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Introduction

◮ Astronomical studies require
high resolution, high
sensitivity imaging devices

◮ A radio interferometer is an
array of spatially separated
antennas that takes
measurements of the radio
emissions of the sky

◮ It allows observation of the
radio emission from the sky
with high angular resolution
and sensitivity
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RI Inverse Problem

Interferometers provide incomplete
Fourier measurements of the observed
object (complex visibilities)

y (u) =

∫

A (l,u) x (l) e−2iπu·l d2l

◮ A (l,u) : direction dependent
effects

Image recovery poses a linear inverse problem:

y = Φx, with Φ ∈ C
M×N
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Next Generation Instruments

Next generation telescopes, such as the SKA, have triggered an
intense research to reformulate imaging techniques for radio
interferometry.
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Motivation

Main challenges for next generation telescopes

◮ High resolution and dynamic range

◮ Large number of continuous visibilities (M orders of
magnitude larger than N)
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Motivation

Main challenges for next generation telescopes

◮ High resolution and dynamic range

◮ Large number of continuous visibilities (M orders of
magnitude larger than N)

Our solution

◮ Leverage recent advances in sparse signal recovery and convex
optimization to address these challenging problems

◮ Effectiveness of sparse regularization applied to radio
interferometric imaging already demonstrated (Wiaux et al.
2009, Wenger et al. 2010, McEwen & Wiaux 2011, Li et al.
2011, Carrillo et al. 2012, Hardy 2013, Garsden et al. 2014)
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Sparse Signal Recovery

◮ Suppose x is expressed in terms of a dictionary Ψ ∈ C
N×D ,

D ≥ N, as x = Ψα, α ∈ C
D

◮ Noisy model:
y = Φx+ n

◮ Two different approaches
◮ Synthesis based problem:

min
ᾱ∈RN

‖ᾱ‖1 subject to ‖y− ΦΨᾱ‖2 ≤ ǫ

◮ Analysis based problem:

min
x̄∈RN

‖Ψ†x̄‖1 subject to ‖y − Φx̄‖2 ≤ ǫ
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Average Sparsity

◮ We recently propose the SARA algorithm based on the
average sparsity model

◮ It uses a dictionary composed of several coherent frames:

Ψ = [Ψ1,Ψ2, . . . ,Ψq]

◮ Optimization problem:

min
x̄∈RN

+

‖Ψ†x̄‖0 subject to ‖y − Φx̄‖2 ≤ ǫ

‖Ψ†x̄‖0 =
q

∑

i=1

‖Ψ†
i x̄‖0 → average sparsity

◮ A reweighting scheme solving a sequence of (convex)
weighted ℓ1-problems is used to approximate the ℓ0 problem
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Constrained Optimization

Thus we focus on solving problems of the form:

min
x̄∈RN

+

‖WΨ†x̄‖1 subject to ‖y − Φx̄‖2 ≤ ǫ

◮ ǫ = σn

√

M + 2
√
M →statistical bound

◮ x̄ ∈ R
N
+ →positivity constraint

◮ Φ = GFDA
◮ G : convolutional interpolation operator
◮ F : fast Fourier transform
◮ D : deconvolution operator
◮ A : primary beam
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Proximal Splitting Methods

◮ Solve problems of the form

min
x∈RN

f1(x) + . . .+ fS(x)

◮ f1(x), . . . , fS(x) are proper convex lower semicontinuous
functions from R

N to R (not necessarily differentiable)

◮ Key idea: split a complicated problem into several simpler
problems

◮ Each non-smooth function is incorporated in the optimization
via its proximity operator:

proxf (x) , arg min
z∈RN

f (z) +
1

2
‖x− z‖22
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Solving the Weighted ℓ1 Problem

The ℓ1 problem can be reformulated as:

min
x∈RN

f1(L1x) + . . . + fS(LSx)

with S = 3

◮ L1 = ΨH , L2 = I and L3 = Φ

◮ f1(r1) = ‖Wr1‖1 for r1 ∈ R
D

◮ f2(r2) = iC (r2) with C = R
N
+

◮ f3(rk) = iB(r3) with B = {r3 ∈ R
M : ‖y − r3‖2 ≤ ǫ}
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Simultaneous-Direction Method of Multipliers (SDMM)

SDMM uses the following equivalent problem

minf1(r1) + . . . + fS(rS)

subject to Lkx = rk , for k = 1, . . . ,S

◮ SDMM decouples the problems for f1, . . . , fS , offering a
parallel algorithmic structure

◮ Subproblems optimizing f1, . . . , fS no longer involve linear
operators

◮ Optimization based on an alternate primal-dual approach
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Alternating Minimization Approach

SDMM uses the augmented Lagragian function

Lγ(x,r1, . . . , rS , z1, . . . , zS ) =

S
∑

i=1

fi (ri ) +
1

γ
zHi (Lix− ri) +

1

2γ
‖Lix− ri‖22,

and then solves for each variable in an alternating fashion:

x(t) = argmin
x

Lγ(x, r
(t−1)
1 , . . . , r

(t−1)
S , z

(t−1)
1 , . . . , z

(t−1)
S )

r
(t)
i = argmin

ri
Lγ(x

(t), r1, . . . , rS , z
(t−1)
1 , . . . , z

(t−1)
S )

z
(t)
i = z

(t−1)
i + Lix

(t) − r
(t)
i
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Scalability to High Data Dimensions

◮ Large-scale data problems, i.e. M ≫ N and large N

◮ Partition y and Φ into R blocks:

y =







y1
...
yR






and Φ =







Φ1
...

ΦR







◮ Each yi is modeled as yi = Φix+ ni

◮ Reconstruction problem reformulated as

min
x̄∈RN

+

‖WΨH x̄‖1 subject to ‖yi − Φi x̄‖2 ≤ ǫi , i = 1, . . . ,R
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Problem Reformulation

The ℓ1 problem can be reformulated as:

min
x∈RN

f1(L1x) + · · · + fS(LSx)

with S = R + 2

◮ L1 = ΨH , L2 = I and Lk+2 = Φk for k = 1, . . . ,S

◮ f1(r1) = ‖Wr1‖1 for r1 ∈ R
D

◮ f2(r2) = iC (r2) with C = R
N
+

◮ fk(rk) = iBk
(rk) with Bk = {rk ∈ R

Mk : ‖yk − rk‖2 ≤ ǫk},
k = 3, . . . ,S
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SDMM Algorithm

1: Initialize γ > 0, x̂(0), r
(0)
i and z

(0)
i , for i = 1, . . . ,S .

2: while No convergence criteria do

3: x̂(t) = (
∑S

i=1 L
H
i Li )

−1
∑S

i=1 L
H
i (r

(t)
i − z

(t)
i )

4: for all i = 1, . . . ,S do

5: r
(t)
i = proxγfi (Li x̂

(t) + z
(t−1)
i )

6: z
(t)
i = z

(t−1)
i + Li x̂

(t) − r
(t)
i

7: end for

8: end while

9: return x̂(t)

◮ CORE MESSAGE: Steps 5 and 6 can be done in parallel ∀i
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Implementation Details

Linear system

x(t) = (
S
∑

i=1

LHi Li )
−1

S
∑

i=1

LHi (r
(t−1)
i − z

(t−1)
i )

◮ Solved iteratively using a conjugate gradient algorithm

◮ For the problem in hand
∑S

i=1 L
H
i Li = ΦHΦ+ 2I

◮ Bottleneck of the algorithm!

◮ Need simpler methods
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Inexact ADMM-based approach

ADMM uses the following equivalent problem

min
x,z

f (x) + h(z) subject to Φx+ z = y,

where

◮ f (x) = ‖WΨHx‖1 + iC (x), where C = R
N
+

◮ h(z) = iB(z), where B = {z ∈ R
M : ‖z‖2 ≤ ǫ}

◮ It uses the augmented Lagrangian function

f (x) + h(z) +
1

γ
λ
H(Φx+ z− y) +

1

2γ
‖Φx+ z− y‖22

◮ Update for x based on a proximal linear approximation of the
augmented Lagrangian
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ADMM-based Algorithm

1: Initialize γ, µ, β > 0, x(0) and λ
(0)

2: while No convergence criteria do

3: z(t+1) = prox
γh(y − Φx(t) − λ

(t))

4: x(t+1) = prox
µγf (x

(t) − µΦH(λ(t) +Φx(t) − y + z(t+1)))

5: λ
(t+1) = λ

(t) + β(Φx(t+1) − y + z(t+1))
6: end while

7: return x(t+1)

◮ Updates for z and λ are separable

◮ The gradient in 4 can be computed using a sum reduction
approach since ΦHy =

∑R
i=1Φ

H
i yi
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Parallel Algorithm

1: Initialize γ, µ, beta > 0, x(0), z(0) and λ
(0)

2: g
(0)
k = ΦH

k (λ
(0)
k +Φkx

(0) − y − z
(0)
k ), for k = 1, . . . ,R

3: while No convergence criteria do

4: x(t+1) = prox
µγf (x

(t) − µ
∑R

k=1 g
(t)
k )

5: for all k = 1, . . . ,R do

6: r
(t+1)
k = Φkx

(t+1) − yk

7: z
(t+1)
k = prox

γhk
(−r

(t+1)
k − λ

(t)
k )

8: λ
(t+1)
k = λ

(t)
k + β(r

(t+1)
k − z

(t+1)
k )

9: g
(t+1)
k = ΦH

k (λ
(t+1)
k + r

(t+1)
k − z

(t+1)
k )

10: end for

11: end while

12: return x(t+1)
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PURIFY

◮ PURIFY is an open-source code that provides functionality to
perform radio interferometric imaging

◮ SDMM solvers implemented in C

◮ ADMM solvers implemented in MATLAB

◮ Implements the following sparsity priors:
◮ Daubechies orthogonal wavelets
◮ Total variation
◮ Sparsity averaging

◮ Code available at github
(http://basp-group.github.io/purify/)
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Simulation Setup

◮ M31 and 30Dor 256× 256
test images

◮ Continuous visibilities with
random Gaussian profile

◮ Φ = GFZA
◮ G : convolutional

interpolation operator
◮ F : fast Fourier transform
◮ Z : upsampling operator
◮ A = I : primary beam

◮ 30dB noise

◮ 0.2N ≤ M ≤ 2N
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Test Images

30Dor
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Reconstruction Quality Results (SDMM)

30Dor

0 0.5 1 1.5 2
12

14

16

18

20

22

24

26

28

30

32

M/N

S
N

R
, d

B

 

 

BPSA
SARA
TV
RWTV
BPDb8
RWBPDb8
BP
RWBP

M31

0 0.5 1 1.5 2
20

22

24

26

28

30

32

34

36

M/N

S
N

R
, d

B



28 / 32

Timing Results (SDMM)

30Dor
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ADMM Results

SNR
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◮ 40 dB noise

◮ Scalable to higher dimensions (10N ≈ 650K visibilities)
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Summary

◮ We developed an open source code (PURIFY) that
implements several convex imaging algorithms

◮ The proposed algorithms offer a parallel implementation
structure

Future work:

◮ Direction dependent effects can be incorporated in the model
as convolutional kernels in the operator G (Wolz et al. 2013)

◮ New ways to improve the computational efficiency of the
algorithm have to be explored:

◮ Stochastic ADMM approaches (Azadi et al 2014)
◮ Faster implementations for the sparsity operators
◮ Dimensionality reduction techniques
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Thank You!
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