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Introduction

» Astronomical studies require
high resolution, high
sensitivity imaging devices

» A radio interferometer is an
array of spatially separated
antennas that takes
measurements of the radio
emissions of the sky

> It allows observation of the
radio emission from the sky
with high angular resolution
and sensitivity
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Interferometers provide incomplete
Fourier measurements of the observed o
object (complex visibilities)

Mega Wavingth
T

y(u) = /A(I,u)x(l)e_2i””" a2l

40

» A(l,u) : direction dependent

effects

Image recovery poses a linear inverse problem:

y = ®x, with & ¢ CM*N

[ 2
Mega Wavingth
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Next Generation Instruments

Next generation telescopes, such as the SKA, have triggered an
intense research to reformulate imaging techniques for radio
interferometry.
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Motivation

Main challenges for next generation telescopes
» High resolution and dynamic range

» Large number of continuous visibilities (M orders of
magnitude larger than N)
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Motivation

Main challenges for next generation telescopes
» High resolution and dynamic range
» Large number of continuous visibilities (M orders of
magnitude larger than N)
Our solution

> Leverage recent advances in sparse signal recovery and convex
optimization to address these challenging problems

» Effectiveness of sparse regularization applied to radio
interferometric imaging already demonstrated (Wiaux et al.
2009, Wenger et al. 2010, McEwen & Wiaux 2011, Li et al.
2011, Carrillo et al. 2012, Hardy 2013, Garsden et al. 2014)
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Sparse Signal Recovery

» Suppose X is expressed in terms of a dictionary W € CNxP
D>N,asx=Va, a € CP

» Noisy model:
y=®x+n

» Two different approaches
» Synthesis based problem:

min ||&||1 subject to ||y — dVa|z <e
acRN

> Analysis based problem:

min |[WTX||; subject to ||y — ®x[> < ¢
xERN
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Average Sparsity

» We recently propose the SARA algorithm based on the
average sparsity model

> It uses a dictionary composed of several coherent frames:
\U g [\Ul,\Uz,,Wq]
» Optimization problem:
min [|WTk|o subject to ||y — ®x|> < ¢
xeRY
q
[Wix|o = Z |Wix|lo — average sparsity
i=1

» A reweighting scheme solving a sequence of (convex)
weighted /1-problems is used to approximate the £y problem
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Constrained Optimization

Thus we focus on solving problems of the form:

min HW\IJT)'cHl subject to [ly — ®x|2 < ¢
xeRY

» ¢ = 0,V M + 2v/M —sstatistical bound
> X € R_’X —positivity constraint

» & = GFDA

G : convolutional interpolation operator
F : fast Fourier transform

D : deconvolution operator
A : primary beam

vV vy VvYyYy
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Proximal Splitting Methods

» Solve problems of the form

in fi(x) + ...+ f;
min fi(x) s(x)

> fi(x),...,fs(x) are proper convex lower semicontinuous
functions from R" to R (not necessarily differentiable)

» Key idea: split a complicated problem into several simpler
problems

» Each non-smooth function is incorporated in the optimization
via its proximity operator:

1

A . 2
TOX (X ) = arg min fZ + —llx—2z
p f( ) gze N () 2” ||2
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Solving the Weighted ¢; Problem

The ¢1 problem can be reformulated as:

mll&n fi(Lix) + ... + fs(Lsx)

with S =3
» L=Vl Lhy=land L3 =9

> (r1) = ||Wr1H1 for ry € RP
> £(r2) = ic(rp) with C = RY
» f3(ry) = ig(r3) with B = {r3 ¢ RM : ||y — r3|» < €}
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Simultaneous-Direction Method of Multipliers (SDMM)

SDMM uses the following equivalent problem

minfi(ry) + ... + fs(rs)
subject to Lgx =1y, for k=1,...,5

» SDMM decouples the problems for fi,...,fs, offering a
parallel algorithmic structure

» Subproblems optimizing fi,. .., fs no longer involve linear
operators

» Optimization based on an alternate primal-dual approach
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Alternating Minimization Approach

SDMM uses the augmented Lagragian function

Ly(X,r1,...,¥s,21,...,25) =
> 1 1
> fi(r) + =2 (Lix—ri) + o lIkix — rill3,
= 2 2
and then solves for each variable in an alternating fashion:

(t-1)

x(t) = argmin L,(x,r; 7/, ... ,r(st_l), th—1)7 . ,zgt_l))

r,(.t) =argmin £, (xry, ..., r5,zgt_1), ... ,zgt_l))
ri

zl(.t) = z,(.t_l) + L,-x(t) — r,(.t)
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Scalability to High Data Dimensions

v

Large-scale data problems, i.e. M > N and large N

v

Partition y and ® into R blocks:
Y1 &y
y=|:]| and ® =
YR Pr

v

Each y; is modeled as y; = ®;x + n;

v

Reconstruction problem reformulated as

min IWWH%|; subject to |ly; — ®X|l2 <€, i=1,...,R

X€RY
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Problem Reformulation

The ¢; problem can be reformulated as:

min fi(L1x) + - + fs(Lsx)
x€RN

with S=R+2
» Li=V Lhy=land Lo =&, fork=1,...,S
» f1(r1) = |Wry]|1 for r; € RP
> f(r2) = ic(r2) with C =RY

> fk(rk) = in(rk) with By = {rk € RMk . Iy — rell2 < 6k},
k=3,...,S
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SDMM Algorithm
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LN g RN

(0)

Initialize v > 0, (), r}
while No convergence criteria do
R0 = (27, LHL) P8, LA - 29)
foralli=1,...,5do
E ) = = prox, f(L &) —|—z(f 1))
Et) Et—l) + LI_)A((t) . rEf)
end for
end while

return %(t)

and z(o) fori=1,...,

» CORE MESSAGE: Steps 5 and 6 can be done in parallel Vi

7 BRSP
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Implementation Details

Linear system

S S
X0 = (3 L)Y LY )
i=1 i=1

v

Solved iteratively using a conjugate gradient algorithm
For the problem in hand Zle LAL; = oHo + 21
Bottleneck of the algorithm!

v

v

v

Need simpler methods
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Inexact ADMM-based approach

ADMM uses the following equivalent problem

min f(x) + h(z) subject to ®x +z =y,

X,Z

where
> f(x) = [[WWHx||1 + ic(x), where C = RY
> h(z) = ig(z), where B = {z € RM : ||z||» < ¢}

> It uses the augmented Lagrangian function
1N 1 2
f(x) + h(z) + §)\ (Px+z—y)+ ZHCDX-FZ —vyll5

» Update for x based on a proximal linear approximation of the
augmented Lagrangian
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ADMM-based Algorithm

 Initialize v, i, 8 > 0, x(© and A(©)

while No convergence criteria do
Z(t+1) = prox.,(y — dx() — A1)
x(t+1) — proxwf(x(t) — udHAO £ ox(t) —y 4 2(t1)))
)\(t—i-l) — A(t) + ﬁ((bx(“—l) —y+ Z(t+1))

end while

return x(t1)

Nog kN

» Updates for z and A are separable

> The gradient in 4 can be computed using a sum reduction
approach since dHy = Zf;l CDIHy,-
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Parallel Algorithm

. Initialize ~, u, beta > 0, x(o), 2(® and A
2: gi) CDf()\S(O) + o x(O) —y — zE{O)), fork=1,...,R
3: while No convergence criteria do
4 x(t+1) = pI‘OXM,yf(X(t) K Zf:l gg(t))
forall k=1,...,R do

rg(t"‘l) — (DkX(t+1) Yy
Sf—H) — prox hk( (t+1 )‘(t))
)‘(t+1) )\(t) + ﬁ( t+1 ZS(t+1))
gg{r—t—l) ¢H(>\(t+1) + Sf—H) _zs(t—irl))
10: end for
11: end while
12: return x(t+1)

© © N oo
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PURIFY

v

PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging

v

SDMM solvers implemented in C
ADMM solvers implemented in MATLAB

Implements the following sparsity priors:
» Daubechies orthogonal wavelets
» Total variation
» Sparsity averaging
Code available at github
(http://basp-group.github.io/purify/)
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Simulation Setup
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» M31 and 30Dor 256 x 256
test images

v

Continuous visibilities with

random Gaussian profile

v

v

>

v

v

>

¢ = GFZA

G : convolutional
interpolation operator

F : fast Fourier transform
Z : upsampling operator
A =1: primary beam

30dB noise

» 02N <M < 2N
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Test Images

M31
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Reconstruction Quality Results (SDMM)

30Dor M31

SNR, dB
SNR, dB
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Timing Results (SDMM)
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ADMM Results

SNR
i

Timings
1

=
_—
2
107 107 10t 0? 100

» 40 dB noise
» Scalable to higher dimensions (10N =~ 650K visibilities)
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Summary

» We developed an open source code (PURIFY) that
implements several convex imaging algorithms

» The proposed algorithms offer a parallel implementation
structure

Future work:

» Direction dependent effects can be incorporated in the model
as convolutional kernels in the operator G (Wolz et al. 2013)

» New ways to improve the computational efficiency of the
algorithm have to be explored:

» Stochastic ADMM approaches (Azadi et al 2014)
» Faster implementations for the sparsity operators
» Dimensionality reduction techniques
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Thank You!
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