Skip to content
This package provides some methods to create emissions for use in numeric air quality models
R TeX Rebol
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
R
data
docs
inst
man
tests
.Rbuildignore
.gitignore
.travis.yml
CONDUCT.md
CONTRIBUTING.md
CO_all.png
CO_final.png
DESCRIPTION
EmissV.Rproj
LICENSE
MIT
NAMESPACE
NEWS.md
README.md
appveyor.yml
codecov.yml
hex_logo.png
hex_logo_true.png
paper.bib
paper.md

README.md

EmissV

Linux Build windown Build Coverage Status Licence:MIT CRAN_Status_Badge DOI status

hex_logo

This package provides some methods to create emissions (with a focus on vehicular emissions) for use in numeric air quality models such as WRF-Chem.

Installation

System dependencies

EmissV import functions from ncdf4 for reading model information, raster and sf to process grinded/geographic information and units. These packages need some aditional libraries:

To Ubuntu

The following steps are required for installation on Ubuntu:

  sudo add-apt-repository ppa:ubuntugis/ubuntugis-unstable --yes
  sudo apt-get --yes --force-yes update -qq
  # netcdf dependencies:
  sudo apt-get install --yes libnetcdf-dev netcdf-bin
  # units/udunits2 dependency:
  sudo apt-get install --yes libudunits2-dev
  # sf dependencies (without libudunits2-dev):
  sudo apt-get install --yes libgdal-dev libgeos-dev libproj-dev

To Fedora

The following steps are required for installation on Fedora:

  sudo dnf update
  # netcdf dependencies:
  sudo yum install netcdf-devel
  # units/udunits2 dependency:
  sudo yum install udunits2-devel
  # sf dependencies (without libudunits2-dev):
  sudo yum install gdal-devel proj-devel proj-epsg proj-nad geos-devel

To Windows

No additional steps for windows installation.

Detailed instructions can be found at netcdf, libudunits2-dev and sf developers page.

Package installation

To install the CRAN version (0.665.1.0):

install.packages("EmissV")

To install the development version (0.665.1.0):

# install.packages("devtools")
devtools::install_github("atmoschem/EmissV")

Using EmissV

In EmissV the vehicular emissions are estimated by a top-down approach, i.e. the emissions are calculated using the statistical description of the fleet at avaliable level (National, Estadual, City, etc).The following steps show an example workflow for calculating vehicular emissions, these emissions are initially temporally and spatially disaggregated, and then distributed spatially and temporally.

I. Total: emission of pollutants is estimated from the fleet, use and emission factors and for the interest area (cities, states, countries, etc).

library(EmissV)

fleet <- vehicles(example = T)
# using a example of vehicles (DETRAN 2016 data and SP vahicle distribution):
#                              Category   Type Fuel      Use       SP ...
# Light Duty Vehicles Gasohol   LDV_E25    LDV  E25  41 km/d 11624342 ...
# Light Duty Vehicles Ethanol  LDV_E100    LDV E100  41 km/d   874627 ...
# Light Duty Vehicles Flex        LDV_F    LDV FLEX  41 km/d  9845022 ...
# Diesel Trucks               TRUCKS_B5 TRUCKS   B5 110 km/d   710634 ...
# Diesel Urban Busses           CBUS_B5    BUS   B5 165 km/d   792630 ...
# Diesel Intercity Busses       MBUS_B5    BUS   B5 165 km/d    21865 ...
# Gasohol Motorcycles          MOTO_E25   MOTO  E25 140 km/d  3227921 ...
# Flex Motorcycles               MOTO_F   MOTO FLEX 140 km/d   235056 ...

fleet <- fleet[,c(-6,-8,-9)] # dropping RJ, PR and SC

EF     <- emissionFactor(example = T)
# using a example emission factor (values calculated from CETESB 2015):
#                                     CO          PM
# Light duty Vehicles Gasohol  1.75 g/km 0.0013 g/km
# Light Duty Vehicles Ethanol 10.04 g/km 0.0000 g/km
# Light Duty Vehicles Flex     0.39 g/km 0.0010 g/km
# Diesel trucks                0.45 g/km 0.0612 g/km
# Diesel urban busses          0.77 g/km 0.1052 g/km
# Diesel intercity busses      1.48 g/km 0.1693 g/km
# Gasohol motorcycles          1.61 g/km 0.0000 g/km
# Flex motorcycles             0.75 g/km 0.0000 g/km

TOTAL  <- totalEmission(fleet,EF,pol = c("CO"),verbose = T)
# Total of CO : 1128297.0993334 t year-1

II. Spatial distribution: The package has functions to read information from tables, georeferenced images (tiff), shapefiles (sh), OpenStreet maps (osm), global inventories in NetCDF format (nc) to calculate point, line and area sources.

raster <- raster::raster(paste(system.file("extdata", package = "EmissV"),
                         "/dmsp.tiff",sep=""))

grid   <- gridInfo(paste(system.file("extdata", package = "EmissV"),
                   "/wrfinput_d02",sep=""))
# Grid information from: .../EmissV/extdata/wrfinput_d02

shape  <- raster::shapefile(paste(system.file("extdata", package = "EmissV"),
                            "/BR.shp",sep=""),verbose = F)[12,1]
Minas_Gerais <- areaSource(shape,raster,grid,name = "Minas Gerais")
# processing Minas Gerais area ...
# fraction of Minas Gerais area inside the domain = 0.0145921494236101

shape  <- raster::shapefile(paste(system.file("extdata", package = "EmissV"),
                            "/BR.shp",sep=""),verbose = F)[22,1]
Sao_Paulo <- areaSource(shape,raster,grid,name = "Sao Paulo")
# processing Sao Paulo area ...
# fraction of Sao Paulo area inside the domain = 0.474658563750987

sp::spplot(raster::merge(drop_units(TOTAL$CO[[1]]) * Sao_Paulo, 
                         drop_units(TOTAL$CO[[2]]) * Minas_Gerais),
           scales = list(draw=TRUE),ylab="Lat",xlab="Lon",
           main=list(label="Emissions of CO [g/d]"),
           col.regions = c("#031638","#001E48","#002756","#003062",
                           "#003A6E","#004579","#005084","#005C8E",
                           "#006897","#0074A1","#0081AA","#008FB3",
                           "#009EBD","#00AFC8","#00C2D6","#00E3F0"))

Figure 1 - Emissions of CO using nocturnal lights.

III. Emission calculation: calculate the final emission from all different sources and converts to model units and resolution.

CO_emissions <- emission(TOTAL,"CO",list(SP = Sao_Paulo, MG = Minas_Gerais),grid,mm=28, plot = T)
# calculating emissions for CO using molar mass = 28 ...

Figure 2 - CO emissions ready for use in air quality model.

IV. Temporal distribution: the package has a set of hourly profiles that represent the mean activity for each day of the week calculated from traffic counts of toll stations located in São Paulo city.

data(perfil)
names(perfil)

The package has additional functions for read netcdf data, create line and point sources (with plume rise) and to estimate the total emissions of of volatile organic compounds from exhaust (through the exhaust pipe), liquid (carter and evaporative) and vapor (fuel transfer operations).

Functions:

  • read: read global inventories in netcdf format
  • vehicles: tool to set-up vehicle data.table
  • emissionFactor: tool to set-up emission factors data.table
  • gridInfo: read grid information from a NetCDF file
  • pointSource: emissions from point sources
  • plumeRise: calculate plume rise
  • rasterSource: distribution of emissions by a georeferenced image
  • lineSource: distribution of emissions by line vectors
  • streetDist: distribution by OpenStreetnMap street (in progress)
  • areaSource: distribution of emissions by region
  • totalEmission: total emissions
  • emission: Emissions to atmospheric models
  • speciation: Speciation of emissions in different compounds

Sample datasets:

  • Species: species mapping tables
  • Perfil: vehicle counting profile for vehicular activity
  • Sample of an image of persistent lights of the Defense Meteorological Satellite Program (DMSP)
  • CETESB 2015 emission factors as emissionFactor(example=T)
  • DETRAN 2016 data and SP vahicle distribution as vehicles(example=T)
  • Shapefiles for Brazil states

Contributing

Bug reports, suggestions, and code contributions are all welcome. Please see CONTRIBUTING.md for details. Note that this project adopt the Contributor Code of Conduct and by participating in this project you agree to abide by its terms.

License

EmissV is published under the terms of the MIT License. Copyright (c) 2018 Daniel Schuch.

You can’t perform that action at this time.