
ARAP Implementation Notes

Implementation Video

https://youtu.be/Jl3hluJ8LOo

Required pre-reading

• http://www.igl.ethz.ch/projects/ARAP/arap_web.pdf

• http://doc.cgal.org/4.5/Surface_modeling/index.html

http://www.igl.ethz.ch/projects/ARAP/arap_web.pdf
http://doc.cgal.org/4.5/Surface_modeling/index.html

Building instructions

• exe is supplied, you can just run it.

• Otherwise, open and build vsproj/glowing-telegram.sln

• Build dependencies:
• D3D11, Win10 SDK
• Intel Math Kernel Library

• Hardware requirements:
• Feature Level 11.0 GPU (Tested: Intel Iris Graphics 540, NVIDIA GTX 970)
• AVX2 compatible CPU (Tested: Intel 6650U, Intel 5960x)

• Software requirements:
• Windows 10, 64-bit

API (arap.h)

Initializing the system matrix (done every time constraints change):
arap_system* create_arap_system_matrix(...1);

void destroy_arap_system_matrix(arap_system* sys);

At every update:

void arap(arap_system* sys, ...1);

1: “...” = halfedges, positions, weights, constraints, iterations, etc.

Algorithm

void arap(

arap_system* sys, const float* p_bind_XYZs, float* p_guess_XYZs,

const int* v_hIDs, const int* h_vfnpIDs, const float* e_ws, int ni)

{

// iteratively refine guess by optimizing rotation and position

for (int iter = 0; iter < ni; iter++)

{

update_rotations(

sys, p_bind_XYZs, p_guess_XYZs, v_hIDs, h_vfnpIDs, e_ws);

update_positions(

sys, p_bind_XYZs, p_guess_XYZs, v_hIDs, h_vfnpIDs, e_ws);

}

}

Optimizing Rotation

• For each vertex 𝑖, compute 𝑆𝑖 = σ𝑗∈𝑁(𝑖)𝑤𝑖𝑗 𝑒𝑖𝑗𝑒𝑖𝑗
′ 𝑇

• Compute SVD 𝑆𝑖 = 𝑈𝑖Σ𝑖𝑉𝑖
𝑇

• Set rotation 𝑅𝑖 = 𝑉𝑖𝑈𝑖
𝑇

• Handle reflection:

𝒅𝒆𝒕 𝑹𝒊 < 𝟎 𝒅𝒆𝒕 𝑹𝒊 ≥ 𝟎

𝑅𝑖 =

𝑅𝑖11 𝑅𝑖12 −𝑅𝑖13
𝑅𝑖21 𝑅𝑖22 −𝑅𝑖23
𝑅𝑖31 𝑅𝑖32 −𝑅𝑖33

𝑅𝑖 =

𝑅𝑖11 𝑅𝑖12 𝑅𝑖13
𝑅𝑖21 𝑅𝑖22 𝑅𝑖23
𝑅𝑖31 𝑅𝑖32 𝑅𝑖33

Optimizing Position (part 1)

For each vertex 𝑖, want to satisfy:

𝑗∈𝑁(𝑖)

𝑤𝑖𝑗 𝑝𝑖
′ − 𝑝𝑗

′ =

𝑗∈𝑁(𝑖)

𝑤𝑖𝑗

2
(𝑅𝑖 + 𝑅𝑗)(𝑝𝑖 − 𝑝𝑗)

Can be expressed as: 𝐿𝑝′ = 𝑏

Each row 𝑖 in 𝐿 corresponds to one instance of the equation above:

• Diagonal Lii = σ𝑗∈𝑁(𝑖)𝑤𝑖𝑗

• Off-diagonal 𝐿𝑖𝑗 = −𝑤𝑖𝑗

• If 𝑖, 𝑗 are not neighbors, 𝐿𝑖𝑗 = 0

𝐿 is the famous Laplacian matrix.

Optimizing Position (part 2)

Solving 𝐿𝑝′ = 𝑏 is done by factorizing 𝐿 = 𝐹𝐹𝑇 then solving.

This is possible because 𝐿 is symmetric positive definite.

Constraints are implemented by setting rows to identity.

Problem: Setting constraints makes it no longer symmetric

𝐿𝑓𝑥𝑓 𝐿𝑓𝑥𝑐
0𝑐𝑥𝑐 𝐼𝑐𝑥𝑐

𝑝𝑓
′

𝑝𝑐
′ =

𝑏
𝑉𝑐

𝑓: number of “free” vertices (unconstrained)

𝑐: number of constrained vertices

Optimizing Position (part 3)

Treat matrix as blocks:
𝐿𝑓𝑥𝑓 𝐿𝑓𝑥𝑐
0𝑐𝑥𝑐 𝐼𝑐𝑥𝑐

𝑝𝑓
′

𝑝𝑐
′ =

𝑏
𝑉𝑐

Solve for 𝐿𝑓𝑥𝑓𝑝𝑓
′ :

0𝑐𝑥𝑐𝑝𝑓
′ + 𝐼𝑐𝑥𝑐𝑝𝑐

′ = 𝑉𝑐
⇒ pc

′ = Vc
𝐿𝑓𝑥𝑓𝑝𝑓

′ + 𝐿𝑓𝑥𝑐𝑝𝑐
′ = 𝑏

⇒ 𝐿𝑓𝑥𝑓𝑝𝑓
′ + 𝐿𝑓𝑥𝑐𝑉𝑐 = 𝑏

Leads us to the equation we *actually* want to solve:
𝐿𝑓𝑥𝑓𝑝𝑓

′ = 𝑏 − 𝐿𝑓𝑥𝑐𝑉𝑐

Since 𝐿𝑓𝑥𝑓 is positive symmetric definite, solving it is efficient again.

Just had to fudge the right side of the equation before solving it.

Vertex weights

Well-known cotangent weights are used:

𝑤𝑖𝑗 =
1

2
(cot 𝛼𝑖𝑗 + cot(𝛽𝑖𝑗))

Note: 𝑐𝑜𝑡 is computed using
cos

sin
=

𝑑𝑜𝑡 𝑢,𝑣

𝑐𝑟𝑜𝑠𝑠 𝑢,𝑣 𝑢 | 𝑣 |
(maybe wrong?)

Note: Cotangent weights can give negative values. Must handle this:

𝒘𝒊𝒋 < 𝟎 𝒘𝒊𝒋 > 𝟎

𝑤𝑖𝑗 = 0 𝑤𝑖𝑗 = 𝑤𝑖𝑗

Sparsity patterns (armadillo)

Before factorization After factorization

Sparsity patterns (square_21)

Before factorization After factorization

Sparsity patterns (cactus_highres)

Before factorization After factorization

Sparsity patterns (indorelax’s hand)

Before factorization After factorization

Shortcomings

• Matrix solver is not sparse. Inefficient?
• LAPACK doesn’t support sparse matrices

• Intel MKL’s Sparse BLAS is obscure. Couldn’t get it to do basic math. Broken?

• Didn’t make a rotation widget (as shown in Sorkine, O.’s video)

• SVD3x3 solver used is very over-engineered (but fast apparently?)

• Storing and computing rotation matrices for ALL vertices.
• Only actually need unconstrained vertices and their neighbors.

• (Rendering) SSAO is noisy because I haven’t blurred it.

• (Rendering) No multisampling.

Upcomings

• Region-of-Interest polygon selection tool

• “Tutorial” GUI at bottom left gives step-by-step guidance

• (Rendering) “Ray traced” spheres for selection points

• (Rendering) Nice-looking line for the ROI selection

• (Rendering) SSAO

• “Interactive” with indorelax (~12k vertices)
• Takes ~3 seconds to factorize matrix

• (note: matrix sparsity images take a few more seconds to produce, if enabled)

• Real-time if you select only part of indorelax with the ROI tool

