Skip to content
This repository
branch: master
Fetching contributors…

Octocat-spinner-32-eaf2f5

Cannot retrieve contributors at this time

file 634 lines (601 sloc) 22.211 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
/* The MIT License

Copyright (c) 2011 by Attractive Chaos <attractor@live.co.uk>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/

#include <stdlib.h>
#include <stdint.h>
#include <emmintrin.h>
#include "ksw.h"

#ifdef __GNUC__
#define LIKELY(x) __builtin_expect((x),1)
#define UNLIKELY(x) __builtin_expect((x),0)
#else
#define LIKELY(x) (x)
#define UNLIKELY(x) (x)
#endif

const kswr_t g_defr = { 0, -1, -1, -1, -1, -1, -1 };

struct _kswq_t {
int qlen, slen;
uint8_t shift, mdiff, max, size;
__m128i *qp, *H0, *H1, *E, *Hmax;
};

/**
* Initialize the query data structure
*
* @param size Number of bytes used to store a score; valid valures are 1 or 2
* @param qlen Length of the query sequence
* @param query Query sequence
* @param m Size of the alphabet
* @param mat Scoring matrix in a one-dimension array
*
* @return Query data structure
*/
kswq_t *ksw_qinit(int size, int qlen, const uint8_t *query, int m, const int8_t *mat)
{
kswq_t *q;
int slen, a, tmp, p;

size = size > 1? 2 : 1;
p = 8 * (3 - size); // # values per __m128i
slen = (qlen + p - 1) / p; // segmented length
q = (kswq_t*)malloc(sizeof(kswq_t) + 256 + 16 * slen * (m + 4)); // a single block of memory
q->qp = (__m128i*)(((size_t)q + sizeof(kswq_t) + 15) >> 4 << 4); // align memory
q->H0 = q->qp + slen * m;
q->H1 = q->H0 + slen;
q->E = q->H1 + slen;
q->Hmax = q->E + slen;
q->slen = slen; q->qlen = qlen; q->size = size;
// compute shift
tmp = m * m;
for (a = 0, q->shift = 127, q->mdiff = 0; a < tmp; ++a) { // find the minimum and maximum score
if (mat[a] < (int8_t)q->shift) q->shift = mat[a];
if (mat[a] > (int8_t)q->mdiff) q->mdiff = mat[a];
}
q->max = q->mdiff;
q->shift = 256 - q->shift; // NB: q->shift is uint8_t
q->mdiff += q->shift; // this is the difference between the min and max scores
// An example: p=8, qlen=19, slen=3 and segmentation:
// {{0,3,6,9,12,15,18,-1},{1,4,7,10,13,16,-1,-1},{2,5,8,11,14,17,-1,-1}}
if (size == 1) {
int8_t *t = (int8_t*)q->qp;
for (a = 0; a < m; ++a) {
int i, k, nlen = slen * p;
const int8_t *ma = mat + a * m;
for (i = 0; i < slen; ++i)
for (k = i; k < nlen; k += slen) // p iterations
*t++ = (k >= qlen? 0 : ma[query[k]]) + q->shift;
}
} else {
int16_t *t = (int16_t*)q->qp;
for (a = 0; a < m; ++a) {
int i, k, nlen = slen * p;
const int8_t *ma = mat + a * m;
for (i = 0; i < slen; ++i)
for (k = i; k < nlen; k += slen) // p iterations
*t++ = (k >= qlen? 0 : ma[query[k]]);
}
}
return q;
}

kswr_t ksw_u8(kswq_t *q, int tlen, const uint8_t *target, int _gapo, int _gape, int xtra) // the first gap costs -(_o+_e)
{
int slen, i, m_b, n_b, te = -1, gmax = 0, minsc, endsc;
uint64_t *b;
__m128i zero, gapoe, gape, shift, *H0, *H1, *E, *Hmax;
kswr_t r;

#define __max_16(ret, xx) do { \
(xx) = _mm_max_epu8((xx), _mm_srli_si128((xx), 8)); \
(xx) = _mm_max_epu8((xx), _mm_srli_si128((xx), 4)); \
(xx) = _mm_max_epu8((xx), _mm_srli_si128((xx), 2)); \
(xx) = _mm_max_epu8((xx), _mm_srli_si128((xx), 1)); \
(ret) = _mm_extract_epi16((xx), 0) & 0x00ff; \
} while (0)

// initialization
r = g_defr;
minsc = (xtra&KSW_XSUBO)? xtra&0xffff : 0x10000;
endsc = (xtra&KSW_XSTOP)? xtra&0xffff : 0x10000;
m_b = n_b = 0; b = 0;
zero = _mm_set1_epi32(0);
gapoe = _mm_set1_epi8(_gapo + _gape);
gape = _mm_set1_epi8(_gape);
shift = _mm_set1_epi8(q->shift);
H0 = q->H0; H1 = q->H1; E = q->E; Hmax = q->Hmax;
slen = q->slen;
for (i = 0; i < slen; ++i) {
_mm_store_si128(E + i, zero);
_mm_store_si128(H0 + i, zero);
_mm_store_si128(Hmax + i, zero);
}
// the core loop
for (i = 0; i < tlen; ++i) {
int j, k, cmp, imax;
__m128i e, h, f = zero, max = zero, *S = q->qp + target[i] * slen; // s is the 1st score vector
h = _mm_load_si128(H0 + slen - 1); // h={2,5,8,11,14,17,-1,-1} in the above example
h = _mm_slli_si128(h, 1); // h=H(i-1,-1); << instead of >> because x64 is little-endian
for (j = 0; LIKELY(j < slen); ++j) {
/* SW cells are computed in the following order:
* H(i,j) = max{H(i-1,j-1)+S(i,j), E(i,j), F(i,j)}
* E(i+1,j) = max{H(i,j)-q, E(i,j)-r}
* F(i,j+1) = max{H(i,j)-q, F(i,j)-r}
*/
// compute H'(i,j); note that at the beginning, h=H'(i-1,j-1)
h = _mm_adds_epu8(h, _mm_load_si128(S + j));
h = _mm_subs_epu8(h, shift); // h=H'(i-1,j-1)+S(i,j)
e = _mm_load_si128(E + j); // e=E'(i,j)
h = _mm_max_epu8(h, e);
h = _mm_max_epu8(h, f); // h=H'(i,j)
max = _mm_max_epu8(max, h); // set max
_mm_store_si128(H1 + j, h); // save to H'(i,j)
// now compute E'(i+1,j)
h = _mm_subs_epu8(h, gapoe); // h=H'(i,j)-gapo
e = _mm_subs_epu8(e, gape); // e=E'(i,j)-gape
e = _mm_max_epu8(e, h); // e=E'(i+1,j)
_mm_store_si128(E + j, e); // save to E'(i+1,j)
// now compute F'(i,j+1)
f = _mm_subs_epu8(f, gape);
f = _mm_max_epu8(f, h);
// get H'(i-1,j) and prepare for the next j
h = _mm_load_si128(H0 + j); // h=H'(i-1,j)
}
// NB: we do not need to set E(i,j) as we disallow adjecent insertion and then deletion
for (k = 0; LIKELY(k < 16); ++k) { // this block mimics SWPS3; NB: H(i,j) updated in the lazy-F loop cannot exceed max
f = _mm_slli_si128(f, 1);
for (j = 0; LIKELY(j < slen); ++j) {
h = _mm_load_si128(H1 + j);
h = _mm_max_epu8(h, f); // h=H'(i,j)
_mm_store_si128(H1 + j, h);
h = _mm_subs_epu8(h, gapoe);
f = _mm_subs_epu8(f, gape);
cmp = _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_subs_epu8(f, h), zero));
if (UNLIKELY(cmp == 0xffff)) goto end_loop16;
}
}
end_loop16:
//int k;for (k=0;k<16;++k)printf("%d ", ((uint8_t*)&max)[k]);printf("\n");
__max_16(imax, max); // imax is the maximum number in max
if (imax >= minsc) { // write the b array; this condition adds branching unfornately
if (n_b == 0 || (int32_t)b[n_b-1] + 1 != i) { // then append
if (n_b == m_b) {
m_b = m_b? m_b<<1 : 8;
b = (uint64_t*)realloc(b, 8 * m_b);
}
b[n_b++] = (uint64_t)imax<<32 | i;
} else if ((int)(b[n_b-1]>>32) < imax) b[n_b-1] = (uint64_t)imax<<32 | i; // modify the last
}
if (imax > gmax) {
gmax = imax; te = i; // te is the end position on the target
for (j = 0; LIKELY(j < slen); ++j) // keep the H1 vector
_mm_store_si128(Hmax + j, _mm_load_si128(H1 + j));
if (gmax + q->shift >= 255 || gmax >= endsc) break;
}
S = H1; H1 = H0; H0 = S; // swap H0 and H1
}
r.score = gmax + q->shift < 255? gmax : 255;
r.te = te;
if (r.score != 255) { // get a->qe, the end of query match; find the 2nd best score
int max = -1, low, high, qlen = slen * 16;
uint8_t *t = (uint8_t*)Hmax;
for (i = 0; i < qlen; ++i, ++t)
if ((int)*t > max) max = *t, r.qe = i / 16 + i % 16 * slen;
//printf("%d,%d\n", max, gmax);
if (b) {
i = (r.score + q->max - 1) / q->max;
low = te - i; high = te + i;
for (i = 0; i < n_b; ++i) {
int e = (int32_t)b[i];
if ((e < low || e > high) && (int)(b[i]>>32) > r.score2)
r.score2 = b[i]>>32, r.te2 = e;
}
}
}
free(b);
return r;
}

kswr_t ksw_i16(kswq_t *q, int tlen, const uint8_t *target, int _gapo, int _gape, int xtra) // the first gap costs -(_o+_e)
{
int slen, i, m_b, n_b, te = -1, gmax = 0, minsc, endsc;
uint64_t *b;
__m128i zero, gapoe, gape, *H0, *H1, *E, *Hmax;
kswr_t r;

#define __max_8(ret, xx) do { \
(xx) = _mm_max_epi16((xx), _mm_srli_si128((xx), 8)); \
(xx) = _mm_max_epi16((xx), _mm_srli_si128((xx), 4)); \
(xx) = _mm_max_epi16((xx), _mm_srli_si128((xx), 2)); \
(ret) = _mm_extract_epi16((xx), 0); \
} while (0)

// initialization
r = g_defr;
minsc = (xtra&KSW_XSUBO)? xtra&0xffff : 0x10000;
endsc = (xtra&KSW_XSTOP)? xtra&0xffff : 0x10000;
m_b = n_b = 0; b = 0;
zero = _mm_set1_epi32(0);
gapoe = _mm_set1_epi16(_gapo + _gape);
gape = _mm_set1_epi16(_gape);
H0 = q->H0; H1 = q->H1; E = q->E; Hmax = q->Hmax;
slen = q->slen;
for (i = 0; i < slen; ++i) {
_mm_store_si128(E + i, zero);
_mm_store_si128(H0 + i, zero);
_mm_store_si128(Hmax + i, zero);
}
// the core loop
for (i = 0; i < tlen; ++i) {
int j, k, imax;
__m128i e, h, f = zero, max = zero, *S = q->qp + target[i] * slen; // s is the 1st score vector
h = _mm_load_si128(H0 + slen - 1); // h={2,5,8,11,14,17,-1,-1} in the above example
h = _mm_slli_si128(h, 2);
for (j = 0; LIKELY(j < slen); ++j) {
h = _mm_adds_epi16(h, *S++);
e = _mm_load_si128(E + j);
h = _mm_max_epi16(h, e);
h = _mm_max_epi16(h, f);
max = _mm_max_epi16(max, h);
_mm_store_si128(H1 + j, h);
h = _mm_subs_epu16(h, gapoe);
e = _mm_subs_epu16(e, gape);
e = _mm_max_epi16(e, h);
_mm_store_si128(E + j, e);
f = _mm_subs_epu16(f, gape);
f = _mm_max_epi16(f, h);
h = _mm_load_si128(H0 + j);
}
for (k = 0; LIKELY(k < 16); ++k) {
f = _mm_slli_si128(f, 2);
for (j = 0; LIKELY(j < slen); ++j) {
h = _mm_load_si128(H1 + j);
h = _mm_max_epi16(h, f);
_mm_store_si128(H1 + j, h);
h = _mm_subs_epu16(h, gapoe);
f = _mm_subs_epu16(f, gape);
if(UNLIKELY(!_mm_movemask_epi8(_mm_cmpgt_epi16(f, h)))) goto end_loop8;
}
}
end_loop8:
__max_8(imax, max);
if (imax >= minsc) {
if (n_b == 0 || (int32_t)b[n_b-1] + 1 != i) {
if (n_b == m_b) {
m_b = m_b? m_b<<1 : 8;
b = (uint64_t*)realloc(b, 8 * m_b);
}
b[n_b++] = (uint64_t)imax<<32 | i;
} else if ((int)(b[n_b-1]>>32) < imax) b[n_b-1] = (uint64_t)imax<<32 | i; // modify the last
}
if (imax > gmax) {
gmax = imax; te = i;
for (j = 0; LIKELY(j < slen); ++j)
_mm_store_si128(Hmax + j, _mm_load_si128(H1 + j));
if (gmax >= endsc) break;
}
S = H1; H1 = H0; H0 = S;
}
r.score = gmax; r.te = te;
{
int max = -1, low, high, qlen = slen * 8;
uint16_t *t = (uint16_t*)Hmax;
for (i = 0, r.qe = -1; i < qlen; ++i, ++t)
if ((int)*t > max) max = *t, r.qe = i / 8 + i % 8 * slen;
if (b) {
i = (r.score + q->max - 1) / q->max;
low = te - i; high = te + i;
for (i = 0; i < n_b; ++i) {
int e = (int32_t)b[i];
if ((e < low || e > high) && (int)(b[i]>>32) > r.score2)
r.score2 = b[i]>>32, r.te2 = e;
}
}
}
free(b);
return r;
}

static void revseq(int l, uint8_t *s)
{
int i, t;
for (i = 0; i < l>>1; ++i)
t = s[i], s[i] = s[l - 1 - i], s[l - 1 - i] = t;
}

kswr_t ksw_align(int qlen, uint8_t *query, int tlen, uint8_t *target, int m, const int8_t *mat, int gapo, int gape, int xtra, kswq_t **qry)
{
int size;
kswq_t *q;
kswr_t r, rr;
kswr_t (*func)(kswq_t*, int, const uint8_t*, int, int, int);

q = (qry && *qry)? *qry : ksw_qinit((xtra&KSW_XBYTE)? 1 : 2, qlen, query, m, mat);
if (qry && *qry == 0) *qry = q;
func = q->size == 2? ksw_i16 : ksw_u8;
size = q->size;
r = func(q, tlen, target, gapo, gape, xtra);
if (qry == 0) free(q);
if ((xtra&KSW_XSTART) == 0 || ((xtra&KSW_XSUBO) && r.score < (xtra&0xffff))) return r;
revseq(r.qe + 1, query); revseq(r.te + 1, target); // +1 because qe/te points to the exact end, not the position after the end
q = ksw_qinit(size, r.qe + 1, query, m, mat);
rr = func(q, tlen, target, gapo, gape, KSW_XSTOP | r.score);
revseq(r.qe + 1, query); revseq(r.te + 1, target);
free(q);
if (r.score == rr.score)
r.tb = r.te - rr.te, r.qb = r.qe - rr.qe;
return r;
}

/********************
*** SW extension ***
********************/

typedef struct {
int32_t h, e;
} eh_t;

int ksw_extend(int qlen, const uint8_t *query, int tlen, const uint8_t *target, int m, const int8_t *mat, int gapo, int gape, int w, int h0, int *_qle, int *_tle)
{
eh_t *eh; // score array
int8_t *qp; // query profile
int i, j, k, gapoe = gapo + gape, beg, end, max, max_i, max_j, max_gap;
if (h0 < 0) h0 = 0;
// allocate memory
qp = malloc(qlen * m);
eh = calloc(qlen + 1, 8);
// generate the query profile
for (k = i = 0; k < m; ++k) {
const int8_t *p = &mat[k * m];
for (j = 0; j < qlen; ++j) qp[i++] = p[query[j]];
}
// fill the first row
eh[0].h = h0; eh[1].h = h0 > gapoe? h0 - gapoe : 0;
for (j = 2; j <= qlen && eh[j-1].h > gape; ++j)
eh[j].h = eh[j-1].h - gape;
// adjust $w if it is too large
k = m * m;
for (i = 0, max = 0; i < k; ++i) // get the max score
max = max > mat[i]? max : mat[i];
max_gap = (int)((double)(qlen * max - gapo) / gape + 1.);
max_gap = max_gap > 1? max_gap : 1;
w = w < max_gap? w : max_gap;
// DP loop
max = h0, max_i = max_j = -1;
beg = 0, end = qlen;
for (i = 0; LIKELY(i < tlen); ++i) {
int f = 0, h1, m = 0, mj = -1;
int8_t *q = &qp[target[i] * qlen];
// compute the first column
h1 = h0 - (gapo + gape * (i + 1));
if (h1 < 0) h1 = 0;
// apply the band and the constraint (if provided)
if (beg < i - w) beg = i - w;
if (end > i + w + 1) end = i + w + 1;
if (end > qlen) end = qlen;
for (j = beg; LIKELY(j < end); ++j) {
// At the beginning of the loop: eh[j] = { H(i-1,j-1), E(i,j) }, f = F(i,j) and h1 = H(i,j-1)
// Similar to SSE2-SW, cells are computed in the following order:
// H(i,j) = max{H(i-1,j-1)+S(i,j), E(i,j), F(i,j)}
// E(i+1,j) = max{H(i,j)-gapo, E(i,j)} - gape
// F(i,j+1) = max{H(i,j)-gapo, F(i,j)} - gape
eh_t *p = &eh[j];
int h = p->h, e = p->e; // get H(i-1,j-1) and E(i-1,j)
p->h = h1; // set H(i,j-1) for the next row
h += q[j];
h = h > e? h : e;
h = h > f? h : f;
h1 = h; // save H(i,j) to h1 for the next column
mj = m > h? mj : j;
m = m > h? m : h; // m is stored at eh[mj+1]
h -= gapoe;
h = h > 0? h : 0;
e -= gape;
e = e > h? e : h; // computed E(i+1,j)
p->e = e; // save E(i+1,j) for the next row
f -= gape;
f = f > h? f : h; // computed F(i,j+1)
}
eh[end].h = h1; eh[end].e = 0;
if (m == 0) break;
if (m > max) max = m, max_i = i, max_j = mj;
// update beg and end for the next round
for (j = mj; j >= beg && eh[j].h; --j);
beg = j + 1;
for (j = mj + 2; j <= end && eh[j].h; ++j);
end = j;
//beg = 0; end = qlen; // uncomment this line for debugging
}
free(eh); free(qp);
if (_qle) *_qle = max_j + 1;
if (_tle) *_tle = max_i + 1;
return max;
}

/********************
* Global alignment *
********************/

#define MINUS_INF -0x40000000

static inline uint32_t *push_cigar(int *n_cigar, int *m_cigar, uint32_t *cigar, int op, int len)
{
if (*n_cigar == 0 || op != (cigar[(*n_cigar) - 1]&0xf)) {
if (*n_cigar == *m_cigar) {
*m_cigar = *m_cigar? (*m_cigar)<<1 : 4;
cigar = realloc(cigar, (*m_cigar) << 2);
}
cigar[(*n_cigar)++] = len<<4 | op;
} else cigar[(*n_cigar)-1] += len<<4;
return cigar;
}

int ksw_global(int qlen, const uint8_t *query, int tlen, const uint8_t *target, int m, const int8_t *mat, int gapo, int gape, int w, int *n_cigar_, uint32_t **cigar_)
{
eh_t *eh;
int8_t *qp; // query profile
int i, j, k, gapoe = gapo + gape, score, n_col;
uint8_t *z; // backtrack matrix; in each cell: f<<4|e<<2|h; in principle, we can halve the memory, but backtrack will be a little more complex
if (n_cigar_) *n_cigar_ = 0;
// allocate memory
n_col = qlen < 2*w+1? qlen : 2*w+1; // maximum #columns of the backtrack matrix
z = malloc(n_col * tlen);
qp = malloc(qlen * m);
eh = calloc(qlen + 1, 8);
// generate the query profile
for (k = i = 0; k < m; ++k) {
const int8_t *p = &mat[k * m];
for (j = 0; j < qlen; ++j) qp[i++] = p[query[j]];
}
// fill the first row
eh[0].h = 0; eh[0].e = MINUS_INF;
for (j = 1; j <= qlen && j <= w; ++j)
eh[j].h = -(gapo + gape * j), eh[j].e = MINUS_INF;
for (; j <= qlen; ++j) eh[j].h = eh[j].e = MINUS_INF; // everything is -inf outside the band
// DP loop
for (i = 0; LIKELY(i < tlen); ++i) { // target sequence is in the outer loop
int32_t f = MINUS_INF, h1, beg, end;
int8_t *q = &qp[target[i] * qlen];
uint8_t *zi = &z[i * n_col];
beg = i > w? i - w : 0;
end = i + w + 1 < qlen? i + w + 1 : qlen; // only loop through [beg,end) of the query sequence
h1 = beg == 0? -(gapo + gape * (i + 1)) : MINUS_INF;
for (j = beg; LIKELY(j < end); ++j) {
// This loop is organized in a similar way to ksw_extend() and ksw_sse2(), except:
// 1) not checking h>0; 2) recording direction for backtracking
eh_t *p = &eh[j];
int32_t h = p->h, e = p->e;
uint8_t d; // direction
p->h = h1;
h += q[j];
d = h > e? 0 : 1;
h = h > e? h : e;
d = h > f? d : 2;
h = h > f? h : f;
h1 = h;
h -= gapoe;
e -= gape;
d |= e > h? 1<<2 : 0;
e = e > h? e : h;
p->e = e;
f -= gape;
d |= f > h? 2<<4 : 0; // if we want to halve the memory, use one bit only, instead of two
f = f > h? f : h;
zi[j - beg] = d; // z[i,j] keeps h for the current cell and e/f for the next cell
}
eh[end].h = h1; eh[end].e = MINUS_INF;
}
score = eh[qlen].h;
if (n_cigar_ && cigar_) { // backtrack
int n_cigar = 0, m_cigar = 0, which = 0;
uint32_t *cigar = 0, tmp;
i = tlen - 1; k = (i + w + 1 < qlen? i + w + 1 : qlen) - 1; // (i,k) points to the last cell
while (i >= 0 && k >= 0) {
which = z[i * n_col + (k - (i > w? i - w : 0))] >> (which<<1) & 3;
if (which == 0) cigar = push_cigar(&n_cigar, &m_cigar, cigar, 0, 1), --i, --k;
else if (which == 1) cigar = push_cigar(&n_cigar, &m_cigar, cigar, 2, 1), --i;
else cigar = push_cigar(&n_cigar, &m_cigar, cigar, 1, 1), --k;
}
if (i >= 0) cigar = push_cigar(&n_cigar, &m_cigar, cigar, 2, i + 1);
if (k >= 0) cigar = push_cigar(&n_cigar, &m_cigar, cigar, 1, k + 1);
for (i = 0; i < n_cigar>>1; ++i) // reverse CIGAR
tmp = cigar[i], cigar[i] = cigar[n_cigar-1-i], cigar[n_cigar-1-i] = tmp;
*n_cigar_ = n_cigar, *cigar_ = cigar;
}
free(eh); free(qp); free(z);
return score;
}

/*******************************************
* Main function (not compiled by default) *
*******************************************/

#ifdef _KSW_MAIN

#include <unistd.h>
#include <stdio.h>
#include <zlib.h>
#include "kseq.h"
KSEQ_INIT(gzFile, gzread)

unsigned char seq_nt4_table[256] = {
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 0, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 0, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
};

int main(int argc, char *argv[])
{
int c, sa = 1, sb = 3, i, j, k, forward_only = 0, max_rseq = 0;
int8_t mat[25];
int gapo = 5, gape = 2, minsc = 0, xtra = KSW_XSTART;
uint8_t *rseq = 0;
gzFile fpt, fpq;
kseq_t *kst, *ksq;

// parse command line
while ((c = getopt(argc, argv, "a:b:q:r:ft:1")) >= 0) {
switch (c) {
case 'a': sa = atoi(optarg); break;
case 'b': sb = atoi(optarg); break;
case 'q': gapo = atoi(optarg); break;
case 'r': gape = atoi(optarg); break;
case 't': minsc = atoi(optarg); break;
case 'f': forward_only = 1; break;
case '1': xtra |= KSW_XBYTE; break;
}
}
if (optind + 2 > argc) {
fprintf(stderr, "Usage: ksw [-1] [-f] [-a%d] [-b%d] [-q%d] [-r%d] [-t%d] <target.fa> <query.fa>\n", sa, sb, gapo, gape, minsc);
return 1;
}
if (minsc > 0xffff) minsc = 0xffff;
xtra |= KSW_XSUBO | minsc;
// initialize scoring matrix
for (i = k = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
mat[k++] = i == j? sa : -sb;
mat[k++] = 0; // ambiguous base
}
for (j = 0; j < 5; ++j) mat[k++] = 0;
// open file
fpt = gzopen(argv[optind], "r"); kst = kseq_init(fpt);
fpq = gzopen(argv[optind+1], "r"); ksq = kseq_init(fpq);
// all-pair alignment
while (kseq_read(ksq) > 0) {
kswq_t *q[2] = {0, 0};
kswr_t r;
for (i = 0; i < (int)ksq->seq.l; ++i) ksq->seq.s[i] = seq_nt4_table[(int)ksq->seq.s[i]];
if (!forward_only) { // reverse
if ((int)ksq->seq.m > max_rseq) {
max_rseq = ksq->seq.m;
rseq = (uint8_t*)realloc(rseq, max_rseq);
}
for (i = 0, j = ksq->seq.l - 1; i < (int)ksq->seq.l; ++i, --j)
rseq[j] = ksq->seq.s[i] == 4? 4 : 3 - ksq->seq.s[i];
}
gzrewind(fpt); kseq_rewind(kst);
while (kseq_read(kst) > 0) {
for (i = 0; i < (int)kst->seq.l; ++i) kst->seq.s[i] = seq_nt4_table[(int)kst->seq.s[i]];
r = ksw_align(ksq->seq.l, (uint8_t*)ksq->seq.s, kst->seq.l, (uint8_t*)kst->seq.s, 5, mat, gapo, gape, xtra, &q[0]);
if (r.score >= minsc)
printf("%s\t%d\t%d\t%s\t%d\t%d\t%d\t%d\t%d\n", kst->name.s, r.tb, r.te+1, ksq->name.s, r.qb, r.qe+1, r.score, r.score2, r.te2);
if (rseq) {
r = ksw_align(ksq->seq.l, rseq, kst->seq.l, (uint8_t*)kst->seq.s, 5, mat, gapo, gape, xtra, &q[1]);
if (r.score >= minsc)
printf("%s\t%d\t%d\t%s\t%d\t%d\t%d\t%d\t%d\n", kst->name.s, r.tb, r.te+1, ksq->name.s, (int)ksq->seq.l - r.qb, (int)ksq->seq.l - 1 - r.qe, r.score, r.score2, r.te2);
}
}
free(q[0]); free(q[1]);
}
free(rseq);
kseq_destroy(kst); gzclose(fpt);
kseq_destroy(ksq); gzclose(fpq);
return 0;
}
#endif
Something went wrong with that request. Please try again.