ARAP Implementation Notes

Implementation Video

¥ Toolbox

Select Region of Interest

Refactorize ARAP

Reset Bind Pose

armadillo_ 1k

https://youtu.be/JI3hluJ8LO0

Required pre-reading

e http://www.igl.ethz.ch/projects/ARAP/arap web.pdf
 http://doc.cgal.org/4.5/Surface_modeling/index.html

http://www.igl.ethz.ch/projects/ARAP/arap_web.pdf
http://doc.cgal.org/4.5/Surface_modeling/index.html

Building instructions

 exe is supplied, you can just run it.
* Otherwise, open and build vsproj/glowing-telegram.sin

* Build dependencies:
 D3D11, Win10 SDK
* Intel Math Kernel Library

* Hardware requirements:
* Feature Level 11.0 GPU (Tested: Intel Iris Graphics 540, NVIDIA GTX 970)
* AVX2 compatible CPU (Tested: Intel 6650U, Intel 5960x)

e Software requirements:
 Windows 10, 64-bit

APl (arap.h)

Initializing the system matrix (done every time constraints change):
arap_system* create_arap_system_matrix(...!);
void destroy arap system matrix(arap system* sys);

At every update:
void arap(arap system* sys, ...%);

1: “.” = halfedges, positions, weights, constraints, iterations, etc.

Algorithm

void arap(
arap_system* sys, const float* p bind XYZs, float* p guess XYZs,
const int* v hIDs, const int* h vfnpIDs, const float* e ws, int ni)

// iteratively refine guess by optimizing rotation and position
for (int iter = 0@; iter < ni; iter++)

{
update_rotations(
sys, p_bind XYZs, p _guess XYZs, v_hIDs, h_vfnpIDs, e ws);
update positions(
sys, p_bind XYZs, p _guess XYZs, v_hIDs, h_vfnpIDs, e ws);
}

Optimizing Rotation

* For each vertex i, compute §; = Zjezv(i) Wi eijei’jT
e Compute SVD S; = U;X; V"
- Set rotation R; = V;U]

 Handle reflection:

det(R;) < 0 det(R;) = 0

Ri11 Ri12 _Ri13 Rill Ri12 Ri13
R; = Ri21 Rizz _Ri23 R; = Ri21 Rizz Ri23
Ri31 Rigz _Ri33 Ri31 Ri32 Ri33

Optimizing Position (part 1)

For each vertex i, want to satisfy:
P Wij
Z wi;i(p; — pj) = Z T(Ri + R;)(p; — pj)
JEN(D) JEN(I)
Can be expressed as: Lp' = b
Each row i in L corresponds to one instance of the equation above:

* Diagonal Li; = X jen(i) Wij

* Off-diagonal L;; = —w;;

* If i, j are not neighbors, L;; = 0
L is the famous Laplacian matrix.

Optimizing Position (part 2)

Solving Lp’ = b is done by factorizing L = FF' then solving.
This is possible because L is symmetric positive definite.

Constraints are implemented by setting rows to identity.
Problem: Setting constraints makes it no longer symmetric

[fof foc lpf] [V

OCXC CXC

f: number of “free” vertices (unconstrained)
c: number of constrained vertices

Optimizing Position (part 3)

Treat matrix as blocks:
fof foc] []
CXC CXC
Solve for Ly ¢py:
chcpj,c + Iexepe = Ve

Leads us to the equation we *actually* want to solve:
fofp]’f =b— foch

Since Lgy ¢ is positive symmetric definite, solving it is efficient again.

Just had to fudge the right side of the equation before solving it.

Vertex weights

Well-known cotangent weights are used:

1
Wi = > (cot(ai j) + cot(f;;))

. i COS dot(u,v
Note: cot is computed using — = (,v)
sin ||cross(uv)l||lul|||v]]

Note: Cotangent weights can give negative values. Must handle this:

Wij =0 Wij = Wij

Sparsity patterns (armadillo)

Before factorization After factorization

Sparsity patterns (square 21)

Before factorization After factorization

Sparsity patterns (cactus highres)

Before factorization After factorization

i e

Sparsity patterns (indorelax’s hand)

ization

Before factorization

After factor

Shortcomings

e Matrix solver is not sparse. Inefficient?
 LAPACK doesn’t support sparse matrices
* Intel MKL's Sparse BLAS is obscure. Couldn’t get it to do basic math. Broken?

* Didn’t make a rotation widget (as shown in Sorkine, O.'s video)
» SVD3x3 solver used is very over-engineered (but fast apparently?)

 Storing and computing rotation matrices for ALL vertices.
* Only actually need unconstrained vertices and their neighbors.

* (Rendering) SSAO is noisy because | haven’t blurred it.
* (Rendering) No multisampling.

Upcomings

* Region-of-Interest polygon selection tool

* “Tutorial” GUI at bottom left gives step-by-step guidance
* (Rendering) “Ray traced” spheres for selection points

* (Rendering) Nice-looking line for the ROl selection

* (Rendering) SSAO

* “Interactive” with indorelax (~12k vertices)

* Takes ~3 seconds to factorize matrix
* (note: matrix sparsity images take a few more seconds to produce, if enabled)

* Real-time if you select only part of indorelax with the ROI tool

