

Integrating Machine Learning and Operation Research for Improving Unit Commitment: A Closed-Loop Predict-and-Optimize Framework

Xianbang Chen, PhD Candidate Stevens Institute of Technology xchen130@stevens.edu

18th, December 2021

For OR Talk

- Preliminaries: UC Based on Mixed-Integer Linear Programming
 - **Objective**

...

...

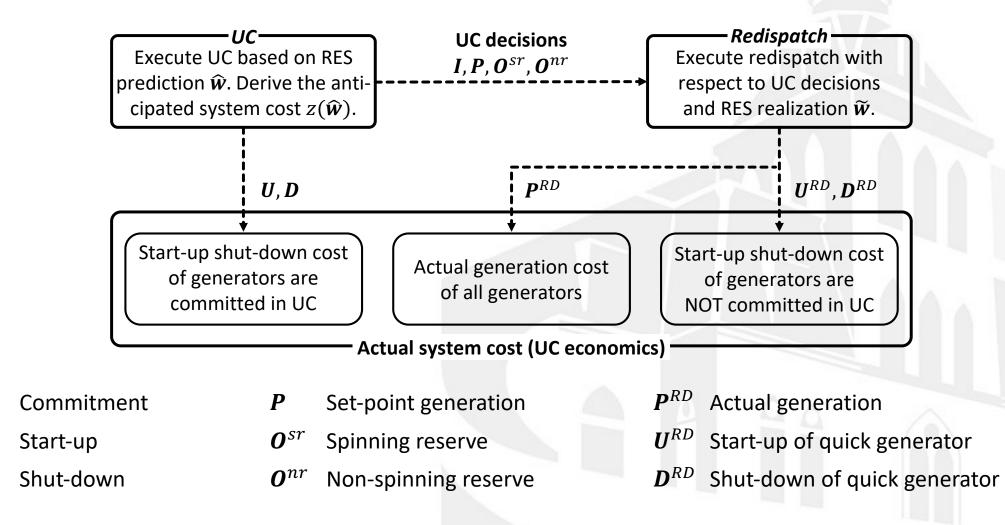
Minimizing operation costs including start-up and shut-down costs ($c^{\top}x$), and generation cost ($d^{\top}y$).

- *Unit constraints* Ramping limits;
 Generation limits;
- System constraints
 Power balance;
 Network constraints;

- Preliminaries: Some Basic ML
 - Unsupervised learning
 K-means
 - Supervised learning
 KNN
- Linear regression
 Neural networks
 Decision trees
 Support vector machines
 - *Reinforcement learning* Q-learning
 Deep Q network

- Preliminaries: Goals for ML-based UC¹
- ---- Improving UC economics
 - Improving UC reliability
 - Accelerating UC computation
 - Enhancing UC models

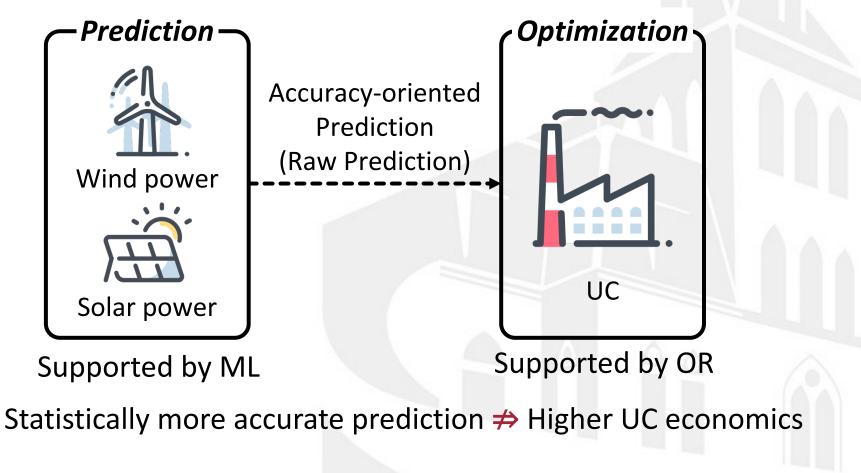
Predicting uncertainty (RES and load)

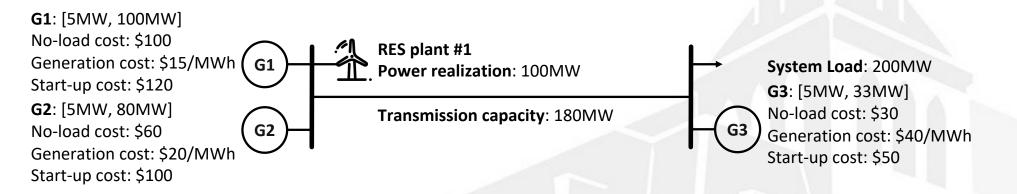


U

D

Preliminaries and Motivations


Preliminaries: Evaluation of UC Economics (Actual System Cost)


• Motivations: Flaws in Traditional Open-Loop Predict-then-Optimize Framework

An open-loop predict-then-optimize (O-PO) framework for UC

- Motivations: Flaws in Traditional Open-Loop Predict-then-Optimize Framework
 - A 2-Bus Example

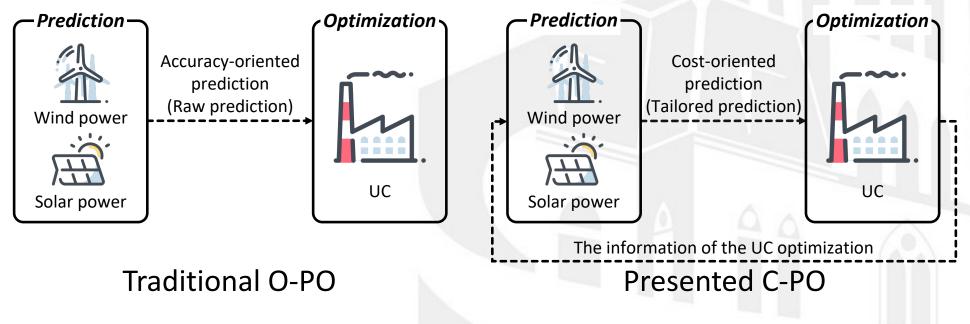
• **Prediction term**

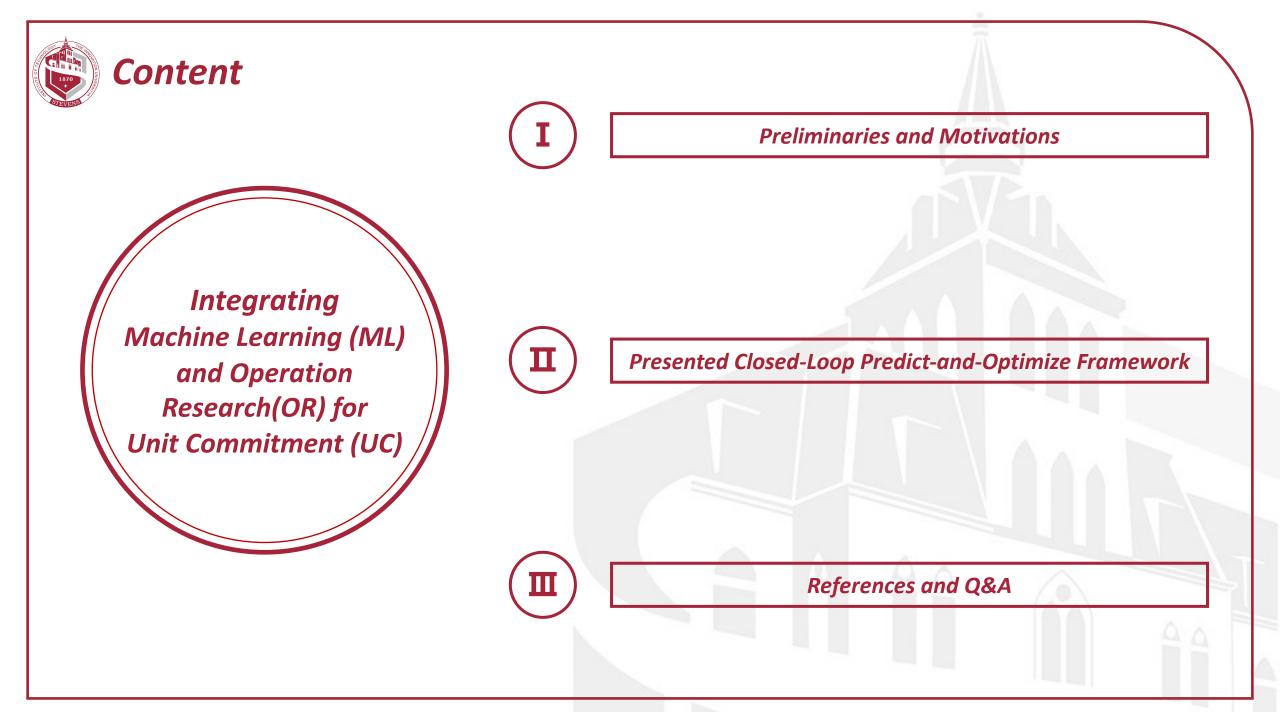
RES power with 100MW realization

Measurement of Prediction Quality Mean absolute error (Statistically)

- Motivations: Flaws in Traditional Open-Loop Predict-then-Optimize Framework
 - Case 1: Our method over-predicts and O-PO under-predicts

		Case 1		
Method RES power prediction/MW		Our method	O-PO	
		130	72	
Mean absolute error/MW		30 (Worse)	28 (Better)	
G1	Set-point generation/MW	50	97	
	Reserve/MW	±6	±4	
C 2	Set-point generation/MW	OFF	11	
GZ	Reserve/MW	+40	±6	
G3	Set-point generation/MW	20	20	
	Reserve/MW	±0	±10	
Dispatch of RES/MW		130	72	
Anticipated system cost/\$		1,850	2,938	
	93			
Actual generation of G2/MW		24	5	
Actual generation of G3/MW		20	20	
Actual utilized RES/MW		100	82	
Actual system cost/\$		2,580 (Better)	2,754 (Worse)	
	"±": Bi-directional spinning reserve	e. "+": Upward only non-spinr	ning reserve.	
	Acc Acc Acc	ES power prediction/MW Mean absolute error/MW G1 Set-point generation/MW G2 Set-point generation/MW G3 Set-point generation/MW G3 Set-point generation/MW Reserve/MW Dispatch of RES/MW Anticipated system cost/\$ Actual generation of G1/MW Actual generation of G2/MW Actual generation of G3/MW Actual utilized RES/MW	MethodOur methodES power prediction/MW130Mean absolute error/MW30 (Worse)G1Set-point generation/MWG2Set-point generation/MWG2Set-point generation/MWG3Set-point generation/MWG3Set-point generation/MWC3Set-point generation/MWC4Set-point generation/MWC5Reserve/MWC61Set-point generation/MWC7Reserve/MWC83Set-point generation/MWC93Set-point generation of G1/MWC93Set-point generation of G2/MWC94Set-point generation of G3/MWC95Set-point generation generat	




- Motivations: Flaws in Traditional Open-Loop Predict-then-Optimize Framework
 - Case 2: Our method under-predicts and O-PO over-predicts

			(Case 1
	Method		Our method	O-PO
RES power prediction/MW		90	107	
Γ	Mean absolute error/MW		10 (Worse) 7 (Better)	
UC	G1	Set-point generation/MW	90	73
		Reserve/MW	±6	±0
	G2	Set-point generation/MW	OFF	OFF
		Reserve/MW	+40	+40
	G3	Set-point generation/MW	20	20
		Reserve/MW	±0	±6
		Dispatch of RES/MW	90	107
	A	Anticipated system cost/\$	Our method 90 10 (Worse) 90 ±6 OFF +40 20 ±0 90 20 ±0 90 2,450 84 OFF 20 96 2,360 (Better)	2,195
a diamatak	Ac	tual generation of G1/MW		73
e-dispatch	Ac	tual generation of G2/MW		7
	Actual generation of G3/MW		20	20
	Actual utilized RES/MW		96	100
_	Actual system cost/\$		2,360 (Better)	2,495 (Worse)
		"±": Bi-directional spinning reserve	e. "+": Upward only non-spir	nning reserve.

- Motivations: Flaws in Traditional Open-Loop Predict-then-Optimize Framework
 - Statistically more accurate prediction ≠ Higher UC economics
 - To improve the UC economics, we shall close the loop:
 Consider the downstream UC optimization when using ML for the upstream RES prediction.

- Features of the Closed-Loop Predict-and-Optimize (C-PO) Framework
 - Take advantage of available feature data. (Data-driven)

- Ability to delivery cost-oriented RES predictions for improving UC economics. (Economics benefits)
- Potential for large-scale MILP-based UC problems. (Practicality)
- Extendable to prediction tasks in other fields. (Expansibility)

- Data-Driven C-PO Framework: Overview
 - Data-processing module
 - 1. Feature selection
 - 2. Selection of training scenarios

- Cost-oriented modeling-and-training module
 - 1. Cost-oriented empirical risk minimization (ERM) problem modeling
 - 2. Cost-oriented ERM problem solving (Predictor training)

Closed-loop predict-and-optimize module
 1. Predict RES and optimize UC.

• Data-Driven C-PO Framework: Data-Processing Module

- Data-processing module

Feature selection based on historical scenarios in past years: Based on historical scenarios in past years, identify the most relevant feature types using standard regression coefficient.

Training scenarios selection from the latest historical scenarios: Among the latest historical scenarios, select the most representative scenarios as training scenarios using Wasserstein distance.

- *Feature selection:* Avoid overfitting and underfitting issues for the prediction model.
- Selection of training scenarios: Ensure the effectiveness of the prediction model on upcoming dispatch days.

Standard regression coefficient for feature selection

 Wasserstein distance for training scenario selection

- Data-Driven C-PO Framework: Cost-Oriented Modeling-and-Training Module
 - Smart "predict-then-optimize" (SPO) loss $\ell^{SPO}(\widehat{w}, \widetilde{w}) := |z^*(\widehat{w}) z^*(\widetilde{w})|$ SPO: Measuring prediction quality with UC cost loss instead of statistical accuracy loss, so that the open-loop is closed.
 - Recalling the UC model

$$z(\widehat{w}) = \min_{x,y} [c^{\top}x + d^{\top}y]$$

s.t. $Ax + By \le g$
 $Fy \le \widehat{w}, x \in \{0,1\}^M$

 \circ Cost-oriented ERM problem of |S| scenarios

$$\min_{\boldsymbol{x},\boldsymbol{y},\boldsymbol{H}} \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} [\ell_s^{SPO}(\widehat{\boldsymbol{w}}_s, \widetilde{\boldsymbol{w}}_s)] + \lambda \|\boldsymbol{H}\|_1$$

$$s.t. \ \boldsymbol{A}\boldsymbol{x}_s + \boldsymbol{B}\boldsymbol{y}_s \leq \boldsymbol{g}$$

$$\boldsymbol{F}\boldsymbol{y}_s \leq \boldsymbol{H} \boldsymbol{f}_s, \boldsymbol{x}_s \in \{0,1\}^M$$

Feature data such as raw RES predictions and regional load

- Data-Driven C-PO Framework: Cost-Oriented Modeling-and-Training Module
 - Cost-oriented ERM problem of |S| scenarios
 Regression-based problem: *H* linearly maps feature *f*_s to RES predictions.
 Simple and interpretable.

$$\min_{\mathbf{x}, \mathbf{y}, \mathbf{H}} \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} [\ell_s^{SPO}(\widehat{w}_s, \widetilde{w}_s)] + \lambda \|\mathbf{H}\|_1$$
 to be tuned

$$s. t. A x_s + B y_s \leq g$$

$$F y_s \leq H f_s, x_s \in \{0, 1\}^M$$

- Lagrangian-relaxation (LR) decomposition for solving the ERM
 Solving ERM is essentially training the predictors.
- Training result: Cost-oriented RES predictor tailored for UC.

• Data-Driven C-PO Framework: Cost-Oriented Modeling-and-Training Module

Modeling cost-oriented ERM problem: Given the selected feature types of the training scenarios, model a cost-oriented ERM problem based on SPO loss function, which considers objective and constrains of UC.

Cost-oriented modeling-and-training module

Solving cost-oriented ERM problem: Solve the costoriented ERM problem using LR-based decomposition, so that a cost-oriented RES power prediction model can be trained.

• **ERM problem modeling:** Feed the UC information (i.e., the induced costs, objective, and constraints) back to the ERM.

Goal -

- **ERM problem solving:** Training a prediction model that can
- deliver cost-oriented RES predictions for UC.

- Modeling ERM based on SPO loss
- Solving ERM via LR-based decomposition
- Get a cost-oriented
 predictor for UC

• Data-Driven C-PO Framework: Closed-Loop Predict-and-Optimize Module

····Closed-loop predict-and-optimize module······

Form feature-driven UC prescription model: Integrate the cost-oriented RES power prediction model and UC model to form a feature-driven UC prescription model for the upcoming dispatch days.

Closed-loop predict and optimize: In day-ahead stage of a dispatch day, input the selected feature types of this day to the prescription model for jointly executing costoriented RES prediction and UC optimization.

 UC prescription model: Build a UC prescription model that can perform closed-loop predict-and-optimize for UC.

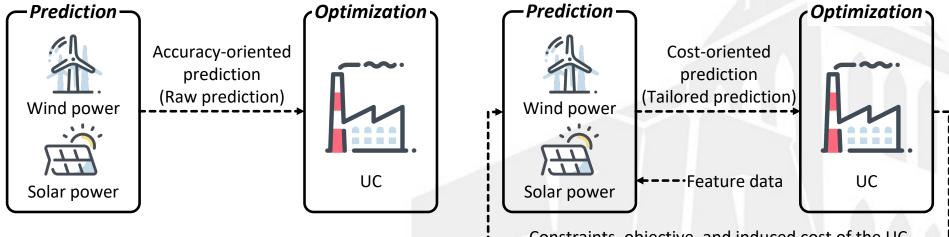
Goal

- **Closed-loop predict and optimize:** Execute cost-oriented RES
 - prediction and UC optimization simultaneously.

- Data-driven UC prescription model: $z(f) = \min_{x,y} [c^{\top}x + d^{\top}y]$ $s.t. Ax + By \le g$ $Fy \le H^*f, x \in \{0,1\}^M$
- Prescription: Combining prediction and decision.
- Regression property: H* f
 is essentially a weighted
 sum of the features f.

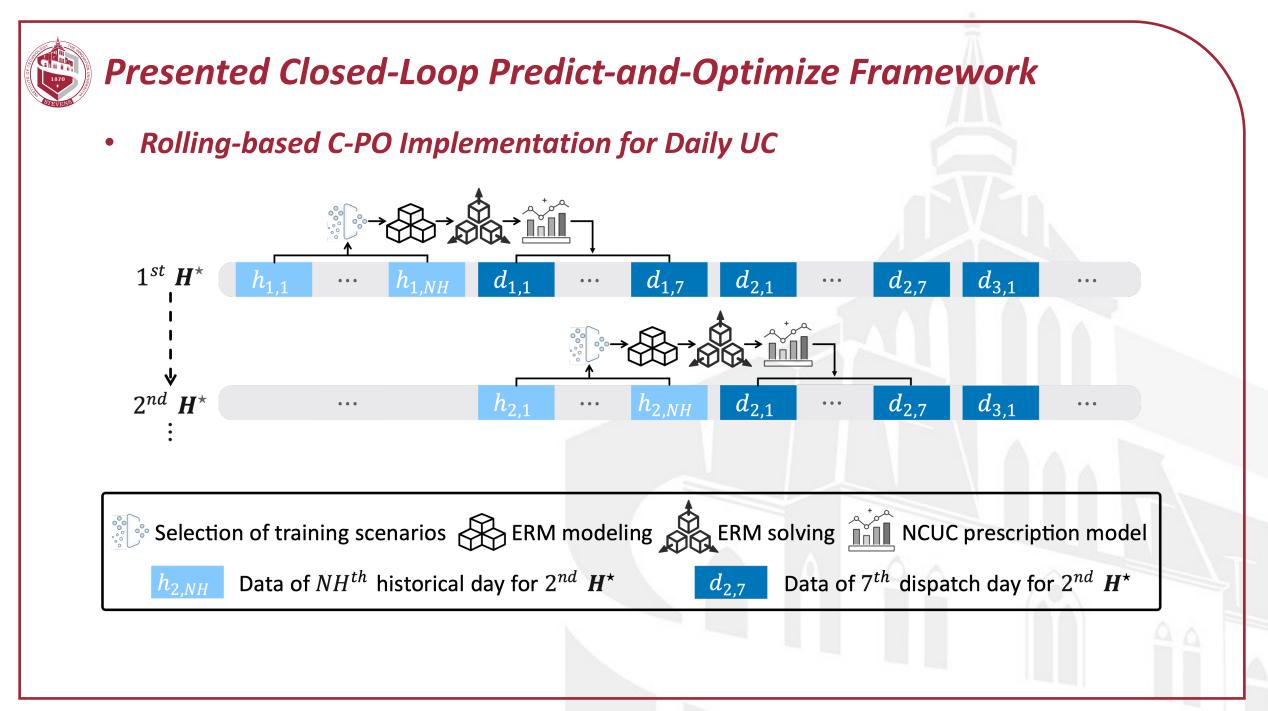
- Comparing Original UC Model and UC Prescription Model
 - Original UC model
 - $z(\widehat{\boldsymbol{w}}) = \min_{\boldsymbol{x}, \boldsymbol{y}} [\boldsymbol{c}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{d}^{\mathsf{T}} \boldsymbol{y}]$ s.t. $A\boldsymbol{x} + B\boldsymbol{y} \leq \boldsymbol{g}$ $F\boldsymbol{y} \leq \widehat{\boldsymbol{w}}, \boldsymbol{x} \in \{0, 1\}^M$
 - Predict-then-optimize
 - Use accuracy-oriented prediction

 The loop between RES prediction and UC optimization is wide-open

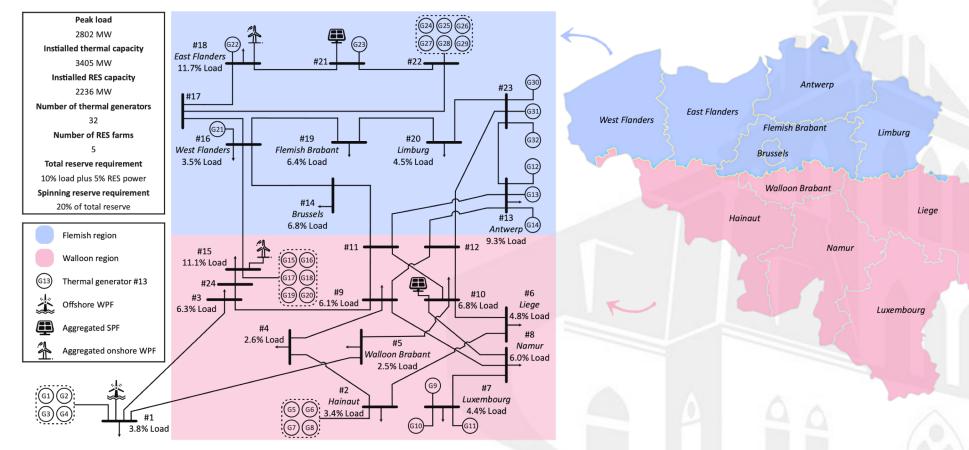

• Data-driven UC prescription model

 $z(f) = \min_{x,y} [c^{\mathsf{T}} x + d^{\mathsf{T}} y]$ s.t. $Ax + By \leq g$ $Fy \leq H^* f, x \in \{0,1\}^M$

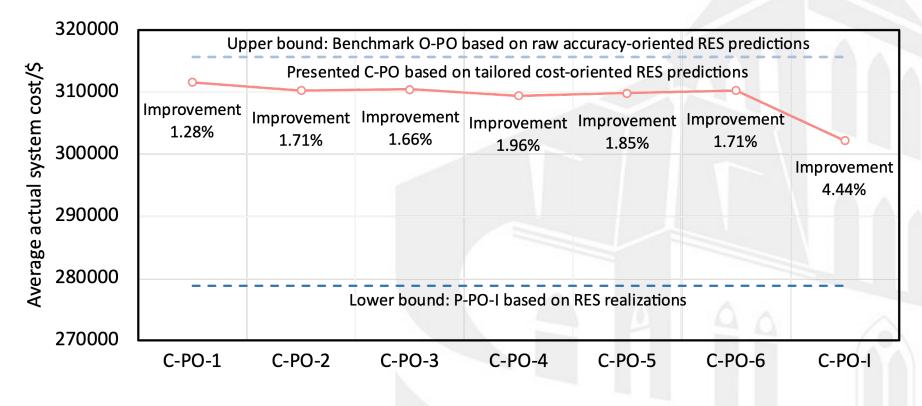
- Predict-and-optimize (Prescription)
- Use Cost-oriented prediction (Driven by feature data f)
- The loop between RES prediction and UC optimization is closed


• Comparing Traditional O-PO and Presented C-PO

Constraints, objective, and induced cost of the UC

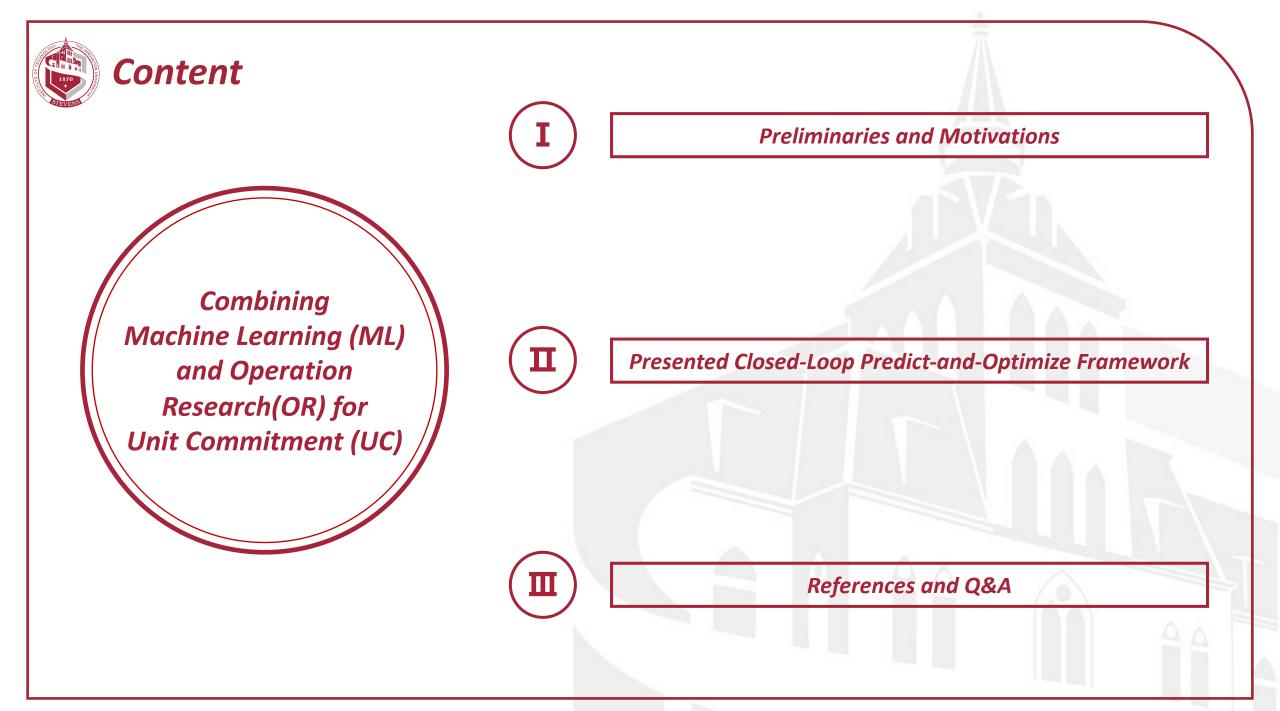

Traditional O-PO

Presented data-driven C-PO


• Cases on 24-Bus System: Simulating Belgian System

• Cases on 24-Bus System: Data from Belgian System³ (01/01/2018-12/31/2020)

- Cases on 24-Bus System: Results of Economics Improvements
 - C-PO enables noticeable economics improvements (1.28%-4.44%) over the daily UCs over entire 2020.



- Cases on 5655-Bus System: Whether LR-based Decomposition Works?
 - C-PO-LR computationally outperforms C-PO-SD without optimality loss.

Case –	Training time/s		Optimality gap	
	C-PO-SD	C-PO-LR	C-PO-SD	C-PO-LR
1	1273.6	593.2	0.32%	0.62% (4 Iterations)
2	1111.7	1029.2	0.59%	0.89% (3 Iterations)
3	1655.8	927.5	0.51%	0.69% (3 Iterations)
4	828.6	619.2	0.86%	0.64% (4 Iterations)
5	685.9	512.3	0.81%	0.69% (4 Iterations)
6	3686.1	1364.1	0.93%	0.77% (4 Iterations)
7	1581.5	1312.6	0.33%	0.35% (4 Iterations)
8	1803.8	1215.9	0.74%	0.99% (4 Iterations)
9	1266.1	1211.8	0.67%	0.17% (4 Iterations)
10	1140.8	1086.3	0.36%	0.73% (4 Iterations)
11	2632.4	1089.1	0.49%	0.82% (3 Iterations)
12	1462.7	1321.3	0.31%	0.76% (4 Iterations)
13	1436.4	834.7	0.72%	0.74% (4 Iterations)
14	1138.9	714.8	0.98%	0.89% (4 Iterations)
15	1810.2	767.6	0.87%	0.99% (4 Iterations)
16	2146.1	290.8	0.92%	0.88% (1 Iteration)

- Conclusions
 - The data-driven (or feature-driven) C-PO can improve UC economics by generating cost-oriented RES predictions tailored for UC.
 - The LR-based decomposition method enables C-PO to be applicable to the practical system.
 - From perspective of machine learning, the C-PO essentially utilizes the linear regression: simple yet effective.

References and Q&A

References

[1] Yafei Yang and Lei Wu, "Machine Learning Approaches to the Unit Commitment Problem: Current Trends, Emerging Challenges, and New Strategies," *The Electricity Journal*, 2020.

- [2] Xianbang Chen, Yafei Yang, Yikui Liu, and Lei Wu, "Feature-Driven Economic Improvement for Network-Constrained Unit Commitment: A Closed-loop Predict-and-optimize Framework," IEEE Transactions on Power Systems, 2021.
- [3] Dataset of Closed-loop Predict-and-Optimize NCUC. [Online]. Available: github.com/asxadf/Closed_Loop_NCUC_Dataset.

Open-Access Dataset and Codes

Our dataset and codes have been uploaded at [3], including RES, load, feature, and system data. Please feel free to use them.

References and Q&A

• Opening: Join Us!

Professor Lei Wu is looking for **highly motivated Post Doc and PhD students**. If you are interested in our research areas, please feel free to send your resume to <u>Lei.Wu@stevens.edu</u>

• About Professor Lei Wu

- Professor in ECE Department at Stevens Institute of Technology
- Fellow of IEEE (Class of 2022)
- Research Focus: Applying mathematical optimization and machine learning on power system operation and planning.
 - Group: 4 PhDs & 4 Post Doctors
- Homepage: https://sites.google.com/site/leiwupes

References and Q&A

- About Stevens Institute of Technology
 - Nearby New York but quiet
 - Possess excellent views of Manhattan
 - Nice neighborhoods comfortable environment for living and studying
 - Solid environment for researching
 - Enjoy high security (Rank top 10 in USA)

