|\Psi^{\dagger}x\|_{1}$

3. Choose a point estimate

 \rightarrow Use the Maximum-a-posteriori (MAP) estimation:

$$\begin{split} \hat{\mathbf{x}}_{\mathsf{MAP}} &= \operatorname*{arg\,max}_{\mathbf{x} \in \mathbb{R}^{N}} p(\mathbf{x} | \mathbf{y}) = \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^{N}} - \log p(\mathbf{y} | \mathbf{x}) - \log p(\mathbf{x}), \\ \hat{\mathbf{x}}_{\mathsf{MAP}} &= \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^{N}} \| \mathbf{y} - \mathbf{\Phi} \mathbf{x} \|_{2}^{2} / 2\sigma^{2} + \lambda \| \mathbf{\Psi}^{\dagger} \mathbf{x} \|_{1}. \end{split}$$

 $\rightarrow\,$ Estimate \hat{x}_{MAP} through convex optimisation using a proximal algorithm

- 4. Sample from the posterior which is non-smooth to obtain $\{\mathbf{x}^{(j)}\}_{i=1}^{K}, \mathbf{x}^{(j)} \sim p(\mathbf{x}|\mathbf{y})$
 - → Proximal MCMC algorithm (Pereyra, 2016) following Langevin dynamics

Is the problem solved?

Difficulties in the high-dimensional setting:

- 1. Even if we know the likelihood, applying Φ is computationally expensive
- 2. Handcrafted priors like wavelets are not expressive enough
- 3. Sampling-based techniques are prohibitively expensive in this setting

How can we obtain information from the high-dimensional posterior $p(\mathbf{x}|\mathbf{y})$ without sampling from it?

If we restrict to log-concave posteriors something beautiful happens! \rightarrow A concentration phenomenom (Pereyra, 2017)

log-concave posterior $p(\mathbf{x}|\mathbf{y}) = \exp[-f(\mathbf{x}) - g(\mathbf{x})]/Z \rightarrow \text{convex potential } f(\mathbf{x}) + g(\mathbf{x})$

Difficulties in the high-dimensional setting:

- 1. Even if we know the likelihood, applying $\mathbf{\Phi}$ is computationally expensive
- 2. Handcrafted priors like wavelets are not expressive enough
- 3. Sampling-based techniques are prohibitively expensive in this setting

How can we obtain information from the high-dimensional posterior $p(\mathbf{x}|\mathbf{y})$ without sampling from it?

If we restrict to log-concave posteriors something beautiful happens! \rightarrow A concentration phenomenom (Pereyra, 2017)

log-concave posterior $p(\mathbf{x}|\mathbf{y}) = \exp[-f(\mathbf{x}) - g(\mathbf{x})]/Z \rightarrow \text{convex potential } f(\mathbf{x}) + g(\mathbf{x})$

Difficulties in the high-dimensional setting:

- 1. Even if we know the likelihood, applying Φ is computationally expensive
- 2. Handcrafted priors like wavelets are not expressive enough
- 3. Sampling-based techniques are prohibitively expensive in this setting

How can we obtain information from the high-dimensional posterior $p(\mathbf{x}|\mathbf{y})$ without sampling from it?

If we restrict to log-concave posteriors something beautiful happens! \rightarrow **A concentration phenomenom** (Pereyra, 2017)

log-concave posterior $p(\mathbf{x}|\mathbf{y}) = \exp[-f(\mathbf{x}) - g(\mathbf{x})]/Z \rightarrow \text{convex potential } f(\mathbf{x}) + g(\mathbf{x})$

Difficulties in the high-dimensional setting:

- 1. Even if we know the likelihood, applying Φ is computationally expensive
- 2. Handcrafted priors like wavelets are not expressive enough
- 3. Sampling-based techniques are prohibitively expensive in this setting

How can we obtain information from the high-dimensional posterior $p(\mathbf{x}|\mathbf{y})$ without sampling from it?

If we restrict to log-concave posteriors something beautiful happens! \rightarrow **A concentration phenomenom** (Pereyra, 2017)

log-concave posterior $p(\mathbf{x}|\mathbf{y}) = \exp[-f(\mathbf{x}) - g(\mathbf{x})]/Z \rightarrow \text{convex potential } f(\mathbf{x}) + g(\mathbf{x})$

Difficulties in the high-dimensional setting:

- 1. Even if we know the likelihood, applying Φ is computationally expensive
- 2. Handcrafted priors like wavelets are not expressive enough
- 3. Sampling-based techniques are prohibitively expensive in this setting

How can we obtain information from the high-dimensional posterior $p(\mathbf{x}|\mathbf{y})$ without sampling from it?

If we restrict to log-concave posteriors something beautiful happens! \rightarrow **A concentration phenomenom** (Pereyra, 2017)

log-concave posterior $p(\mathbf{x}|\mathbf{y}) = \exp[-f(\mathbf{x}) - g(\mathbf{x})]/Z \rightarrow \text{convex potential } f(\mathbf{x}) + g(\mathbf{x})$

Difficulties in the high-dimensional setting:

- 1. Even if we know the likelihood, applying Φ is computationally expensive
- 2. Handcrafted priors like wavelets are not expressive enough
- 3. Sampling-based techniques are prohibitively expensive in this setting

How can we obtain information from the high-dimensional posterior $p(\mathbf{x}|\mathbf{y})$ without sampling from it?

If we restrict to log-concave posteriors something beautiful happens! \rightarrow **A concentration phenomenom** (Pereyra, 2017)

log-concave posterior $p(\mathbf{x}|\mathbf{y}) = \exp[-f(\mathbf{x}) - g(\mathbf{x})]/Z \rightarrow \text{convex potential } f(\mathbf{x}) + g(\mathbf{x})$

Difficulties in the high-dimensional setting:

- 1. Even if we know the likelihood, applying Φ is computationally expensive
- 2. Handcrafted priors like wavelets are not expressive enough
- 3. Sampling-based techniques are prohibitively expensive in this setting

How can we obtain information from the high-dimensional posterior $p(\mathbf{x}|\mathbf{y})$ without sampling from it?

If we restrict to log-concave posteriors something beautiful happens! \rightarrow A concentration phenomenom (Pereyra, 2017)

log-concave posterior $p(\mathbf{x}|\mathbf{y}) = \exp[-f(\mathbf{x}) - g(\mathbf{x})]/Z \rightarrow \text{convex potential } f(\mathbf{x}) + g(\mathbf{x})$

Highest posterior density region

Posterior credible region:

$$\rho(\mathbf{x} \in C_{\alpha} | \mathbf{y}) = \int_{\mathbf{x} \in \mathbb{R}^{N}} \rho(\mathbf{x} | \mathbf{y}) \mathbb{1}_{C_{\alpha}} \mathrm{d}\mathbf{x} = 1 - \alpha,$$

We consider the highest posterior density (HPD) region

$$C^*_{\alpha} = \big\{ \mathbf{x} : \underbrace{f(\mathbf{x}) + g(\mathbf{x})}_{\text{potential}} \leq \gamma_{\alpha} \big\}, \quad \text{with } \gamma_{\alpha} \in \mathbb{R}, \quad \text{and } p(\mathbf{x} \in C^*_{\alpha} | \mathbf{y}) = 1 - \alpha \text{ holds},$$

Theorem 3.1 (Pereyra, 2017

Suppose the posterior $p(\mathbf{x}|\mathbf{y}) = \exp[-f(\mathbf{x}) - g(\mathbf{x})]/Z$ is log-concave on \mathbb{R}^N . Then, for any $\alpha \in (4 \exp[(-N/3)], 1)$, the HPD region C^*_{α} is contained by

$$\hat{\mathcal{C}}_lpha = \left\{ \mathbf{x} : f(\mathbf{x}) + g(\mathbf{x}) \leq \hat{\gamma}_lpha = f(\hat{\mathbf{x}}_{\mathsf{MAP}}) + g(\hat{\mathbf{x}}_{\mathsf{MAP}}) + \sqrt{N} au_lpha + N
ight\},$$

with a positive constant $\tau_{\alpha} = \sqrt{16 \log(3/\alpha)}$ independent of $p(\mathbf{x}|\mathbf{y})$.

We only need to evaluate f + g on the MAP estimation \hat{x}_{MAP} ! Tobías I. Liaudat

Highest posterior density region

Posterior credible region:

$$\rho(\mathbf{x} \in C_{\alpha} | \mathbf{y}) = \int_{\mathbf{x} \in \mathbb{R}^{N}} \rho(\mathbf{x} | \mathbf{y}) \mathbb{1}_{C_{\alpha}} \mathrm{d}\mathbf{x} = 1 - \alpha,$$

We consider the highest posterior density (HPD) region

$$C^*_{\alpha} = \big\{ \mathbf{x} : \underbrace{f(\mathbf{x}) + g(\mathbf{x})}_{\text{potential}} \leq \gamma_{\alpha} \big\}, \quad \text{with } \gamma_{\alpha} \in \mathbb{R}, \quad \text{and } p(\mathbf{x} \in C^*_{\alpha} | \mathbf{y}) = 1 - \alpha \text{ holds},$$

Theorem 3.1 (Pereyra, 2017)

Suppose the posterior $p(\mathbf{x}|\mathbf{y}) = \exp[-f(\mathbf{x}) - g(\mathbf{x})]/Z$ is log-concave on \mathbb{R}^N . Then, for any $\alpha \in (4 \exp[(-N/3)], 1)$, the HPD region C^*_{α} is contained by

$$\hat{\mathcal{C}}_lpha = \left\{ \mathbf{x} : f(\mathbf{x}) + g(\mathbf{x}) \leq \hat{\gamma}_lpha = f(\hat{\mathbf{x}}_{\mathsf{MAP}}) + g(\hat{\mathbf{x}}_{\mathsf{MAP}}) + \sqrt{N} au_lpha + N
ight\},$$

with a positive constant $\tau_{\alpha} = \sqrt{16 \log(3/\alpha)}$ independent of $p(\mathbf{x}|\mathbf{y})$.

We only need to evaluate f + g on the MAP estimation \hat{x}_{MAP} ! Tobías I. Liaudat

Highest posterior density region

Posterior credible region:

$$\rho(\mathbf{x} \in C_{\alpha} | \mathbf{y}) = \int_{\mathbf{x} \in \mathbb{R}^{N}} \rho(\mathbf{x} | \mathbf{y}) \mathbb{1}_{C_{\alpha}} \mathrm{d}\mathbf{x} = 1 - \alpha,$$

We consider the highest posterior density (HPD) region

$$C^*_{\alpha} = \big\{ \mathbf{x} : \underbrace{f(\mathbf{x}) + g(\mathbf{x})}_{\text{potential}} \leq \gamma_{\alpha} \big\}, \quad \text{with } \gamma_{\alpha} \in \mathbb{R}, \quad \text{and } p(\mathbf{x} \in C^*_{\alpha} | \mathbf{y}) = 1 - \alpha \text{ holds},$$

Theorem 3.1 (Pereyra, 2017)

Suppose the posterior $p(\mathbf{x}|\mathbf{y}) = \exp[-f(\mathbf{x}) - g(\mathbf{x})]/Z$ is log-concave on \mathbb{R}^N . Then, for any $\alpha \in (4 \exp[(-N/3)], 1)$, the HPD region C^*_{α} is contained by

$$\hat{\mathcal{C}}_lpha = \left\{ \mathbf{x} : f(\mathbf{x}) + g(\mathbf{x}) \leq \hat{\gamma}_lpha = f(\hat{\mathbf{x}}_{\mathsf{MAP}}) + g(\hat{\mathbf{x}}_{\mathsf{MAP}}) + \sqrt{N} au_lpha + N
ight\},$$

with a positive constant $\tau_{\alpha} = \sqrt{16 \log(3/\alpha)}$ independent of $p(\mathbf{x}|\mathbf{y})$.

We only need to evaluate f + g on the MAP estimation \hat{x}_{MAP} ! Tobías I. Liaudat

MAP-based uncertainty quantification

Hypothesis test with significance α :

- 1. Calculate the MAP: \mathbf{x}_{MAP}
- 2. Compute HPD region threshold $\hat{\gamma}_{lpha}$
- 3. Construct a surrogate image \mathbf{x}_{sgt}
- 4. Compute $\mathcal{E} = f(\mathbf{x}_{sgt}) + g(\mathbf{x}_{sgt})$
- 5. If $\mathcal{E} \leq \hat{\gamma}_{lpha}
 ightarrow$ inconclusive test
- 6. If ${\cal E}>\hat\gamma_lpha
 ightarrow$ reject hypothesis

```
Pixel-level UQ visualisation
Local credible intervals (LCI)
```

- 1. Scalability \rightarrow Need to rely on optimisation sampling, use the MAP estimator
- 2. Uncertainty quantification ightarrow Need the potential to be convex and explicit
- 3. Good reconstruction \rightarrow Need to use data-driven (learned) approaches

1. Scalability \rightarrow Need to rely on optimisation sampling, use the MAP estimator

- 2. Uncertainty quantification \rightarrow Need the potential to be convex and explicit
- 3. Good reconstruction \rightarrow Need to use data-driven (learned) approaches

The approach requires our prior to be convex and with an explicit potential

- 1. Scalability \rightarrow Need to rely on optimisation sampling, use the MAP estimator
- 2. Uncertainty quantification \rightarrow Need the potential to be convex and explicit
- 3. Good reconstruction \rightarrow Need to use data-driven (learned) approaches

- 1. Scalability \rightarrow Need to rely on optimisation sampling, use the MAP estimator
- 2. Uncertainty quantification \rightarrow Need the potential to be convex and explicit
- 3. Good reconstruction \rightarrow Need to use data-driven (learned) approaches

- 1. Scalability \rightarrow Need to rely on optimisation sampling, use the MAP estimator
- 2. Uncertainty quantification \rightarrow Need the potential to be convex and explicit
- 3. Good reconstruction \rightarrow Need to use data-driven (learned) approaches

Learned convex regulariser

We use the convex ridge regulariser R from Goujon et al. (2022), where

$$R: \mathbb{R}^N \mapsto \mathbb{R}, \quad R(\mathbf{x}) = \sum_{n=1}^{N_C} \sum_k \psi_n \left((\mathbf{h}_n * \mathbf{x}) [k] \right),$$

- ψ_n are learned convex profile functions with Lipschitz continuous derivate
- There are N_C learned convolutional filters \mathbf{h}_n
- R is trained as a (multi-)gradient step denoiser

Properties:

- 1. Explicit cost
- 2. Convex
- 3. Smooth regulariser with known Lipschitz constant

Learned convex regulariser

We use the convex ridge regulariser R from Goujon et al. (2022), where

$$R: \mathbb{R}^N \mapsto \mathbb{R}, \quad R(\mathbf{x}) = \sum_{n=1}^{N_c} \sum_k \psi_n \left((\mathbf{h}_n * \mathbf{x}) [k] \right),$$

- ψ_n are learned convex profile functions with Lipschitz continuous derivate
- There are N_C learned convolutional filters \mathbf{h}_n
- R is trained as a (multi-)gradient step denoiser

Properties:

- 1. Explicit cost
- 2. Convex
- 3. Smooth regulariser with known Lipschitz constant

MAP estimations were computed using the Forward-Backward splitting algorithm

Improved the reconstruction by 6 dB!

Posterior standard deviation

Computed using 10^4 samples obtained from the sampling algorithm SK-ROCK (Pereyra et al., 2020)

Wavelet

Learned regulariser

Improved quality of the posterior St Dev

The learned convex regulariser was trained on natural images not RI images Tobías I. Liaudat

Pixel-based uncertainty quantification

The local credible intervals (LCI) give a local measure of uncertainty LCI - < LCI >

-2.50

-2.60

-2.70

-2.80

-2.90

Posterior Standard Deviation

Pixel size 4×4

Pixel size 8×8

Tobías I. Liaudat

Computation time reduced by a factor of 10³

Hypothesis test

Scalable hypothesis testing for structure in the reconstruction

MAP reconstruction

MAP reconstruction Tobías I. Liaudat

Inpainted surrogate

Blurred substructure

Is the blob physical? \rightarrow Yes

Is the substructure physical? ightarrow Yes

- We exploit a concentration phenomenon of log-concave posteriors
- Focus on hypothesis test and local credible intervals
- Only rely on optimisation to compute the MAP and avoid sampling
- We used learned convex regularisers
 - Considerably decreased reconstruction errors
 - Improved quality of the posterior St Dev

- We exploit a concentration phenomenon of log-concave posteriors
- Focus on hypothesis test and local credible intervals
- Only rely on optimisation to compute the MAP and avoid sampling
- We used learned convex regularisers
 - Considerably decreased reconstruction errors
 - Improved quality of the posterior St Dev

- We exploit a concentration phenomenon of log-concave posteriors
- Focus on hypothesis test and local credible intervals
- Only rely on optimisation to compute the MAP and avoid sampling
- We used learned convex regularisers
 - Considerably decreased reconstruction errors
 - Improved quality of the posterior St Dev

- We exploit a concentration phenomenon of log-concave posteriors
- Focus on hypothesis test and local credible intervals
- Only rely on optimisation to compute the MAP and avoid sampling
- We used learned convex regularisers
 - Considerably decreased reconstruction errors
 - Improved quality of the posterior St Dev

- Cai, X., Pereyra, M., & McEwen, J. D. (2018). Uncertainty quantification for radio interferometric imaging I. Proximal MCMC methods. Monthly Notices of the Royal Astronomical Society, 480(3), 4154–4169.
- Goujon, A., Neumayer, S., Bohra, P., Ducotterd, S., & Unser, M. (2022). A Neural-Network-Based Convex Regularizer for Image Reconstruction. arXiv e-prints, Article arXiv:2211.12461, arXiv:2211.12461.
- Pereyra, M. (2016). Proximal markov chain monte carlo algorithms. Statistics and Computing, 26(4), 745-760.
- Pereyra, M. (2017). Maximum-a-posteriori estimation with bayesian confidence regions. SIAM Journal on Imaging Sciences, 10(1), 285–302.
- Pereyra, M., Mieles, L. V., & Zygalakis, K. C. (2020). Accelerating proximal markov chain monte carlo by using an explicit stabilized method. SIAM Journal on Imaging Sciences, 13(2), 905–935.