
Towards a Low-Cost,

Non-Invasive System for

Occupancy Detection

using a Thermal Detector

Array

Ash Tyndall

This report is submitted as partial fulfilment
of the requirements for the Honours Programme of the
School of Computer Science and Software Engineering,

The University of Western Australia,
2015

Abstract

With the increasing inter-networked and inexpensive nature of embedded sensors
and systems, occupancy sensing, the detection of the presence and number of
people in a given space, is becoming a cost-effective area of research. Knowing
the number of occupants in a space can help reduce energy consumption and
greenhouse gas emissions in both small homes and in large office buildings through
more efficient climate control. The goal of this project was to develop an occupant
sensing system that is low-cost, non-invasive, reliable and energy efficient.

After examining the available sensing options, we concluded that a low-
resolution Thermal Detector Array (lrTDA) would be the most appropriate sen-
sor for our project, as it has non-invasiveness advantages. The key paper in
this area developed the “ThermoSense” system using an lrTDA in combination
with image subtraction, feature extraction and machine learning classification
algorithms. They made occupancy predictions with a Root-Mean-Square Error
(RMSE) of only 0.35 occupants, at an estimated cost of 170 AUD. However, due
to component availability issues, ThermoSense could not be directly replicated
in the Australian market.

We designed our own sensing system for 185 AUD using an Arduino, a Rasp-
berry Pi, and a different lrTDA (the MLX90620), which had a narrower, rectangu-
lar field of view. The system consumes ∼256 mW when active. We also developed
the Thermal Array Library (TArL), a software library that implemented Ther-
moSense’s occupant detection algorithm. We then investigated ThermoSense’s
classification methods, which used numeric Multi-Layer Perceptron, k-Nearest
Neighbors and Linear Regression algorithms and found our results differed from
theirs significantly in both RMSE and correlation, with both being lower. These
results suggest that classifiers used are sensitive to the specific sensor’s properties.

After further experimentation with our own suite of nominal classification
algorithms, we found an approach (K*) that achieved an RMSE of 0.304 and
a precision of 82%, which improves upon ThermoSense’s results. We reflected
upon our four criteria, and with our choice of sensor, falling component costs,
our accuracy results and power consumption statistics, we concluded that our
sensing system prototype met our defined criteria.

Keywords: Energy Saving, Internet of Things, Low-Cost Sensing, Non-Invasive
Sensing, Occupancy Sensing, Smart Homes, Thermal Sensing
CR Categories: J.7, C.3

ii

cba
© 2014–15 Ashley Ben Tyndall, http://ash.id.au/

This document is released under the Creative Commons Attribution-ShareAlike
4.0 International License. A copy of this license can be found at
http://creativecommons.org/licenses/by-sa/4.0/.

The LATEX source of this document and supporting files, such as raw data and
diagrams, can be found at http://ash.id.au/honours.

The following text can be used to satisfy attribution requirements:

“This work is based on the honours research project of Ash Tyndall, developed
with the help of the School of Computer Science and Software Engineering at
The University of Western Australia. A copy of this project can be found at
http://ash.id.au/honours.”

Code and code excerpts included in this document are instead released under the
GNU General Public License v3 (http://gnu.org/copyleft/gpl.html), and
can be found in their entirety at the same URL.

iii

http://ash.id.au/
http://creativecommons.org/licenses/by-sa/4.0/
http://ash.id.au/honours
http://ash.id.au/honours
http://gnu.org/copyleft/gpl.html

Acknowledgements

Writing this dissertation has been my first substantial foray into academic re-
search, and I could not have done it without the assistance and support of so
many people.

Firstly, my supervisors Professor Rachel Cardell-Oliver and Professor Adrian
Keating have been fundamental to this project’s success. Rachel’s ability to steer
me away from completely redefining the project’s parameters at every setback
has been of critical importance, as has been her encouragement and computer
science advice. Similarly, without Adrian’s enviable knowledge of electronics, his
skill in constructing prototypes, and his valuable perspective on thermal sensing,
this project could not have happened.

Secondly, I wish to acknowledge the generous support of the University, the
University Alumni, and the Hackett Foundation through the Hackett Foundation
Alumni Honours Scholarship, which I was awarded at the beginning of my project.
The financial support this scholarship provided has allowed me to commit more
of my time to my research over working, and I can safely say that without it, my
research would be of a much poorer quality.

Thirdly, thank you to my friends and family, who have provided support and
encouragement throughout this project. I cannot imagine where I would be right
now without them. In particular, thank you to Alyssa for your edits, and Magnus
and Mark for spending hours with me making revisions.

Additionally, I would like to acknowledge Alex Beltran, Varick L. Erickson and
Alberto E. Cerpa, the authors of ThermoSense [8]. Without their groundwork
on thermal occupancy sensing, nothing in this dissertation would be possible.

Finally, I would like to acknowledge Linda Salzman Sagan, “Tompw” and
“Holek”, the authors of http://commons.wikimedia.org/wiki/File:Human_

outline.svg, which I have adapted for Figure 4.6.

iv

http://commons.wikimedia.org/wiki/File:Human_outline.svg
http://commons.wikimedia.org/wiki/File:Human_outline.svg

Contents

Abstract ii

Acknowledgements iv

1 Introduction 1

2 Literature Review 5

2.1 Intrinsic Traits . 6

2.1.1 Static Traits . 6

2.1.2 Dynamic Traits . 8

2.2 Extrinsic Traits . 8

2.2.1 Instrumented Traits . 9

2.2.2 Correlative Traits . 10

2.3 Analysis . 10

2.4 Research Gap . 12

3 Design and Implementation 13

3.1 Hardware . 13

3.1.1 Sensing . 14

3.1.2 Pre-Processing . 14

3.1.3 Analysis / Classification 16

3.1.4 Component Costs . 17

3.2 Software . 20

3.2.1 ThermoSense Implementation 22

3.2.2 Sensing . 23

3.2.3 Pre-Processing . 24

3.2.4 Analysis / Classification 25

v

3.3 Summary . 28

4 Evaluation 30

4.1 Sensor Properties . 30

4.1.1 Bias . 30

4.1.2 Noise . 32

4.1.3 Sensitivity . 34

4.2 Classification . 36

4.2.1 Data Collection . 36

4.2.2 Data Labelling . 36

4.2.3 Feature Extraction and Data Conversion 38

4.2.4 Executing Weka Tests . 38

4.2.5 Classifier Experiment Set 41

4.3 Results . 44

4.3.1 Classification . 44

4.3.2 Energy Efficiency . 46

4.4 Discussion . 47

4.4.1 Classification . 47

4.4.2 Energy Efficiency . 52

5 Conclusions 54

5.1 Evaluation of Criteria . 54

5.1.1 Low Cost . 54

5.1.2 Non-Invasive . 55

5.1.3 Reliable . 55

5.1.4 Energy Efficient . 56

5.2 Future Work . 57

5.2.1 Broader Data Collection 57

5.2.2 Different Feature Vectors 57

5.2.3 Different Classification Algorithms 57

5.2.4 Sub-Pixel Localisation . 58

vi

5.2.5 Improving Robustness . 58

5.2.6 Field-Of-View Modifications 58

5.2.7 New Sensors . 59

5.3 Summary . 59

Bibliography 59

A Statistical Measures 63

A.1 Root-Mean-Square Error . 63

A.2 Precision and Recall . 63

A.3 Correlation . 64

B Classification Algorithms 65

B.1 Artificial Neural Networks . 65

B.2 K Nearest Neighbours . 65

B.3 Linear Regression . 66

B.4 Naive Bayes . 66

B.5 Support Vector Machines . 66

B.6 Decision Trees . 67

B.7 0-R . 67

C Knowledge Flows 68

D Original Honours Proposal 70

D.1 Background . 70

D.2 Aim . 71

D.3 Method . 72

D.3.1 Hardware . 72

D.3.2 Classification . 72

D.3.3 Robustness / API . 73

D.4 Timeline . 73

D.5 Software and Hardware Requirements 74

vii

List of Tables

2.1 Comparison of information provided by different sensors types dis-
cussed with reference to our sensing system’s requirements 11

3.1 Three-tier structure of prototype hardware with corresponding
components used . 14

3.2 Breakdown of component costs (in Australian dollars) for mini-
mum viable implementation . 17

3.3 Summary of code written and used within the Thermal Array Library 20

4.1 Weka parameters used for different classifications algorithms . . . 40

4.2 Breakdown of experimental data by occupant ground truth 43

4.3 Results of Classification Experiment Set classification replicating
ThermoSense algorithms and using self-selected algorithm 44

4.4 Energy consumption of sensing system in aggregate and per com-
ponent . 46

4.5 Comparison of different systems power consumption and their var-
ious energy efficiency traits . 52

viii

List of Figures

2.1 Occupancy sensor taxonomy proposed by Teixeira, Dublon and
Savvides [25] . 6

3.1 MLX90620, Passive Infrared Sensor, and Arduino integration cir-
cuit diagram . 15

3.2 Component breakdown of sensing system prototype 18

3.3 Sensing system prototype mounted on roof 19

3.4 Architecture of prototype sensor with tiers, software, communica-
tion protocols and information flow 21

3.5 MLX90620 block diagram (adapted from datasheet [21]) 24

3.6 Annotated Arduino initialisation sequence and thermal packet se-
rial output . 25

4.1 Mean values of 4 minute night sky thermal capture plotted over
sensor’s 16× 4 grid . 31

4.2 Standard deviation of 4 minute night sky thermal capture plotted
over sensor’s 16× 4 grid . 32

4.3 Plot of occupant and background sensor noise at sampling speeds
0.5 Hz – 8 Hz . 33

4.4 Temperature plot of five of the MLX90620’s pixels as a hot object
moves across them at a constant velocity 35

4.5 Process flow diagram for turning raw sensor input into occupancy
estimates . 37

4.6 Classifier Experiment Set Setup (measurements approximate) . . 43

4.7 Plot of three features against each other with occupancy truth values 49

4.8 Plot of two feature vectors with different algorithms’ predictions
marked as correctly or incorrectly classified 50

C.1 Weka Knowledge flow for numeric classification techniques 68

C.2 Weka Knowledge flow for nominal classification techniques 69

ix

List of Listings

3.1 Annotated and abbreviated image subtraction and feature extrac-
tion code from the Thermal Array Library 29

4.1 C4.5 Decision tree generated by Weka’s J48 implementation from
the Classification Experiment Set data 51

x

CHAPTER 1

Introduction

The proportion of elderly and mobility-impaired people in the Australian pop-
ulation is predicted to grow dramatically over the next century, leaving a large
proportion of the population unable to live independently [9]. Human care for
these groups is often performed on a volunteer basis, with nearly 40% of such
carers committing 40 hours or more per week on caring. These carers have sig-
nificantly lower labour force participation as a result [6]. Given the proportion of
carers in the population is projected to increase as the population ages, invest-
ment needs to be made into technologies that can reduce the burden on these
carers.

Additionally, the emergence of carbon pricing in many countries to combat
anthropogenic climate change is causing rising energy prices generally, while un-
derinvestment in Australian energy infrastructure is causing rising energy prices
in Australia specifically [24]. These rising prices have a particularly large effect
on the elderly and disabled, as these demographics typically have below-average
incomes. These prices are also forcing medium-to-large office-based businesses to
consider means by which to reduce their overall power consumption.

Coinciding with these issues is the development of increasing smaller comput-
ing and sensing systems, which provide a potential solution to these rising costs.
At every iteration, these systems become more powerful, more affordable, and
more networked. This phenomena, termed the Internet of Things (IoT), has pro-
duced sub-$50 embedded computing devices such as the Arduino and Raspberry
Pi. These systems unlock enormous potential to create computing solutions to
these rising prices and other important issues. One can envision a future ‘smart
home’ or ‘smart workplace’ which leverages the IoT to offer a variety of services
to help reduce financial and physical burdens alike.

Sensing techniques to determine occupancy, the detection of the presence and
number of people in an area, are of particular use to the both workplaces and
residences alike. Detection can be used to inform various devices to change state
depending on the presence or absence of occupants, enabling a variety of useful

1

automations. In particular, such a detection system could better regulate energy
intensive devices to help reduce financial burden and greenhouse gas emissions.
Household climate control, which in some regions of Australia accounts for up
to 40% of energy usage [5] is one area in which occupancy detection can reduce
costs. More finely grained control of an office building’s Heating, Ventilating,
and Air Conditioning (HVAC) system is another potential application. Several
papers have found climate control efficiency can be significantly increased, with
some approaches providing annual energy savings of up to 25% [8].

Occupancy sensors are broadly characterised. In many cases existing sen-
sors suffer from problems of installation logistics, difficult assembly, assump-
tions on user’s technology ownership and/or component cost. In the smart
home/workplace envisioned, accuracy is important, but accessibility is paramount.

In this research project, we construct an IoT-style occupancy detection sensor
system that forms part of a smart home or workplace. This system must meet
the following criteria:

• Low Cost: The set of components required should minimise cost, as these
devices are intended to be deployed in situations where the serviced user
may be financially restricted, or where many units would be required.

We consider a prototype that costs less than $300, with an anticipated
reduction in cost as technology improves to be sufficiently low cost.

• Non-Invasive: The sensors used in the system should gather as little infor-
mation as necessary to achieve the detection goal; there are privacy concerns
and adoption issues with sensors that are perceived to be invasive.

We consider a sensor that significantly obfuscates the identities and activ-
ities of those sensed to be sufficiently non-invasive.

• Reliable: The system should be able to operate without user intervention
or frequent maintenance, and should be able to perform its occupancy de-
tection goal with a high degree of accuracy.

We consider a system with an accuracy above 75% to be sufficiently reliable
for a prototype system.

• Energy Efficient: The system may be placed in a location where there is
no access to mains power, or where the retrofitting of appropriate power
interfaces can be expensive (such as a residential roof); the ability to survive
for long periods on only battery power is important.

2

In the prototype stage, we consider a device that can run for one week on a
battery that can be reasonably mounted on a roof to be sufficiently energy
efficient.

Ultimately, this project attempts to answer the following research question:
How can one create a complete sensing system to detect occupancy in a low cost
and non-invasive way, with additional considerations to reliability and energy
efficiency?

We pursued an experimental approach to this broad research question by
dividing the answer into a series of different investigations, design processes,
resulting experiments and discussions. This occurred over a period of 12 months,
and is reviewed over three core chapters:

1. Literature Review

An extensive literature review was performed of the field of occupancy de-
tection to determine which sensors types were most apparently appropriate
for occupancy detection given the above criteria.

In the chapter we identified the state of the art in various sensing categories,
we then evaluated them against both a set of qualitative and quantita-
tive criteria, and we then determined that low-resolution thermal sensing
presents the best accuracy/non-invasiveness trade-off.

2. Design

With the appropriate sensor type then determined, a complete sensing sys-
tem was developed to provide a platform for experimentation and evaluation
of the sensor, as well as to capture, store, visualize and replay sensor data
for those purposes.

Firstly, we describe the development of an extensible hardware architecture
based upon an Arduino, Raspberry Pi, a Passive Infrared Sensor (PIR) and
the Melexis MLX90620 (MLX) sensor.

Secondly, we describe the implementation of a custom and reusable software
library, the Thermal Array Library (TArL), which consists of both low-level
code running on the Arduino embedded platform, and high-level code for
image analysis and occupant prediction running on the Raspberry Pi.

3. Evaluation

With the creation of the prototype, a methodology was then developed
to evaluate the properties of the sensing system, and experiments were

3

designed and conducted to test different algorithms’ effectivenesses in using
the system’s data for occupancy detection.

Firstly, we investigate properties of the sensor that may influence the sens-
ing system’s ability to accurately detect occupants by performing a series of
experiments and analysing the interesting properties of the resulting data.

Secondly, we detail the methodology by which thermal data and ground
truth is captured, as well as the details of the software pipeline required to
generate occupancy predictions. This includes how we approach machine
learning, which algorithms we choose, and what parameters they use.

Thirdly, we perform a set of thermal captures, annotate them with ground
truth information, then apply our chosen machine learning algorithms and
occupancy detection methodology to the data to generate a series of results.
We also measure the energy consumption of the prototype while capturing
thermal data.

Finally, we compare our accuracy and energy efficiency data against the
identified state of the art in the field, hypothesize as to why different ma-
chine learning approaches have achieved different results, and provide an
in-depth analysis on the power consumption of the prototype and methods
by which the energy efficiency could be further improved.

4

CHAPTER 2

Literature Review

Within this chapter we consider the broad variety of sensing systems available,
and how well different types of sensors meet our sensing criteria. It can be difficult
to approach the broad variety of sensor types in the field, so a structure must be
developed through which to evaluate them. Teixeira, Dublon and Savvides [25]
propose five human-sensing criteria, which provide a structure through which we
may define the broad quantitative requirements of different sensors.

These quantitative requirements can be used to exclude sensing options that
clearly cannot meet the requirements before the more specific qualitative acces-
sibility criteria will be considered for the remaining sensors.

The quantitative criteria elements are:

1. Presence: Is there any occupant present in the sensed area?

2. Count: How many occupants are there in the sensed area?

3. Location: Where are the occupants in the sensed area?

4. Track: Where do the occupants move in the sensed area? (local identifica-
tion)

5. Identity : Who are the occupants in the sensed area? (global identification)

At a fundamental level, this research project requires a sensor system that
provides Presence information. Additionally, in many household situations there
will be multiple elderly occupants and in offices there will be group meeting
locations. To handle such situations, a system that has Count information is
necessary to ensure that occupant-number dependent activities like climate con-
trol can be accurately driven by the system.

To assist with the reduction of privacy concerns, excluding systems that per-
mit Identity information will generally result in a less invasive system also. The
presence of Location or Track information are irrelevant to our project’s goals.

5

Sensors

Intrinsic

Static Dynamic

Extrinsic

Instrumented Correlative

Figure 2.1: Occupancy sensor taxonomy proposed by Teixeira, Dublon and Sav-
vides [25]

Teixeira, Dublon and Savvides [25] also propose an occupancy sensor taxon-
omy (see Figure 2.1), which categorizes different sensing systems in terms of what
information they use as a proxy for human-sensing. We use this taxonomy here
as a structure through which we group and discuss different sensor types.

2.1 Intrinsic Traits

Intrinsic traits are those which can be sensed that are a direct property of being
a human occupant. Intrinsic traits are particularly useful, as in many instances
they are guaranteed to be present if an occupant is present. However, they do
have varying degrees of detectability and differentiation between occupants. Two
main subcategories of these sensor types are static and dynamic traits.

2.1.1 Static Traits

Static traits are physiologically derived, and are present in most occupants. One
key static trait that can be used for occupant sensing is that of thermal emissions.
All human occupants emit distinctive thermal radiation in both resting and active
states. The heat signatures of these emissions could potentially be measured with
some apparatus, counted, and used to provide Presence and Count information
to a sensor system, without providing Identity information.

Beltran, Erickson and Cerpa [8] propose ThermoSense, a system that uses a
type of thermal sensor known as a Thermal Detector Array (TDA). This sen-
sor is much like a camera in that it has a field of view which is divided into
“pixels”; in this case an 8 × 8 grid of detected temperatures. This sensor is
mounted on an embedded device on the ceiling, along with a Passive Infrared
Sensor (PIR) for basic motion detection and uses machine learning algorithms to
detect human heat signatures within the raw thermal and motion data it collects.
ThermoSense measures accuracy with Root-Mean-Square Error (RMSE), which

6

performs a summation of the absolute valued deviation between their model’s
occupancy predictions and the ground truth data (see Appendix A.1 for further
explanation). They achieve an RMSE of 0.35 occupants, indicating that on aver-
age the predicted occupancy value only deviated by 0.35 from the actual, which
they indicate is sufficient for accurate occupancy detection.

Another static trait are CO2 emissions, which, like thermal emissions, are
emitted by human occupants in both resting and active states. By measuring
the build-up of CO2 within a given area, one can use a variety of mathematical
models of human CO2 production to determine the likely number of occupants
present. Hailemariam et al. [15] trialled this as part of a sensor fusion within the
context of an office environment, achieving a ∼ 95% accuracy. Such a sensing
system could provide both the Presence and Count information, and exclude
the Identity information as required. However, CO2 based detection methods
have serious drawbacks: The CO2 feedback mechanism is slow, taking hours of
continuous occupancy to correctly identify the presence of people, as discussed
by Fisk, Faulkner and Sullivan [13]. In a residential environment, occupants
are more likely to be moving between rooms than an office, so the system may
have a more difficult time detecting in that situation. Similarly, such systems
can be interfered with by other elements that control the CO2 build-up in a
space, such as air conditioners and open windows. This is also much more of a
concern in a residential environment compared to the studied office space, as the
average residence can have numerous such confounding factors that cannot easily
be controlled for.

Occupant identification can also be achieved through the use of video or
still-image cameras and advanced image processing algorithms. Video can be
used in occupancy detection in several different ways, achieving different levels
of accuracy and requiring different configurations. The first use of video, POEM,
proposed by Erickson, Achleitner and Cerpa [12] is the use of video as a “optical
turnstile”: The video system detects potential occupants and the direction they
are moving in at each entrance and exit to an area, and uses that information
to extrapolate the number of occupants within the turnstiled area. They report
the system achieves up to a 94% accuracy. However, the main issue with such
a system applied to a residential environment is the system assumes that there
will be wide enough “turnstile areas”, corridors of a fairly large area that connect
different sections of a building, to use as detection zones. While such corridors
exist in office environments, they are less likely to exist in residential ones.

Another video-based sensor system is proposed by Serrano-Cuerda et al. [22],
which uses ceiling-based cameras and advanced image processing algorithms to
count the number of people in the captured area. They measure accuracy us-

7

ing an F-score, which takes into account both false-positive and false-negative
results, and is reported as 0.967, which is highly accurate. Such a system could
be successfully applied to the residential environment, as both it and the “op-
tical turnstile” model provide Presence and Count information. However, these
systems also allow Identity to be determined, and thus are perceived as privacy-
invasive.

2.1.2 Dynamic Traits

Dynamic traits are usually products of human occupant activity, and thus can
generally only be detected when a human occupant is physically active or in
motion.

Ultrasonic systems, such as Doorjamb proposed by Hnat et al. [17], use clus-
ters of such sensors above door-frames to detect the height and direction of poten-
tial occupants travelling between rooms. This acts as a turnstile based system,
much like POEM [12], but augments this with an understanding of the model
of the building to correct for invalid and impossible movements brought about
from sensing errors. This system provides an overall room-level tracking accu-
racy of 90%, however to achieve this accuracy, potential occupants are intended
to be tracked approximately using their heights, which has privacy implications.
The system can also suffer from problems with error propagation, as there are
possibilities of “phantom” occupants entering a room due to sensing errors.

Solely PIR based systems, such as those used by Hailemariam et al. [15], in-
volve the motion of the sensor being averaged over several different time intervals,
and fed into a decision tree classifier. This PIR system alone produced a ∼ 98%
accuracy. However, such a system, due to only motion detection capabilities, can
only provide Presence information, and is unable to provide Count information,
or detect motionless occupants.

2.2 Extrinsic Traits

Extrinsic traits are environmental changes that are caused by or correlated with
human occupant presence. These traits generally present a less accurate picture
or require the sensed occupants to be in some way “tagged”, but are generally
also easier to sense. The sensors in this category have been divided into two
subcategories.

8

2.2.1 Instrumented Traits

One extrinsic trait category is instrumented approaches; these require that de-
tectable occupants carry with them some device that is detected as a proxy for
the occupant themselves.

The most obvious of these approaches is a specially designed device. Li
et al. [20] used RFID tags and several antennas as a triangulation and track-
ing mechanism to pinpoint tag-carrying occupants to a specific HVAC thermal
zone. For stationary occupants, there was a detection accuracy of ∼ 88%, and
for occupants who were mobile, the accuracy was ∼ 62%. Such a system could
be re-purposed for residential use, however it requires occupants to be constantly
carrying their tags, which is less likely in such an environment. Additionally, the
accuracy for this system is not necessarily high enough for a residential environ-
ment where much smaller rooms are used, as in the system described multi-room
HVAC thermal zones are used as tracking areas, not individual offices.

To make extrinsic detection more reliable, Li, Calis and Becerik-Gerber [18]
leverage a common consumer device; WiFi enabled smartphones. They propose
the homeset algorithm, which uses the phones to scan the visible WiFi networks
and estimate if the occupants are present or absent in their home by “triangu-
lating” their position. This solution does not provide the fine-grained Presence
data that we need, as it is only able to triangulate the phone’s position to a large
error margin with the wireless network detection information.

Balaji et al. [7] also leverage smartphones to determine occupancy, but in a
more broad enterprise environment: Wireless device association logs are analysed
to determine which access points in a building a given occupant is connected to.
If this access point falls within the radio range of their designated “personal
space”, they are considered to be occupying that personal space. This technique
cannot be applied to a residential environment, as there are usually not multiple
wireless hotspots present.

Finally, Gupta, Intille and Larson [14] use the GPS functions of the smart-
phone to perform optimisation on heating and cooling systems by calculating the
“travel-to-home” time of occupants at all times and ensuring at every distance
the house is minimally heated such that if the potential occupant were to travel
home, the house would be at the correct temperature when they arrived. While
this system does achieve similar potential air-conditioning energy savings, it is
not room-level modular, and also presupposes an occupant whose primary energy
costs are from incorrect heating when away from home, which is not necessarily
the case for the elderly or disabled demographics considered in this dissertation.

9

2.2.2 Correlative Traits

Correlative approaches analyse data that is correlated with human occupant ac-
tivity, but does not require a specific device to be present on each occupant that
is tracked with the system.

The primary approach in this area is work done by Kleiminger et al. [19], which
attempts to measure electricity consumption and use such data to determine
Presence. Electricity data was measured at two different levels of granularity; the
whole house level with a smart meter, and the consumption of specific appliances
through smart plugs. This data was then processed by a variety of classifiers to
achieve a classification accuracy of more than 80%. Such a system presents a
low-cost solution to occupancy, however it is not sufficiently granular in either
the detection of multiple occupants, or the detection of occupants in a specific
room. Additionally, it may be too invasive, due to the number of sensors and
sensor plugs involved.

2.3 Analysis

From these various sensor options, there are a few candidates that provide the
necessary quantitative criteria (Presence and Count); these are thermal, CO2,
Video, Ultrasonic, RFID, WiFi association and WiFi triangulation based meth-
ods. All sensing options are compared in Table 2.1.

In the context of our four qualitative accessibility criteria, CO2 sensing has
several reliability drawbacks, the predominant ones being a large lag time to
receive accurate occupancy information and interference from a variety of air
conditioning sources which can modify the CO2 concentration in the room in
unexpected ways.

Video-based sensing methods suffer from invasiveness concerns, as they by
design must have a constant video feed of all detected areas.

Ultrasonic methods suffer from reliability concerns when a user falls outside
the prescribed height bounds of average humans. The detection accuracy of
wheelchair bound occupants, a potential demographic of our proposed sensing
system, are not discussed in the Doorjamb paper. The paper indicates various
complications such as hats or carrying items may affect the detection, which
suggests that a wheelchair may do the same. Ultrasonic methods also provide
weak Identity information through height detection.

RFID sensing also has several drawbacks; it is a difficult value proposition to
get residential occupants to carry RFID tags with them continuously. Another

10

Requires Excludes Irrelevant

Presence Count Identity Location Track
Intrinsic

Static
Thermal X X X X
CO2 X X X
Video X X 7 X X

Dynamic
Ultrasonic X X 7 X
PIR X 7 X

Extrinsic
Instrumented

RFID X1 X X X
WiFi assoc.2 X1 X 7 X
WiFi triang.2 X1 X 7

GPS2 X1 7 X X
Correlative

Electricity X1 7 X
1Doesn’t provide data at required level of accuracy for residential use.
2Uses smartphone as detector.

Table 2.1: Comparison of information provided by different sensors types dis-
cussed with reference to our sensing system’s requirements

drawback is that the triangulation methods discussed are too unreliable to place
occupants in specific rooms in many cases, and may suffer from read range issues
depending on the specific RFID technologies used.

WiFi association is not granular enough for residential use, as the original
enterprise use case presupposes a much larger area, as well as multiple wireless
access points, neither of which a typical residential environment has.

WiFi triangulation is a good candidate for residential use, as there are most
likely neighbouring wireless networks that can be used as virtual landmarks.
However, it suffers from the same granularity problems as WiFi association, as
these signals are not specific enough to pinpoint an occupant to a specific room.

For approaches presupposing smartphones being present on each occupant, it
is similarly difficult to ensure that occupants own and are carrying their smart-
phones with them at all times in a residential environment, as with RFID tags.
Another issue with smartphones is that they can represent an expense that the

11

target markets of the elderly and the disabled may not be able to afford, as
opposed to a dumb mobile or landline phone.

Finally, we have thermal sensing. It provides both Presence and Count in-
formation, as it uses occupants’ thermal signatures to determine the presence of
people in a room. It does not however provide Identity information, as thermal
signatures are not sufficiently unique with the technologies used to distinguished
between occupants. Such a sensor system is presented as low-cost and energy
efficient within ThermoSense [8]. The system is non-invasive by design and can
reliably detect occupants with a low Root Mean Squared Error. For our specific
accessibility criteria, thermal sensing appears to be the most suitable option.

2.4 Research Gap

ThermoSense’s “Grid-EYE”-based sensing system has the potential to meet our
goals of low cost, non-invasiveness, reliability and energy efficiency. However,
their approach has room for improvement. The embedded controller for the
ThermoSense design (the TMote Sky) is expensive (estimated to be $100+),
outdated (released in 2006) and does not appear available for sale in Australia
(manufacturer’s website is no longer available). Additionally, the Grid-EYE sen-
sor is also not available to purchase within Australia, nor to order into Australia
from other countries.

Furthermore, the robustness of the ThermoSense approach is currently un-
explored. Is their approach applicable to a similar sensor in a slightly different
environment? Does their approach generalise well? There still exists many un-
known quantities that are worthwhile to explore.

We believe there is a clear gap in the Australian market for an occupancy
sensor that meets these goals. Additionally, there exists important unanswered
questions regarding the reliability and robustness of the approach ThermoSense
used. Finally, as the Grid-EYE cannot be used, an investigation into how well a
substitute sensor can replicate ThermoSense’s results will be necessary.

12

CHAPTER 3

Design and Implementation

To investigate thermal sensing’s potential, a software and hardware prototype
(the “sensing system”) must now be constructed to provide a platform for ex-
perimentation and evaluation of the sensor chosen, as well as to capture, store,
visualize and replay sensor data for those purposes. We will first discuss the hard-
ware foundations of the project, then the architecture of the software developed
to run on those foundations.

3.1 Hardware

As reliability and future extensibility are core concerns of the project, a three-
tiered system was employed with regards to the hardware involved in the system
(Table 3.1). At the bottom, the “Sensing Tier,” we have the sensors themselves.
Connected to the sensors via their respective protocols is the “Preprocessing
Tier,” hosted on an embedded system. The embedded device polls the data from
these sensors, performs necessary calculations to turn the raw sensor information
into actionable data, and communicates this via Serial over USB to the third tier.
The third tier, the “Analysis Tier,” is run on a fully fledged computer. In our
prototype, it captures and stores temperature and motion data it receives over
Serial over USB, as well as visual data for ground truth purposes.

In the current prototype, the Analysis Tier merely stores captured data for
offline analysis. In future prototypes this analysis can be done live and served to
interested and appropriately authenticated parties over a secure RESTful API.
In the current prototype, the Analysis and Sensing Tiers are connected by Serial
over USB, in future prototypes, this can be replaced by a wireless mesh network,
with many Preprocessing/Sensing Tier nodes communicating with one Analysis
Tier node.

13

Analysis Tier Raspberry Pi B+
Preprocessing Tier Arduino Uno R3

Sensing Tier Melexis MLX90620 & PIR

Table 3.1: Three-tier structure of prototype hardware with corresponding com-
ponents used

3.1.1 Sensing

As discussed in the Literature Review (Chapter 2), using a Thermal Detector
Array (TDA) appear to be the most viable way to achieve the high-level goals
of this project. ThermoSense [8], the primary occupancy sensor in the TDA
space, used the low-cost Panasonic Grid-EYE sensor for this task. This sensor,
costing around $50, was suggested by ThermoSense to be effective in occupancy
detection. However, while still available for sale in the United States, we were
unable to order the sensor for shipping to Australia due to supplier-vendor con-
tract agreements outside of our control. Using a sensor with such restrictions
in place goes against an implicit criteria of the parts used in the project being
relatively easy to acquire.

This forced us to search for alternative sensors in the space that fulfill similar
criteria but were available in Australia. The sensor we chose was the Melexis
MLX90620 (MLX) [21], a TDA with similar overall qualities that differed in
several important ways; it provides a 16 × 4 grid of thermal information, it has
an overall narrower field of view and it sells for approximately $80. Like the Grid-
EYE, the MLX communicates over the 2-wire I2C bus, a low-level bi-directional
communication bus widely used and supported in embedded systems.

We envision a further advanced prototype to have wireless networking in a
smaller form factor, much like ThermoSense. However, due to time and resource
constraints, the scope of this project has been limited to a minimum viable imple-
mentation. This prototype architecture has been designed such that a clear path
to an idea system architecture involving each Pre-Processing Tier and Analysis
Tier being connected by a wireless mesh network to enable easy installation in
households.

3.1.2 Pre-Processing

Due to low cost, broad support and ease of development, the Arduino platform
was selected as the host for the Preprocessing Tier, and thus will handle the
I2C communication with the MLX. Initially, this presented some challenges, as

14

Adafruit Bi-Directional
I2C Level Shifter

10K pullups, BS106 MOSFETs

LVA1A2A3A4

HV

GND

GND B1B2B3B4

MLX90620
VSS

SCLSDA

VDD

Arduino
(abbreviated)

5V

GND

A4 (SDA) A5 (SCL)

3.3VD2 5V

D1
1N4148

R2
1.5 kΩ

R1
1.5 kΩ

PIR

OUT 5V

GND

Figure 3.1: MLX90620, Passive Infrared Sensor, and Arduino integration circuit
diagram

15

the MLX recommends a power and communication voltage of 2.6V, while the
Arduino is only able to output 3.3V and 5V as power, and 5V as communication.
Due to this, it was not possible to directly connect the Arduino to the MLX, and
similarly due to the two-way nature of the I2C 2-wire communication protocol, it
was also not possible to simply lower the Arduino voltage using simple electrical
techniques, as such techniques would interfere with two-way communication.

A solution was found in the form of a I2C level-shifter, the Adafruit “4-
channel I2C-safe Bi-directional Logic Level Converter” [1], which provided a
cheap method to bi-directionally communicate between the two devices at their
own preferred voltages. The layout of the circuit necessary to link the Arduino
and the MLX, including the use of this converter, can be seen in Figure 3.1.

Additionally, as used in the ThermoSense paper, a Passive Infrared Sen-
sor (PIR) motion detector [2] was also connected to the Arduino. This sensor,
operating at 5V natively, did not require any complex circuitry to interface with
the Arduino. It is connected to digital pin 2 on the Arduino, where it provides
a rising signal (a “trigger”) in the event that motion is detected, which can be
configured to cause an interrupt on the Arduino. In the configuration used in this
project, the sensor’s sensitivity was set to the highest value and the timeout for
re-triggering (the trigger reoccurring) was set to the lowest value (approximately
2.5 seconds). Additionally, the continuous re-triggering feature (whereby the sen-
sor produces continuous rising and falling signals for the duration of motion) was
disabled using the provided jumpers.

3.1.3 Analysis / Classification

For the Analysis Tier, the Raspberry Pi B+ was chosen, as it is a powerful and
inexpensive computer capable of running Linux. The Arduino is connected to
the Raspberry Pi over USB, which provides it both power and the capacity to
transfer data. In turn, the Raspberry Pi is connected to a simple micro-USB
rechargeable battery pack, which provides it with power, and subsequently the
Arduino and sensors.

16

Part Cost
MLX90620 $80
Raspberry Pi B+ $50
Arduino Uno R3 $40
Passive Infrared Sensor $10
I2C level shifter $5
TOTAL $185

(a) Our project

Part Cost
TMote Sky $110
Grid-EYE $50
Passive Infrared Sensor $10

TOTAL $170

(b) ThermoSense (estimated)

Table 3.2: Breakdown of component costs (in Australian dollars) for minimum
viable implementation

3.1.4 Component Costs

As being low-cost is one of this project’s goals, we have summarized the cost of
each of the components of the prototype in Table 3.2a. We believe that for a
prototype, this cost is sufficiently low. In the envisioned system, there would only
be one Raspberry Pi in the system, and it would not require a camera, lowering
the cost to around $50 + $135n where n is the number of sensors. Similarly, as
technology improves, sensor technology expected to continue to fall in price, caus-
ing the most expensive component, the infra-red sensor, to become increasingly
cost-effective.

When we compare this to the estimated cost of the ThermoSense system (Ta-
ble 3.2b), we believe that it achieves a suitably comparable cost for a prototype.
When removing the aspects of the prototype that would be unnecessary in the
final version, the difference is only $15.

17

a) Battery pack

b) Raspberry Pi

c) Arduino

d) Level-shifting circuitry

e) Movable sensor mount

f) PIR

g) Camera

h) MLX90620

Figure 3.2: Component breakdown of sensing system prototype

18

a) Sensors (refer to Figure 3.2)

b) Mounting pole

Figure 3.3: Sensing system prototype mounted on roof

19

Category SLOC
TArL Python 674

cam 425
features 191
pxdisplay 58

TArL Arduino (C++) 492
mlx90620 driver 492

Analysis Scripts 147
Capture Scripts 234
Total 1,624

(a) Source Lines Of Code written

Library Version
Arduino

SDK 1.6.4
SimpleTimer 1.0

Python
networkx 1.9.1
numpy 1.8.0
matplotlib 1.3.1
picamera 1.10
Pillow 2.8.1

(b) Libraries used

Table 3.3: Summary of code written and used within the Thermal Array Library

3.2 Software

At each layer of the described three-tier software architecture (pictured in greater
detail in Figure 3.4), software exists to govern the operation of that tier’s func-
tionality. For the sensing tier, the Melexis MLX90620 (MLX) and Passive In-
frared Sensor (PIR)’s own software is used, while for the other tiers, a bi-lingual
software library, the Thermal Array Library (TArL), was developed to provide a
suite of functions to enable the easy data collection and analysis of information
from the hardware prototype. TArL is split into two parts:

At the Preprocessing Tier, the Arduino, the TArL MLX driver is found, which
is written in the default Arduino C++ derivative language. The use of a low-level
language is important at this tier as careful management of memory usage and
processing time is required in such a resource-constrained environment.

At the Analysis Tier, a general purpose computer is used, and this is where
the bulk of TArL can be found. As the processing environment is less constrained,
a choice of language becomes a possibility. In this instance, Python was chosen
as TArL’s language on the Analysis Tier. Python was chosen as it is a high-level
language with excellent library support for the functions required of the Analysis
Tier, including serial interfacing, the use of the Raspberry Pi’s built in camera,
and image analysis. The 2.x branch of Python was chosen over the 3.x branch,
despite its age, due a greater maturity in support for several key libraries. The
core of the Analysis Tier’s code is based upon the algorithm detailed by the
ThermoSense paper, which we provide an overview of here.

20

Network WiFi / Ethernet

Raspberry Pi B+
“Analysis Tier”

TArL Python

Library

Camera

Serial over USB

Arduino Uno R3
“Preprocessing Tier”

TArL C++

Driver

I2C

MLX90620

Interrupt

PIR“Sensing Tier”

Figure 3.4: Architecture of prototype sensor with tiers, software, communication
protocols and information flow

21

3.2.1 ThermoSense Implementation

The ThermoSense [8] approach combines a PIR, which detects motion, and a
Thermal Detector Array (TDA) which creates a thermal image, to determine
occupancy in a sensor fusion. These sensors are fused by leveraging the PIR to
determine if there are any occupants and the TDA to determine specific occu-
pancy numbers. The specific TDA used subdivides the visible area into an 8× 8
grid of sections from which temperatures can be derived. This sensor system
is attached to the roof on a small embedded controller which is responsible for
collecting the thermal data and transmitting it back to another computer for
analysis via a low powered wireless networking protocol.

Machine learning classification, the use of algorithms and training data to gen-
erate models that can make predictions on previously unseen data, is a large part
of the ThermoSense paper. ThermoSense uses supervised learning algorithms,
which require a set of examples with the correct answer (ground truth).

Supervised classification techniques can be split into two different classes of
techniques: Numeric and Nominal. Numeric techniques provide predictions that
are numerical in nature, that is, they return results on a continuous number line.
Nominal techniques provide predictions whereby each new data point is predicted
to belong to one of a set of predetermined classes, for example, colours of the
rainbow.

The training data required by classification algorithms consists of examples
that have the corresponding ground truth attached. The set of values that de-
scribe each example’s properties are known as feature vectors.

Occupants are separated from background infra-red radiation through the
use of an image subtraction algorithm maintaining per-pixel mean and standard
deviation values to update a thermal background map. If no motion is detected,
this map is updated using a slow-moving Exponential Weighted Moving Average
(EMWA) over a 15 minute time window. If the room remains occupied for a long
period, a more complex scaling algorithm is used which considers the coldest
points in the room empty, and averages them against the new background, then
performs an EMWA with a lower weighting.

This per-pixel average and standard deviation information updated every
frame is used to determine several characteristics to be used as feature vectors.
The determination of the feature vectors was subject to experimentation by the
ThermoSense authors, since the differences at each grid element are too suscep-
tible to individual room conditions to be used as feature vectors. Instead, a set
of three different features was designed;

22

1. Number of active pixels: The total number of pixels that are considered
“active” in a given frame

2. Number of connected components: If each active pixel is joined with
its immediate active neighbours, how many “islands” of active pixels (termed
connected components in graph theory) exist.

3. Size of largest connected component: The number of active pixels
contained within the largest connected component

These feature vectors were compared against three classification approaches;
K-Nearest Neighbours, Linear Regression and an Artificial Neural Network. This
final classification is subject to an averaging process over a four minute window,
which was determined by experimentation by the ThermoSense authors to ac-
curately remove the presence of independent errors from the raw classification
data.

It is not necessarily a requirement that cases with zero people are provided
to the classification algorithms above, as previously mentioned the PIR alone
can determine this information. ThermoSense performed experimentation to
determine if the classification was more accurate when instances of empty rooms
were provided to the classification algorithm vs. not. They found that generally
not providing the empty case to the classification algorithm improved accuracy.

3.2.2 Sensing

The MLX itself is its own computer (see Figure 3.5), containing EEPROM stor-
age, RAM and unspecified code to perform “digital filtering” on the 16× 4 array
of digital active thermopiles. We are able to communicate with the MLX through
the provided I2C interface, which offers commands to read both the EEPROM,
and the sensor’s RAM directly.

The sensor’s EEPROM contains configuration values that the interfacing de-
vice is required to input into the device’s RAM as part of a multi-step initiali-
sation sequence, and also contains constants used as part of the raw data to °C
conversion process. The sensor’s RAM contains the partially-filtered raw data,
which is updated with reference to a clock frequency set between 0.5 Hz to 512 Hz
in the initialisation process.

The sensor’s documentation offers no information regarding reconfiguration
of the sensor’s internal programming code, nor what code exists on the sensor
when purchased. As such, we refer to the sensor’s datasheet [21] and use only
the documented commands to interface with the sensor.

23

Digital Active Thermopile Array

Digital filtering

RAM
memory

EEPROM I2C interface
Voltage

regulator

CLK SDA VSS VDD

Figure 3.5: MLX90620 block diagram (adapted from datasheet [21])

3.2.3 Pre-Processing

On the Arduino, the TArL C++ Driver is written as one Arduino program,
termed mlx90620 driver.ino. This program’s purpose is to take simple com-
mands over serial to configure the MLX and to report back the current temper-
ature values and PIR motion information at either a pre-set interval or when
requested.

To calculate the final temperature values that the MLX offers, a complex ini-
tialisation and computational process must be followed, which is specified in the
sensor’s datasheet [21]. This process involves initializing the sensor with values
attained from the on-board EEPROM, then retrieving a variety of normalisation
and adjustment values, along with the raw sensor data, to compute the final
temperature result.

The basic algorithm to perform this normalisation was based upon the pro-
vided datasheet [21], as well as code by users “maxbot”, “IIBaboomba”, “nseidle”
and others on the Arduino Forums [4] and was modified to operate with the newer
Arduino “Wire” I2C libraries released since the authors’ original posts. To ensure
the driver can be adapted and extended in the future, the code was also restruc-
tured and rewritten to introduce a set of features to make the management of
the sensor data easier for the user, and for the code and output information to
be more readable.

24

INIT 0 # Initialization sequence begins at time=0 milliseconds

INFO START # Information section starts

DRIVER MLX90620 # MLX90620 driver is being used

BUILD Feb 1 2015 00:00:00 # Driver was compiled at specified date

IRHZ 1 # Infrared data is being sampled at 1Hz

INFO STOP # Information section ends

ACTIVE 33 # Sensor is active at ready to send data at time=33 milliseconds

START 34 # Thermal packet begins at time=34 milliseconds

MOVEMENT 0 # No movement in this frame

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

STOP 97 # Thermal packet ends at time=97 milliseconds

Figure 3.6: Annotated Arduino initialisation sequence and thermal packet serial
output

The first of the features introduced was the human-readable format for serial
transmission. This allows easy debugging of the sensor with only a rudimentary
serial console. When the Arduino is powered up, an initialisation sequence is
output (Figure 3.6). This specifies several things that are useful to the user;
the attached sensor (“DRIVER”), the build of the software (“BUILD”) and the
refresh rate of the sensor (“IRHZ”). Several different headers, such as “ACTIVE”
and “INIT” specify the current millisecond time of the processor, thus indicating
how long the execution of the initialisation process took (33 milliseconds).

Once booted, the user is able to send several one-character commands to the
sensor to configure operation. Depending on the input sensor configuration, IR
data may be periodically output, or otherwise manually triggered. This IR data
is produced in the latter half of Figure 3.6.

3.2.4 Analysis / Classification

On the Analysis Tier, TArL’s set of Python libraries and accompanying capture
and analysis scripts were developed to interface with the Arduino, parse and
interpret its data, and to provide data logging and visualisation capabilities.
TArL’s Python portion provides 4 main feature sets across 3 files; the Manager

series of classes, the Visualizer class, the Features class and the pxdisplay

module.

25

Manager classes

The Manager series of classes are the direct interface between TArL’s C++ Ar-
duino driver and TArL’s Python components. They implement a multi-threaded
serial data collection and parsing system which converts the raw serial output of
the connected Arduino into a series of Python data structures that represent the
collected temperature and motion data of each captured frame. Several different
versions of the Manager class exist to perform slightly different functions. When
initializing these classes the sample rate of the MLX can be configured, and it
will be sent through to the Arduino for updating.

BaseManager is responsible for the implementation of the core serial pars-
ing functions. It also provides a threaded interface through which the MLX’s
continuous stream of data can be subscribed to by other threads. The primary
API, the subscribe series of functions, returns a thread-safe queue structure
through which thermal packets can be received by various other threads when
they become available.

Manager, the primary class, provides access to the MLX’s data at configurable
intervals. When initializing this class, you may specify 0.5, 1, 2, 4 or 8 Hz, and
the class will configure the Arduino to set the MLX to this sample rate, and
automatically write this data to the serial buffer at the same rate. This serial
interface is multi-threaded as at higher serial baud rates, if data is not polled
continuously, the internal serial buffer fills and data is discarded. By ensuring
this process cannot be blocked by other parts of the running program this problem
is mostly eliminated.

OnDemandManager operates in a similar way to Manager, however it uses a
polling model instead of the periodic model of the other classes. Scripts may re-
quest thermal/motion data from the class at any interval, and OnDemandManager

will poll the Arduino for information and block until this information is parsed
and returned.

Finally, ManagerPlaybackEmulator is a simple class which can take a previ-
ously created thermal recording from a file, and emulate the Manager class by
providing access to thread-safe queues which return this data at the specified Hz
rate. This class can be used as a means to playback thermal recordings with the
same set of visualisation functions provided by the Visualizer class.

pxdisplay functions

The pxdisplay module provides a set of functions that utilize the pygame library
to create a simple live-updating window containing a thermal map representa-

26

tion of the thermal data. One can generate any number of pxdisplay objects,
which leverage the multithreading library and multithreading.Queue to allow
thermal data to be sent to the display.

The class also provides a set of functions to set a “hottest” and “coldest”
temperature and have RGB colours assigned from red to green to blue for each
temperature value that falls between those two extremes.

Visualizer class

The Visualizer class is the natural complement to the Manager series of classes.
The functions contained within can be provided with a Queue object (generated
by a Manager class) and can perform a variety of visualisation and storage func-
tions.

From the recording side, the Visualizer class can “record” a thermal capture
by saving the motion and thermal information to a simple .tcap file, which stores
the sample rate, timings, thermal and motion data from a capture in a simple,
plain-text format. The class can also read these files back into the data structures
Visualizer uses internally to store data. If Visualizer is running on a Rasp-
berry Pi, it can also leverage the picamera library and the OnDemandManager

class to synchronously capture both visual and thermal data for the purposes of
ground truth verification.

From the visualisation side, Visualizer can leverage the pxdisplay module
to create thermal maps that can update in real-time based on the thermal data
provided by a Manager class. The class can also generate both images and movie
files from thermal recordings using the Pillow and ffmpeg libraries.

Features class

As discussed in Subsection 3.2.1, ThermoSense [8] demonstrated the separation
of “background” information from “active” pixels, and from that information,
the extraction of the features necessary for a classifier to correctly determine the
number of people in an 8× 8 thermal image.

In accordance with the pseudo-code outlined in the ThermoSense paper and
their description of the implementation, the algorithm described in Listing 3.1
was created to extract the three features identified by ThermoSense; number
of active pixels, number of connected components and size of largest connected
component.

Given the scope restriction to a minimum viable implementation, the portion

27

of the ThermoSense code dealing with scaling the thermal background for rooms
without motion was not implemented. For connected component determination,
we leveraged the networkx graph library.

The output of feature information is the extent to which the Features class is
involved in machine learning classification. The code used to perform the actual
classification step is discussed in Chapter 4.

3.3 Summary

We believe that the hardware and software architecture presented here provides
a solid foundation on which experimental data can be collected. The hardware
architecture, as discussed, has been selected to ensure that there is a transition
path from the current USB Serial Pre-Processing/Analysis connection to one
which does this wirelessly. The software library, TArL, has been written to be
robust and general, so that its functionality is both useful in the current situation,
and for future experiments with this and other prototypes.

28

INITILISATION: Import libs, set up variables

import math, itertools, networkx

w, h = 16, 4 # Get thermal image dimensions

wgt = 0.01 # Weighting for exp. weighted moving avg.

fst_frame = get_frame() # 1st thermal frame, set elsewhere (2D array)

back = fst_frame # Thermal background b (2D array)

means = fst_frame # Per pixel x̄ (2D array)

pstds = [[0]*w]*h # Per pixel intermediate σ (2D array of 0)

stds = [[0]*w]*h # Per pixel complete σ (2D array of 0)

n = 1 # Processed frames counter

f: New frame received from sensor, starting at the 2nd frame (2D array)

is_motion: If there has been motion detected over given time window.

def get_features(f, is_motion):

n += 1 # Increment frame counter

active = [] # Init empty active list

g = networkx.Graph() # Init graph structure

BACKGROUND UPDATE: Iterate over every pixel and update if no motion

for i, j in itertools.product(range(w), range(h)):

If no motion update bi,j, x̄i,j, & σi,j with fi,j
if not is_motion:

back[i][j] = wgt * f[i][j] + (1 - wgt) * back[i][j] # bi,j
means[i][j] = means[i][j] + (f[i][j] - means[i][j]) / n # x̄i,j
pstds[i][j] = pstds[i][j] + (new[i][j] - means[i][j])

* (c - means[i][j])

stds[i][j] = math.sqrt(pstds[i][j] / (n-1)) # σi,j

GRAPH GENERATION: If (fi,j − bi,j) > 3σi,j add pixel to active & graph

if (f[i][j] - back[i][j]) > (3 * stds[i][j]):

active.append((i,j))

Link all adjacent active pixels in graph structure

for ix, jx in [(-1, -1), (-1, 0), (-1, 1), (0, -1)]:

g.add_edge((i,j), (i+ix,j+jx)) if (i+ix, j+jx) in active

CONNECTED COMPONENTS: Get connected comps. from graph & gen features

cons = list(networkx.connected_components(g))

num_active = len(active)

num_connected = len(cons)

size_connected = max(len(c) for c in cons) if len(cons) > 0 else None

return (num_active, num_connected, size_connected)

Listing 3.1: Annotated and abbreviated image subtraction and feature extraction
code from the Thermal Array Library

29

CHAPTER 4

Evaluation

In this chapter we devise a set of experiments to test the sensor system’s proper-
ties and come to conclusions as to their effect on our ability to detect occupants.
We then outline a process for taking raw sensor data and performing occupancy
predictions with it. Using that process, we then devise a set of occupancy sce-
narios and test the ability of different machine learning algorithms to determine
occupancy from that data.

4.1 Sensor Properties

In order to best utilize the Melexis MLX90620 (MLX), we must first understand
the properties it exhibits and their potential effects on our ability to perform
occupancy measurements. These properties can be broadly separated into three
different categories: Bias, Noise and Sensitivity.

4.1.1 Bias

When detecting no infra-red radiation (IR), the sensor should indicate a near-
zero temperature, as the sensor’s method of determining temperature involves
measuring IR. If in such conditions the temperatures indicated are non-uniform,
that suggests that the sensor has some level of bias in its measurements. We
attempted to investigate the possibility of such bias by performing thermal cap-
tures of the night sky. While this does not completely eliminate the IR, it does
remove a significant proportion of it.

To test this, the thermal sensor was exposed to the night sky at a capture rate
of 1 Hz for 4 minutes, with the sensing results combined to create a set of means
and standard deviations for the pixels at “rest”. The average temperature de-
tected was 11.78 °C, with the standard deviation remaining less than 0.51 °C over
the entire exposure period. The resultant mean and standard deviation thermal

30

Pi
xe

l R
ow

s

Pixel Columns

Physical
Sensor

10

14
°C

7

18

Figure 4.1: Mean values of 4 minute night sky thermal capture plotted over
sensor’s 16× 4 grid

maps (Figure 4.1 and Figure 4.2) shows that the four centre pixels maintain a
similar temperature around 9 °C, with temperatures beginning to deviate as they
became further from that point.

The most likely cause of bias is related to the physical structure of the sensor.
The MLX is a rectangular sensor which has been placed inside a circular tube.
Due to this physical arrangement, the sides of this rectangular sensor will be
significantly closer to these edges than the centre. If the sensor’s casing is at an
ambient temperature higher than the measurement data (as is likely in this case)
thermal radiation from the sensor package itself could be significant enough to
cause the edges to appear warmer than the observed area of the sky. This effect
could be controlled for by cooling the sensor package to below that of the ambient
temperature being measured. However, we determine this is not necessary in our
project, as the method of calculating a thermal background will compensate for
any such bias provided it remains relatively constant, which we predict it should.

31

Temperature (°C)

0.25 0.30 0.35 0.40 0.45 0.50
Figure 4.2: Standard deviation of 4 minute night sky thermal capture plotted
over sensor’s 16× 4 grid

4.1.2 Noise

One of the primary features of the MLX is the ability to sample the thermal
data at a variety of sample rates between 0.5 Hz and 512 Hz. It was noted
in preliminary experimentation that a higher sample rate appeared to result in
noisier temperature readings. As our experiments focus on separating occupants
from a thermal background, it is important to determine if this noise could affect
our ability to reliably separate occupants from the thermal background.

Figure 4.3 plots one of the central pixels of the sensor in a scenario where it
is detecting a background, and when it is viewing a person, at the five different
sample rates achievable with the current hardware configuration. We can see
in these plots that the data becomes significantly more noisy as the sample rate
increases, and we can also conclude that the sensor uses a form of data smoothing
at lower sample rates, as the variance in data increases with sample rate. If the
sample rate was to increase beyond a certain threshold, it is likely that the
ability for the sensing system to disambiguate between objects of interest and
the background would diminish.

In the 0.5 Hz case, the third standard deviation above background (3σ) is
6.4 °C below the minimum occupant value (o) detected. As the noise increases,
this gap slowly decreases, with 5.75 °C for 1 Hz, 5.53 °C for 2 Hz, 4.48 °C for
4 Hz, and finally 3.15 °C for 8 Hz. In none of these cases is 3σ ≥ min(o), which
would completely rule that sample rate out.

Based on the data, noise will not pose any issue as the slowest sampling rate
of 0.5 Hz is sufficient for the system’s needs, and shows a sufficiently large gap
between occupant and background temperatures.

32

25

30

35

0 4 8 12 16 20 24 28 32 36 40 44 48

T
em

p
(°

C
)

Time (seconds)

Background Human 3σ Background

25

30

35

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

T
em

p
(°

C
)

25

30

35

0 4 8 12 16 20 24 28 32 36 40 44 48

T
em

p
(°

C
)

25

30

35

0 6 12 18 24 30 36 42 48

T
em

p
(°

C
)

25

30

35

0 6 12 18 24 30 36 42 48

T
em

p
(°

C
)

0.
5

H
z

1
H

z
2

H
z

4
H

z
8

H
z

Figure 4.3: Plot of occupant and background sensor noise at sampling speeds
0.5 Hz – 8 Hz

33

4.1.3 Sensitivity

The MLX is a sensor composed of 64 independent non-contact digital thermopiles,
which measure infra-red radiation to determine the temperature of objects. While
they are bundled in one package, the sensor’s block diagram discussed previously
(Figure 3.5) shows that they are in fact wholly independent sensors placed in a
grid structure. This has important effects on the properties of the data that the
MLX produces.

Figure 4.4 shows a smoothed temperatures graph of six of the sensor’s central
pixels as a hot object is moved from left to right at an approximately constant
speed. One of the most interesting phenomena in this graph is the variability
of the object’s detected temperature as it moves “between” two different pixels;
there is a noticeable drop in the objects detected temperature. Each pixel appears
to exhibit a bell-curve like line, with the detected temperature increasing from
the baseline and peaking as the object enters the centre of the pixel, and the
detected temperature similarly decreasing as the object leaves the centre.

This phenomenon has several possible causes. One likely explanation is that
each individual pixel detects objects radiating at larger angles of incidence to be
colder than they actually are. As the object enters a pixel’s effective field of view,
it will radiate into the pixel at an angle that is at the edge of the pixel’s ability to
sense, with this angle slowing decreasing until the hot object is directly radiating
into the pixel’s sensor, causing a peak in the temperature reading. As the object
leaves the individual element’s field of view, the same happens in reverse.

This phenomena is not anticipated to impact our intended use case, as it
only strongly affects objects at pixel or sub-pixel size. In our experimental con-
ditions the sensor will not be sufficiently distant that humans could be detected
as such sizes, thus the accuracy of their readings will not be compromised by
this phenomenon. While it is possible that smaller radiant objects (such as pets)
could be affected by this, the effect should not cause their mis-identification as
an occupant.

34

27

30

33

36

39

42

1 2 3 4 5 6 7 8

T
em

pe
ra

tu
re

 (
°C

)

Time (seconds)

Hot object moving across pixels at approx. constant velocity

18 °C 18 °C 18 °C

Pixel 1 Pixel 2 Pixel 5Pixel 3 Pixel 4

Pixel 1
Pixel 2

Pixel 3

Object here

Pixel 4 Pixel 5

t = 2.5 32 °C 28 °C

Figure 4.4: Temperature plot of five of the MLX90620’s pixels as a hot object
moves across them at a constant velocity

35

4.2 Classification

With deeper understanding of the prototype’s caveats, it is now possible to pro-
ceed to the data collection stage. Both thermal and visual data can be collected
determine the effectiveness of the machine learning classification algorithms used.
Due to the prototype’s technical similarly to ThermoSense [8], a similar set of
experimental conditions will be used, with a comparison against ThermoSense
being used as a benchmark. To this end, several experiments were devised, each
of which had its data gathered and processed in accordance with the same general
process, outlined in Figure 4.5 and discussed in more detail in this section.

4.2.1 Data Collection

As the camera and the Arduino are directly plugged into the Raspberry Pi, all
data capture is performed on-board through SSH, with the data being then copied
off the Pi for later processing. To perform this capture, the main script used is
cap pi synced.py.

cap pi synced.py takes two parameters on the command line; the name of
the capture output, and the number of seconds to capture. The script initializes
the picamera library, then passes a reference to it to the capture synced function
within the Visualizer class. The class will then handle sending commands to the
Arduino to capture data in concert with taking still frames with the Raspberry
Pi’s camera.

When the script runs, it creates a folder with the name specified, storing the
thermal capture inside a file named output thermal.hcap and a sequence of files
with the format video-%09d.jpg corresponding to each visual capture frame.

4.2.2 Data Labelling

Once this data capture is complete, the data is copied to a computer with GUI
support for labelling. The utility tagging.py is used for this stage. This script
is passed the path to the capture directory and the number of frames at the
beginning of the capture that are guaranteed to contain no motion. This utility
will display frame by frame each visual and thermal capture together, as well as
the computed feature vectors (based on a background map created from the first
n frames without motion).

The user is then required to press one of the number keys on their keyboard
to indicate the number of people present in this frame. This number will be

36

Sensor
Input

1. Image
Capture on RPi

Captured
Images

2. Data
Labeling

Per-Frame
Truth

3. Feature
Extraction

Features

4. Weka
Classification

Person
Count

1,1,1

1,1,2

(1,11,11),
(1,11,11),
(1,11,11)

List of
truths

Raw
Data

Thermal Data

Feature vectors from
each active pixel frame

List of estimates

Figure 4.5: Process flow diagram for turning raw sensor input into occupancy
estimates

37

recorded in a file called truth in the capture’s directory. The next frame will
then be displayed, and the process continues. This utility enables the quick input
of the ground truth of each capture, which is necessary for the classification stage.

4.2.3 Feature Extraction and Data Conversion

Once the ground truth data is available, it is now possible to utilize the data
to perform various classification tests. For this, we use version 3.7.12 of the
open-source Weka toolkit [27], which provides easy access to a variety of machine
learning algorithms and the tools necessary to analyse their effectiveness.

We collate and export the ground truth and extracted features from multi-
ple captures to a Comma Seperated Value (CSV) file for processing with Weka.
weka export.py takes two parameters, a comma-separated list of different exper-
iment directories to pull ground truth and feature data from, and the number of
frames at the beginning of each capture that can be considered as “motionless.”
With this information, a CSV-file file is generated.

4.2.4 Executing Weka Tests

Once the CSV file is generated, it is then possible to process this file through
Weka. Weka provides a variety of machine learning classification algorithms to
choose from. To investigate ThermoSense’s results, we replicate their algorithmic
implementations in Weka. We discuss the general theory behind of each of these
algorithms in Appendix B. In total, Thermosense uses three machine learning
classifiers:

Firstly, they use an Artificial Neural Network with a hidden layer of five
neurons, with a sigmoid activation function for the hidden layer and a linear
activation function for the output layer. They test only the one, two and three
person cases, relying on their Passive Infrared Sensor (PIR) to detect the zero
person case. They use 70% of their data for training the neural net, 15% for test-
ing the net and the final 15% for validating their results. ThermoSense conducts
tests interpreting the number of people as a numeric attribute.

We use Weka’s “MultilayerPerceptron” neural network to recreate this, which
creates a hidden layer of ((attributes + classes)/2) (in our case three neurons) by
default, however we manually reconfigure this to be one hidden layer of five
neurons, like ThermoSense. It uses a sigmoid activation function for all neurons,
except in the case that a numerical answer is to be predicted, in which case, like
ThermoSense, it uses a linear activation function for the output layer.

38

Secondly, they use a k-Nearest Neighbours (KNN) where k = 5, with the
distance between features being determined by their Euclidean distance. For de-
termining the class label, higher weightings are given to training points inversely
to their distance from the point being classified.

Weka’s “iBk” function is used to perform a KNN calculation, configuring
distanceWeighting to be “Weight by 1-distance” and KNN to be 5, to make the
classification as similar in function to the ThermoSense approach as is possible.
ThermoSense does not specify what validation technique they used, so we elected
to use a 10-fold cross-validation. We limit the scope of our study to k = 5.

Thirdly, they use a Linear Regression model of y = βAA+ βSS + β, whereby
A is the number of active pixels, S is the size of the largest connected component,
and the β values represent the corresponding coefficients. They opt to exclude
the third feature, the number of connected components, as their testing indicates
that excluding it minimizes the Root-Mean-Square Error (RMSE) further.

We use Weka’s “LinearRegression” function, and exclude the number of con-
nected components (numconnected) attribute from the feature vector list, as
ThermoSense does, to attempt to match this approach. We limit the scope of
our study to Linear Regressions that exclude the number of connected compo-
nents.

In addition to the above three techniques, we use our own techniques (included
in Table 4.1). Our techniques are predominately common in use, with their
general theory described in Appendix B. One algorithm that is not as common
that we have chosen is the KStar (K*) algorithm, which we describe in further
detail here:

The K* algorithm, developed by Cleary and Trigg [10] presents a different
approach to k-nearest Neighbours type algorithms. With K* the distance used
to compare similar points is not the Euclidean distance, but rather an entropic
distance, a measure of how much effort is required to convert one example into
another. This has several positive effects; it makes the algorithm more robust to
missing values and enables the classifier to output either a numeric or nominal
result.

We decided to use K* as one of our classification algorithms as it presents
an interesting and different approach to more commonly used algorithms, and
also allows the investigation of KNN-like techniques in the numeric area. K* is
present in Weka as “KStar,” and we will opt to use it in its default state.

To help maximize the efficiency of the classification tasks, we use the Weka’s
Knowledge Flow interface, which provides a drag-and-drop method of creating
complex input and output schemes involving multiple different pre-processing

39

Type Attribute Weka Class & Parameters
Neural Network
(ANN)

Nominal,
Numeric

weka.classifiers.functions

.MultilayerPerceptron

-L 0.3 -M 0.2 -N 500 -V 15

-S 0 -E 20 -H 5

k-nearest Neighbours
(KNN)

Nominal,
Numeric

weka.classifiers.lazy.IBk

-K 5 -W 0 -F

-A "weka.core.neighboursearch

.LinearNNSearch -A \"weka.core

.EuclideanDistance

-R first-last\""
Naive Bayes Nominal weka.classifiers.bayes.NaiveBayes

Support Vector
Machine (SVM)

Nominal weka.classifiers.functions.SMO

-C 1.0 -L 0.001 -P 1.0E-12

-N 0 -V -1 -W 1

-K "weka.classifiers.functions

.supportVector.PolyKernel

-C 250007 -E 1.0"

C4.5
Decision Tree

Nominal weka.classifiers.trees.J48

-C 0.25 -M 2

K* Nominal,
Numeric

weka.classifiers.lazy.KStar

-B 20 -M a

Linear Regression Numeric weka.classifiers.functions

.LinearRegression

-S 0 -R 1.0E-8

0-R Nominal,
Numeric

weka.classifiers.rules.ZeroR

Table 4.1: Weka parameters used for different classifications algorithms

40

steps and classification algorithms. We generate an encompassing flow that ac-
cepts an input CSV file of the raw data, and performs all numeric and nominal
classification at once, returning a text file with the results of each of the different
classification techniques run. The Knowledge Flow’s structure can be seen in Ap-
pendix C. To further automate this a Jython script, run flow.py is used to call
the flow through Weka’s Java API. After this is complete, the script then runs a
series of regular expressions on the output text data to generate a summary CSV
file with the relevant statistical values.

For those tests that are “nominal,” the number of people ground-truth at-
tribute (npeople) was interpreted as nominal using the “NumericToNominal”
filter, which creates a class for each value detected in npeople’s columns and
thus causes nominal occupancy predictions. For those tests that are “numeric,”
npeople is left unchanged, as by default all CSV import attributes are interpreted
as numeric, thus causing numeric occupancy predictions. For all tests where not
specifically stated otherwise, we use 10-fold cross-validation to validate our re-
sults.

As the data we are using is based on real experiments, the number of frames
which are classified as each class may be unbalanced, which could in turn cause a
bias in the classification results. We found that in most cases, the data that most
unbalanced the set was that of the zero case, as it was the case most present in
the data. As ThermoSense previously demonstrated, the use of the PIR alone
allows for determining the zero/not-zero case effectively without classification
algorithms. Due to this, we rebalance our dataset by excluding all zero cases
from the data Weka receives.

4.2.5 Classifier Experiment Set

In our first set of experiments, a scene was devised in accordance with Figure 4.6
that attempted to sense people from above, as did ThermoSense. The prototype
was set up on the ceiling, pointing down at a slight angle to both prevent the
interference of the mounting pole (see Figure 3.3) and to increase thermal mass
detected. For ease of use, the prototype was powered by mains power, and had the
Raspberry Pi networked with a laptop for command input and data collection via
Ethernet. This set of experiments involved between one and three people being
present in the scene, moving in and out in various ways in accordance with the
following scripts.

The first four sub-experiments involved people standing;

• Sub-exp 1: One person walks in, stands in centre, walks out of frame.

41

• Sub-exp 2: One person walks in, joined by another person, both stand
there, one leaves, then another leaves.

• Sub-exp 3: One person walks in, joined by one, joined by another, all three
stand there, one leaves, then another, then another.

• Sub-exp 4: Two people walk in simultaneously, both stand there, both leave
simultaneously.

The latter five sub-experiments involved people sitting;

• Sub-exp 5: One person walks in, sits in centre, moves to right, walks out
of frame.

• Sub-exp 6: One person walks in, joined by another person, both sit there,
they stand and switch chairs, one leaves, then another leaves.

• Sub-exp 7, 8: One person walks in, joined by one, joined by another, they
all sit there, one leaves, one shuffles position, then another leaves, then
another. (x2)

• Sub-exp 9: Two people walk in, both sit there simultaneously, both leave
simultaneously.

In these experiments people moved slowly and deliberately, making sure there
were large pauses between changes of action. When not otherwise specified, all
people entered from the left and exited from the right. The people involved were
of average height, wearing various clothing. The room was cooled to 18 degrees
for these experiments.

Each experiment was recorded with a thermal-visual synchronisation at 1 Hz
over approximately 60-120 second intervals. Each experiment had 10-15 frames at
the beginning where nothing was within the view of the sensor to allow the ther-
mal background to be calculated. Each frame generated from these experiments
was manually tagged with the ground truth value of its number of occupants us-
ing the tagging script discussed in Subsection 4.2.2. A breakdown of the number
of frames collected for each occupancy type can be found in Table 4.2.

The resulting features and ground truth were combined and exported to CSV
allowing Weka to analyse them. This data was analysed with the feature vectors
always being considered numeric data and with the ground truth considered both
numeric and nominal.

42

Occupants Instances % (incl. 0) % (excl. 0)
0 444 42.2
1 252 24.0 41.5
2 291 27.7 47.9
3 64 6.1 10.5

Total 1051 100.0 100.0

Table 4.2: Breakdown of experimental data by occupant ground truth

60°

16.4°

2.6m

Ground

Roof

3m

0.7m

17cm

17cm

Occupant

a) View from side b) View from above

150°

Occupant

0.7m

Figure 4.6: Classifier Experiment Set Setup (measurements approximate)

43

Classifier RMSE1 Precision (%) Correlation (r)
ThermoSense Actual

KNN2 0.346
Lin Reg3 0.385 0.926
MLP 0.409 0.945

ThermoSense Replication
KNN (Nom)2 0.364 65.65
MLP 0.592 0.687
Lin Reg3 0.525 0.589
KNN (Num)2 1.123 0.377

Numeric
K* 0.423 0.760
0-R 0.651 -0.118

Nominal
K* 0.304 82.56
C4.5 0.314 82.39
MLP 0.362 77.14
SVM 0.398 67.18
N. Bayes 0.405 63.59
0-R 0.442 49.74

1: Model deviation from occupant ground truth (see Appendix A.1)
2: Includes zero occupant cases in training data
3: Excludes number of connected components feature
%: Precision (see Appendix A.2), measuring a nominal test result
r: Pearson’s r (see Appendix A.3), measuring a numeric test result

Table 4.3: Results of Classification Experiment Set classification replicating Ther-
moSense algorithms and using self-selected algorithm

4.3 Results

4.3.1 Classification

Significant care was taken to ensure that the same classification parameters were
used between our experiments and those performed in ThermoSense to provide
as accurate as possible a comparison between our results. However, there were
some ambiguities with the ThermoSense results that have made it more difficult
to determine which parameters to choose. In particular, with reference to the
k-Nearest Neighbours tests (KNN), it was ambiguous in the ThermoSense paper
as to whether this data used a nominal classification or a numeric classification.

44

Because of this, four tests were performed overall to replicate the Ther-
moSense results as closely as possible; KNN tests for both numeric and nominal
representations of data, a Multi-Layer Perceptron numeric test (MLP) and a Lin-
ear Regression numeric test (Lin Reg). With these tests (Table 4.3) we found
that our prototype did not achieve comparable results. ThermoSense reported
correlation coefficients (r, see Appendix A.3) of around 0.9 for their MLP and
Lin Reg tests, however we could not replicate these results, with our best being
0.69 and 0.59 respectively. We were also unable to replicate the low Root-Mean-
Square Errors (RMSEs) reported by ThermoSense, with their RMSEs for KNN,
MLP and Lin Reg being 0.346, 0.385 and 0.409 occupants respectively, while ours
were 0.364 (KNN Nominal Case), 1.123 (KNN Numeric Case), 0.592 (MLP) and
0.525 occupants (Lin Reg). Our numeric KNN test performed worse than the 0-R
benchmark for numeric tests, indicating an exceedingly poor classification result,
with it achieving an RMSE of 1.123 occupants vs. the 0-R’s 0.651 occupants.

For our own proposed nominal classification algorithms, our accuracies were
significantly improved, and in some cases exceeded the RMSEs reported by Ther-
moSense. Within our dataset, the K* and C4.5 algorithms were most accurate,
with accuracy (or precision, see Appendix A.2) of 82.56% and 82.39% respectively.
They both achieved RMSEs lower than the best achieved by ThermoSense, with
their 0.304 and 0.314 occupants a significant improvement on ThermoSense’s
KNN RMSE of 0.346 occupants.

Following down the ranking, our nominal MLP performed next best, with an
accuracy of 77.14%, and an RMSE of 0.362 occupants, which is slightly higher
than ThermoSense’s best result. Following, the Support Vector Machine (SVM)
implementation achieved a relatively poor accuracy of 67.18% with an RMSE of
0.398 occupants, and finally the Naive Bayes (N. Bayes) approach, achieved the
worst accuracy of 63.59% with an RMSE of 0.405 occupants. None of these tech-
niques however achieved an RMSE or accuracy worse than our 0-R benchmark,
which achieved an RMSE of 0.442 occupants and an accuracy of 49.74%.

In our sole numeric choice of K*, we found that it achieved a better correlation
than any replicated ThermoSense technique, with r = 0.760. Additionally, its
RMSE of 0.423 occupants was also superior.

45

Connected Power
MLX PIR mA V

X X 52 4.92
X 7 52 4.92
7 X 46 4.92
7 7 46 4.92

Power Saving1 34 4.92
1: SLEEP MODE PWR DOWN AVR mode on Arduino
MLX: Melexis MLX90620
PIR: Passive Infrared Sensor

Table 4.4: Energy consumption of sensing system in aggregate and per component

4.3.2 Energy Efficiency

A YZXStudio USB 3.0 Power Monitor was used to measure power consumed by
the Pre-Processing and Sensing tier together while experimenting, as in a more
advanced prototype, they would be envisioned to be run on battery power. This
was done by connecting the Arduino’s USB cable to the Monitor, and the Mon-
itor to a computer. It was calculated (see Table 4.4) that the average power
consumption was 52 mA at 4.92 volts with a sample rate of 0.5 Hz, while contin-
uously outputting data over USB Serial. This power consumption did not vary
measurably between sample rates.

To determine the draw from the Passive Infrared Sensor (PIR) and Ther-
mal Detector Array (TDA), we disconnected all sensors from the Arduino, and
ran the power measurement again. The same code was run on the Arduino.
This time we received a result of 46 mA for all sample rates. We found that
this power consumption appeared to be from the Melexis MLX90620 (MLX), as
adding/removing the PIR had negligible effects on power consumption. Power
consumption also did not appear to vary depending on the temperature of the ob-
jects being detected, or the motion properties of the scene. We can then conclude
that the sensors themselves draw around 6 mA of current.

We also ran the Arduino in the most aggressive power saving mode available
on the hardware, and measured how much power was consumed with and without
sensors attached. It appears that this power saving mode disables all sensor
power, as in both cases a draw of 34 mA was measured. This represents a saving
of 12 mA from the base Arduino current consumption.

46

4.4 Discussion

4.4.1 Classification

As discussed in Subsection 4.3.1 our prototype achieves positive results. How-
ever, our results indicate that there is a fundamental difference between our set
of experiments and those performed by ThermoSense. None of our attempts
to replicate their results succeeded, with every replicated result performing sig-
nificantly worse than that of ThermoSense. The most likely reason for this is
that the differences in the field of view of the Melexis MLX90620 (MLX) when
compared to the Grid-EYE is significant enough to affect the suitability of the
algorithms used. In particular the MLX created far more instances of partial peo-
ple within the sensed region. This presents a key caveat for any future researchers
attempting to reapply ThermoSense’s methodology to a different sensor.

With the specific classification techniques that we choose to test, we found
significant variation in their success. Our best techniques, K* and C4.5, were
highly similar in result and with a significant gap to the third-best technique,
the Multi-Layer Perceptron. It is notable that both K* and C4.5 use entropy
measures to make decisions, we hypothesise that their use of entropy is related
to their accuracy.

Examining the plots of the Euclidean distance for the features (Figure 4.7), it
is apparent there is no obvious separation between the different classes, with the
three sets of values overlapping significantly. This explains k-Nearest Neighbours
(KNN) and Support Vector Machine’s (SVM) poor performance with our data.

In the case of KNN, a selection of the nearest neighbours may not be indicative
of the feature vector’s class membership. A similar idea applies in the case of
SVM, the aforementioned plots suggest that there may be no clear hyperplane
through which the different classes of data can be separated.

The success of entropy-based methods suggests that the separation of classes
is less of an issue when distance is measured with entropy, as in the case of K*, or
when entropy is used to divide the dataset, as in the case of C4.5. In Figure 4.8
we can see a comparison of the predictions of the SVM algorithm against that of
K*. For the central part of the graph (20 < Active pixels < 35), the predictive
power of both algorithms appears similar. However in the left and right parts
of the graph, we can see that SVM fails to correctly separate the classes. This
suggests that SVM’s use of support vectors to split the feature space is ill-suited
to the overlapping features of the dataset, and that K*’s entropy-based approach
is able to find more suitable splits in the less immediately separable datasets
analysed herein.

47

Due to the white box nature of decision trees, it is possible for us to further
examine the tree generated by the C4.5 algorithm to determine how sensible the
branches are. We can see from Listing 4.1 that C4.5 considers the number of
active pixels to be the strongest indicator of the number of occupants. This
makes intuitive sense, as the number of active pixels should be the most general
descriptor of the number of occupants. This is followed by the size of largest
connected component, and the number of connected components. Overall the
decisions made by the C4.5 tree appear sensible, although in some places it
appears the tree had few cases to form branches with, which could be rectified
with an increase in the size of the dataset.

Our worst selected technique was Naive Bayes. It is not unusual that it
performed so poorly, as the “Naive” part of the technique is an assumption of
independence between the different features input, which is clearly false with our
features. All three of our features relate to the same underlying graph and are
most definitely correlated with each other.

By using the K* or C4.5 machine learning algorithm, we are confident that the
prototype could achieve appropriate levels of accuracy for its occupancy goals.

48

0
1
2
3
4
5
6
7

0 5 10 15 20 25 30 35 40 45 50

C
on

n.
 c

om
ps

.

Largest connected component size
1 Occupant 2 Occupants 3 Occupants

0
1
2
3
4
5
6
7

0 5 10 15 20 25 30 35 40 45 50

C
on

n.
 c

om
ps

.

Active pixels

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50

La
rg

es
t

co
nn

. c
om

p.
 s

iz
e

Active pixels

Figure 4.7: Plot of three features against each other with occupancy truth values

49

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

La
rg

es
t

co
nn

ec
te

d
co

m
po

ne
nt

 s
iz

e

Active pixels

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

La
rg

es
t

co
nn

ec
te

d
co

m
po

ne
nt

 s
iz

e

Active pixels
Correctly Classified Incorrectly Classified

(a) K* Predictions, 82% accurate

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

La
rg

es
t

co
nn

ec
te

d
co

m
po

ne
nt

 s
iz

e

Active pixels

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

La
rg

es
t

co
nn

ec
te

d
co

m
po

ne
nt

 s
iz

e

Active pixels
Correctly Classified Incorrectly Classified

(b) SVM Predictions, 67% accurate

Figure 4.8: Plot of two feature vectors with different algorithms’ predictions
marked as correctly or incorrectly classified

50

numactive: Number of active pixels in frame

sizeconnected: Number of active pixels in largest connected component

numconnected: Number of connected components in frame

Leaf format:

<attribute name> <comparator> <value>:

<classified as class>

(<total number of instances reaching leaf>

/<number of those instances that are misclassified>)

e.g. attribute <= 10: 3 (100.0/50.0)

Fractional measures are caused by the distribution of samples with

missing values

numactive <= 20

| sizeconnected <= 10

| | numactive <= 10

| | | numconnected <= 2

| | | | numactive <= 9

| | | | | numactive <= 5

| | | | | | numactive <= 4: 1 (22.96/5.6)

| | | | | | numactive > 4: 2 (16.0/3.0)

| | | | | numactive > 5

| | | | | | sizeconnected <= 5: 2 (2.0)

| | | | | | sizeconnected > 5: 1 (67.0/6.0)

| | | | numactive > 9: 2 (22.0/3.0)

| | | numconnected > 2: 1 (20.0)

| | numactive > 10: 2 (68.0/6.0)

| sizeconnected > 10: 1 (132.04/22.4)

numactive > 20

| sizeconnected <= 24

| | numactive <= 36

| | | sizeconnected <= 15: 2 (144.0/17.0)

| | | sizeconnected > 15

| | | | numactive <= 22

| | | | | numactive <= 21

| | | | | | numconnected <= 1: 1 (3.0/1.0)

| | | | | | numconnected > 1: 3 (2.0)

| | | | | numactive > 21: 1 (2.0)

| | | | numactive > 22: 2 (44.0/14.0)

| | numactive > 36: 3 (12.0/4.0)

| sizeconnected > 24

| | numconnected <= 1: 2 (4.0/2.0)

| | numconnected > 1: 3 (24.0/2.0)

Listing 4.1: C4.5 Decision tree generated by Weka’s J48 implementation from
the Classification Experiment Set data

51

Radio Sleep Wake Volts Wake Sample Avg Life

Model (mA) (mA) (V) (ms) (Hz) (mW) (days)

Existing 7 34 52 4.9 ∞ 0.20 255.84 8
Sleep 7 34 52 4.9 100 0.20 169.05 12
ThermoS. X ? ? 3.3 ? 0.20 15.91 131
LowPwr A X 0.065 23 3.3 300 0.20 4.76 438
LowPwr B X 0.065 23 3.3 300 0.01 0.44 4718

Radio: Does the model use radio transmission?
Sleep (mA): Milliamp current consumption in sleep state
Wake (mA): Milliamp current consumption in wake state
Volts (V): Voltage requirement of model
Wake (ms): Min. millisecond time model must be awake to sample & transmit once

(∞ = never sleeps)
Sample (Hz): Freq. that model wakes and performs sample & transmit
Avg (mW): Avg. milliwatt power given sleep/wake current, voltage, sample and wake time
Life (days): Est. life of model assuming a perfect 50 watt-hour (Wh) battery

Table 4.5: Comparison of different systems power consumption and their various
energy efficiency traits

4.4.2 Energy Efficiency

As discussed in subsection 4.3.2, the prototype initially appears comparatively
power hungry, as the ThermoSense system reported a power consumption of
∼4.8 mA, 1/10 of the size. However, making fair comparisons is difficult, as their
data is incomplete. The 4.8 mA figure they quote is an average consumption
figure taking into account all aspects of the wake/sleep cycle. No breakdown
on wake times, sleep or wake current was provided, making direct comparisons
on those metrics difficult. We examined the datasheets of their components and
estimate a voltage of 3.3 V to generate our average milliwatt figure.

For our prototype sensing system, we restricted our adherence to low-power
consumption to an architectural level, rather than making specific hardware
and software changes. For our comparisons, we have elected to use a 50 watt-
hour (Wh) battery as a measure, as there exist inexpensive batteries in that class
weighing around 300 grams [3] that provide a good balance between capacity and
weight. We propose several different prototype designs in Table 4.5 and calculate
theoretical prototype lifetimes assuming a perfect 50 Wh battery.

ThermoSense indicated that for each of their nodes, which consumed approx-
imately 4.8 mA each, there were two 3 (Ah) batteries running in series. They
indicated that at a sample rate of 0.2 Hz (once every 5 seconds) their prototype
was able to run for approximately 21 days. Using our 50 Wh battery (“ThermoS.”
in Table 4.5), we estimate that this would increase to approximately 131 days.

52

Our current prototype (“Existing” in Table 4.5) can boot and take one mea-
sure in approximately 100 ms, indicating it would need to be awake for 2% of each
five second window to perform one sample. Without any sleep, this prototype is
always drawing a constant 52 mA, and consequently can only last 8 days.

If we were to implement a simple software-driven sleep cycle (“Sleep” in Ta-
ble 4.5) minor power savings would occur. Incorporating sleep would reduce
average current to 34 mA, assuming our present Arduino current draw. With the
same battery capacity, we would expect battery life to increase to 12 days.

The high power consumption of our prototype is largely due to the use of
off-the-shelf Arduino hardware which is not designed for low-power applications.
Firstly, there exist several unnecessary LEDs that are constantly powered which
could account for several milliamps. Secondly, there is a large power loss in our
level shifting and voltage conversion circuit. We estimate that the resistors alone
could be responsible for 3–4 mA of lost current. This is primarily a result of
the 5 V, 3.3 V or 2.6 V requirements of different components. Standardizing the
voltage at 3.3 V would allow several inefficient conversion circuits to be removed.

Contemplating a more real-world prototype, there exist Arduino boards that
use the same processor as ours (and thereby are fully compatible) that can be
constructed easily and reduce base power consumption to 7 mA, without sleep. In
sleep mode, the power consumption drops to an impressive 43 µA. A commonly
used radio used in such devices is the ZigBee. Dementyev, Hodges and Tay-
lor et al. [11] suggest that a ZigBee radio would consume approximately 4.2 µA
when sleeping and 9.3 mA when awake, with a minimum wake time of around
270 ms to connect to the other nodes on the network. With a minimum data
transfer rate of 20 kb/s and approximately 200 bytes of data to transmit each
interval, we can set the upper limit of the radio wake time to be 300 ms. Us-
ing this radio, board and eliminating our voltage conversion issues (“LowPwr
A” in Table 4.5) would increase the prototype’s lifetime to around 438 days, a
significant improvement over ThermoSense.

Additionally, in a real-world system, we contend that a sample rate of 0.01 Hz
(once per 100 seconds) would provide sufficiently up-to-date information. Doing
so provides an order of magnitude more battery life (“LowPwr B” in Table 4.5),
with it being able to last more than 12 years.

Realistically, the battery lives of any of these prototypes would be less than
estimated due to our assumptions about perfect efficiency, including the fact that
an average battery would rarely hold its full charge for the time-scales discussed.
However, these calculations provide us with useful relative comparative power
and demonstrate that our prototype has the potential to be competitive with or
better than ThermoSense in the realm of energy efficiency.

53

CHAPTER 5

Conclusions

The smart-home economy continues to grow, with automation being one of the
main areas driving growth. The ability to detect occupants present within a
space is an important smart-automation feature, with the implications for climate
control energy efficiency alone being highly significant.

This project has created a prototype occupancy detection system for such a
smart home environment that meets four criteria; Low Cost, Non-Invasive, En-
ergy Efficient and Reliable. This prototype was based upon the ceiling-mounted
thermal imaging approach of ThermoSense [8], which after extensive analysis
proved to be the best option given our criteria.

5.1 Evaluation of Criteria

5.1.1 Low Cost

One of our primary goals was to create a system that was inexpensive enough
that it would be suitable for both office environments with tens or hundreds of
rooms, as well as in smart homes for the disabled and elderly, both of which are
areas where per-unit cost is an issue.

As discussed in the Design chapter (subsection 3.1.4), the cost of our proposed
sensing system is around $185, on par with the ThermoSense system and below
our original $300 goal. Compared with most thermal sensing systems, this is
significantly less expensive, as devices incorporating thermal imaging can cost in
the hundreds, thousands or even tens of thousands of dollars. We admit that
$185 is still expensive for such a sensing system, when taking into consideration
that many would be needed for one home. However, while this is the cost of such
components today, this is by no means the cost of them tomorrow. Prices for
all of the components involved in this design are falling rapidly, in particular the
price of the thermal sensor: In the future work section we discuss a sensor that

54

takes the price per pixel from the $1.25 for the Melexis MLX90620 (MLX) to a
mere $0.07.

Right now we are at the stage where this technology is economical for re-
searchers to investigate, but a future where it becomes economical for consumers
is approaching fast. We believe by selecting the components that we have at the
current price point, we have met the project’s goal of low cost.

5.1.2 Non-Invasive

To ensure wide adoption, minimising privacy concerns is necessary. We viewed
creating a system with little means by which to surveil occupants as the best way
to minimise such concerns.

As discussed in the Literature Review (Section 2.3), we concluded that the
MLX provides the best trade-off between accuracy and non-invasiveness of those
sensing systems studied. It provides this trade-off from two different angles; the
infra-red aspect and the low-resolution aspect.

By sensing in the infra-red spectrum, many elements of automatic and man-
ual person identification become more difficult, as many such methods rely on
using colour information to make such decisions. Similarly, by having the sensor
constrained to such a low resolution, it also presents significant difficulty to per-
forming person or action identification, due to the little identifiable information
available.

Through our architectural decisions, we believe that the project’s goal of
producing a non-invasive sensing system has been achieved.

5.1.3 Reliable

Creating a system that is wholly automated and can detect occupants with a high
level of accuracy is important to ensure that climate control and other occupant-
driven tasks are reliably executed.

As discussed in Subsection 4.3.1, we were unable to replicate ThermoSense’s
Root-Mean-Square Errors (RMSEs) of 0.346, 0.409 and 0.385 occupants with ei-
ther k-nearest Neighbours, Linear Regression, or Multi-Layer Perceptron respec-
tively. This suggests that the classifiers ThermoSense used were highly sensitive
to their sensor’s specific properties.

However among our own selected machine learning algorithms, K* and C4.5
achieved accuracies in the 80%+ range, exceeding our original goal of 75%. These

55

algorithms also improved upon ThermoSense’s best RMSE with RMSEs of 0.304
and 0.314 occupants respectively. Both of these algorithms leverage entropy
measures as a way of partitioning data, suggesting that entropy-based approaches
may be particularly suited to our dataset.

Using the K* or C4.5 machine learning algorithm, we are confident that this
prototype could achieve appropriate levels of accuracy for its occupancy goals,
and believe that the reliability requirements of our project have been met.

5.1.4 Energy Efficient

Finally, as the system would hopefully be suitable for use in existing buildings,
we aimed to create a system that could operate efficiently on battery power,
as retrofitting power on a ceiling location would further add to the cost of the
sensing system.

As discussed in the Energy Efficiency results (Subsection 4.3.2), with the same
sample rate and battery size and while sleeping between samples, our current
prototype is estimated to last 8 days, slightly exceeding our originally proposed
goal. However, this is compared to ThermoSense’s 131 days.

While the current prototype is not as energy efficient as the ThermoSense
prototype, the Arduino used is not the most energy efficient available, and the
software running on it makes no attempt to sleep the hardware while no pro-
cessing is occurring. We believe that with such measures, our prototype could
achieve similar or better energy efficiency than ThermoSense, and have ensured
that our architectural decisions will not restrict such energy saving modifications.

To that end, we consider the sample rate of once every five seconds used
by ThermoSense to be unnecessarily fast, and instead advocate for a sample
rate of once every 100 seconds. With such a sample rate, and using a proposed
alternative Arduino system with a significantly reduced power draw, we estimate
a power draw significantly lower than that of ThermoSense, with the system
being to able to last for an estimated 12 years without charge.

We recommend that in future work, further energy saving measures, such as
sleeping between sampling, and using lower power draw Arduinos are investigated
to determine how much power it is possible to save.

56

5.2 Future Work

This project has attempted to explore the area of thermal sensing and occupancy
with some depth, and with the developed software and hardware prototype, has
laid the foundation for many more projects that build upon this project’s work.
Some areas of future research are discussed here.

5.2.1 Broader Data Collection

Classification dataset collection was constrained to one set of ten experiments.
Each of these experiments had the sensing system recording at the same height
and the same angle. This data did contain some elements of variability, such as
both sitting and standing occupants. However, further exploration of how the
results differ based on the sensor’s viewing angle or distance from the ground
would provide valuable information.

Priorities for new experiments include exploring more than three people, in-
vestigating classification using classes that encompass ranges of people (e.g. “1-
2 persons”, “2-4 persons”, “4-8 persons”, “8+ Person”), and investigating how
placing the sensing system at different angles affects the accuracy of the collected
data. Additionally, investigating the limits of the sensor’s ability to distinguish
large numbers of people with the limited number of pixels available.

5.2.2 Different Feature Vectors

Exploring how different subsets of the three current features, or possibly new
features derived from the thermal capture, affect the accuracy of the machine
learning algorithms may demonstrate interesting results. We believe that exper-
imenting with features that represent the abstract “shape”, or “roundness” of
connected components is a particularly promising area of research.

5.2.3 Different Classification Algorithms

While the set of explored classification algorithms was significant, there is always
room for improvement in this regard. Exploring how different parameters of
these algorithms affected the results, and how different algorithms altogether
faired would have added significantly to the experimental data. Emerging work
in the area of classification algorithm selection and parameter optimisation [26]

57

could assist in automatically determining the best classification algorithm for our
sensor.

5.2.4 Sub-Pixel Localisation

The characteristics of the Melexis MLX90620 (MLX)’s individual thermopiles,
discussed in Subsection 4.1.3, potentially make possible an algorithm for the
calculation of the position and size of an object with a sub-pixel accuracy. The
variability in measured temperatures for an object is related to its distance to
pixel edges. By exploiting this, it may be possible to further refine the edges
of thermal objects detected and increase the effective resolution of the sensor
system.

5.2.5 Improving Robustness

One of the main areas of the project that was deemed out of scope was the intro-
duction of a wireless mesh networking architecture to the project. Future pro-
totypes would consist of an many-to-one relationship between the Sensing/Pre-
processing tier and the Analysis tier. Exploring the best way to mesh network
these components while maintaining all the pre-existing criteria of the project
would be involved and useful.

Similarly, the current prototype uses a breadboard design that increases the
size of the prototype significantly, as well as reduces the physical robustness of
the prototype in the long-term. Converting the MLX and PIR circuit into a
printed circuit board that fits onto the Arduino as a shield would both reduce
the size of the prototype, as well as improve reliability for the future.

5.2.6 Field-Of-View Modifications

Several different techniques could be used to improve upon the field-of-view lim-
itations of the MLX, and exploring them and their cost/complexity implications
would be useful. The first of these is applying a lens to the sensor, effectively ex-
panding the field-of-view, but at the cost of distorting the image. Compensating
for this distortion while maintaining accuracy presents an intriguing problem.

In another direction, using a motor with the MLX to “sweep” a room, and
thereby constructing a larger image of the space could also resolve the field-
of-view issues. However, this approach also presents problems in stitching the
images together in a sensible way. Problems include the lens distortion caused by

58

rotating the sensor, potential thermal distortions caused by the motor, increased
energy consumption, and cases where a fast-moving object may be represented
multiple times in a stitched capture.

5.2.7 New Sensors

During this project, an updated version of our sensor, the MLX90621, was re-
leased. This version (at a similar price point) doubles the field-of-view in both the
horizontal and vertical directions, addressing many of the problems encountered
with the size of detection area in low-ceiling rooms. This version offers nearly
complete backwards compatibility with the MLX90620. Updating the project
code-base to support it and re-running the experiments with the increased field-
of-view to determine how much of an improvement it is would be interesting.

In addition to this, significantly higher resolution sensors are beginning to
come to the market. The FLiR Lepton [23], which sells in a development kit
for $350, offers an 80 × 60 pixel sensor with a comparable field-of-view to the
Grid-EYE. Comparing the MLX with the FLiR, we see that the price per pixel is
$1.25 for the MLX and only $0.07 for the FLiR. Exploring the accuracy achievable
though such significant increases in resolution would be useful.

5.3 Summary

Fundamentally, in this project we set out to create a sensing system that met our
requirements of Low-Cost, Non-Invasiveness, Reliability and Energy Efficiency,
and we have indeed created such a sensing system. The work required to achieve
this project’s goals was extensive, from reviewing the state of occupancy sensing,
to developing a hardware prototype and software library, to performing experi-
mentation on the system and its properties, and to validate the reliability and
energy efficiency of the prototype with a series of experiments.

This dissertation and accompanying sensing system prototype both validates
the methods and results of the ThermoSense paper, discovers key caveats sur-
rounding the ThermoSense approach, and also creates a software and hardware
base on which future research into the area of occupancy in thermal imaging can
be explored.

59

Bibliography

[1] Adafruit. 4-channel I2C-safe bi-directional logic level converter - BSS138 (prod-
uct ID 757). http://www.adafruit.com/product/757. Retrieved January 7,
2015.

[2] Adafruit. PIR (motion) sensor (product ID 189). http://www.adafruit.com/
product/189. Retrieved February 8, 2015.

[3] Adafruit. USB Battery Pack for Raspberry Pi - 10000mAh - 2 x 5V @ 2A
(product ID 1566). http://www.adafruit.com/products/1566. Retrieved April
15, 2015.

[4] Arduino Forums. Arduino and MLX90620 16X4 pixel IR thermal array.
http://forum.arduino.cc/index.php/topic,126244.0.html, 2012. Retrieved
January 7, 2015.

[5] Australian Bureau of Statistics. Household water and energy
use, Victoria: Heating and cooling. Tech. Rep. 4602.2, 2011. Re-
trieved October 6, 2014 from http://www.abs.gov.au/ausstats/abs@.nsf/0/

85424ADCCF6E5AE9CA257A670013AF89.

[6] Australian Bureau of Statistics. Disability, ageing and carers, Aus-
tralia: Summary of findings: Carers - key findings. Tech. Rep. 4430.0, 2012.
Retrieved April 10, 2015 from http://www.abs.gov.au/ausstats/abs@.nsf/

Lookup/D9BD84DBA2528FC9CA257C21000E4FC5.

[7] Balaji, B., Xu, J., Nwokafor, A., Gupta, R., and Agarwal, Y. Sen-
tinel: occupancy based HVAC actuation using existing WiFi infrastructure within
commercial buildings. In Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems (2013), ACM, p. 17.

[8] Beltran, A., Erickson, V. L., and Cerpa, A. E. ThermoSense: Occupancy
thermal based sensing for HVAC control. In Proceedings of the 5th ACM Work-
shop on Embedded Systems For Energy-Efficient Buildings (2013), ACM, pp. 1–8.

[9] Chan, M., Campo, E., Estève, D., and Fourniols, J.-Y. Smart homes -
current features and future perspectives. Maturitas 64, 2 (2009), 90–97.

[10] Cleary, J. G., Trigg, L. E., et al. K*: An instance-based learner using an
entropic distance measure. In Proceedings of the 12th International Conference
on Machine learning (1995), vol. 5, pp. 108–114.

60

http://www.adafruit.com/product/757
http://www.adafruit.com/product/189
http://www.adafruit.com/product/189
http://www.adafruit.com/products/1566
http://forum.arduino.cc/index.php/topic,126244.0.html
http://www.abs.gov.au/ausstats/abs@.nsf/0/85424ADCCF6E5AE9CA257A670013AF89
http://www.abs.gov.au/ausstats/abs@.nsf/0/85424ADCCF6E5AE9CA257A670013AF89
http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/D9BD84DBA2528FC9CA257C21000E4FC5
http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/D9BD84DBA2528FC9CA257C21000E4FC5

[11] Dementyev, A., Hodges, S., Taylor, S., and Smith, J. Power consumption
analysis of bluetooth low energy, zigbee and ant sensor nodes in a cyclic sleep
scenario. In Wireless Symposium (IWS), 2013 IEEE International (2013), IEEE,
pp. 1–4.

[12] Erickson, V. L., Achleitner, S., and Cerpa, A. E. POEM: Power-efficient
occupancy-based energy management system. In Proceedings of the 12th inter-
national conference on Information processing in sensor networks (2013), ACM,
pp. 203–216.

[13] Fisk, W. J., Faulkner, D., and Sullivan, D. P. Accuracy of CO2 sensors in
commercial buildings: a pilot study. Tech. Rep. LBNL-61862, Lawrence Berkeley
National Laboratory, 2006. Retrieved October 6, 2014 from http://eaei.lbl.

gov/sites/all/files/LBNL-61862_0.pdf.

[14] Gupta, M., Intille, S. S., and Larson, K. Adding gps-control to traditional
thermostats: An exploration of potential energy savings and design challenges. In
Pervasive Computing. Springer, 2009, pp. 95–114.

[15] Hailemariam, E., Goldstein, R., Attar, R., and Khan, A. Real-time oc-
cupancy detection using decision trees with multiple sensor types. In Proceedings
of the 2011 Symposium on Simulation for Architecture and Urban Design (2011),
Society for Computer Simulation International, pp. 141–148.

[16] Han, J., Kamber, M., and Pei, J. Data Mining: Concepts and Techniques.
The Morgan Kaufmann Series in Data Management Systems. Elsevier Science,
2011.

[17] Hnat, T. W., Griffiths, E., Dawson, R., and Whitehouse, K. Doorjamb:
unobtrusive room-level tracking of people in homes using doorway sensors. In
Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems
(2012), ACM, pp. 309–322.

[18] Kleiminger, W., Beckel, C., Dey, A., and Santini, S. Inferring household
occupancy patterns from unlabelled sensor data. Tech. Rep. 795, ETH Zurich,
2013. Retrieved October 6, 2014 from http://eaei.lbl.gov/sites/all/files/

LBNL-61862_0.pdf.

[19] Kleiminger, W., Beckel, C., Staake, T., and Santini, S. Occupancy
detection from electricity consumption data. In Proceedings of the 5th ACM
Workshop on Embedded Systems For Energy-Efficient Buildings (2013), ACM,
pp. 1–8.

[20] Li, N., Calis, G., and Becerik-Gerber, B. Measuring and monitoring oc-
cupancy with an RFID based system for demand-driven HVAC operations. Au-
tomation in construction 24 (2012), 89–99.

61

http://eaei.lbl.gov/sites/all/files/LBNL-61862_0.pdf
http://eaei.lbl.gov/sites/all/files/LBNL-61862_0.pdf
http://eaei.lbl.gov/sites/all/files/LBNL-61862_0.pdf
http://eaei.lbl.gov/sites/all/files/LBNL-61862_0.pdf

[21] Melexis. Datasheet IR thermometer 16X4 sensor array
MLX90620. http://www.melexis.com/Infrared-Thermometer-Sensors/

Infrared-Thermometer-Sensors/MLX90620-776.aspx, 2012. Retrieved January
7, 2015.

[22] Serrano-Cuerda, J., Castillo, J. C., Sokolova, M. V., and Fernández-
Caballero, A. Efficient people counting from indoor overhead video camera.
In Trends in Practical Applications of Agents and Multiagent Systems. Springer,
2013, pp. 129–137.

[23] SparkFun. FLiR Dev Kit. https://www.sparkfun.com/products/13233. Re-
trieved April 8, 2015.

[24] Swoboda, K. Energy prices–the story behind rising costs. In Parlia-
mentary Library Briefing Book - 44th Parliament. Australian Parliament
House Parliamentary Library, 2013. Retrieved February 3, 2015 from
http://www.aph.gov.au/About_Parliament/Parliamentary_Departments/

Parliamentary_Library/pubs/BriefingBook44p/EnergyPrices.

[25] Teixeira, T., Dublon, G., and Savvides, A. A survey of human-sensing:
Methods for detecting presence, count, location, track, and identity. Tech.
rep., Embedded Networks and Applications Lab (ENALAB), Yale University,
2010. Retrieved October 6, 2014 from http://www.eng.yale.edu/enalab/

publications/human_sensing_enalabWIP.pdf.

[26] Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K. Auto-
weka: Combined selection and hyperparameter optimization of classification al-
gorithms. In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining (2013), ACM, pp. 847–855.

[27] University of Waikato. Weka. http://www.cs.waikato.ac.nz/ml/weka/.
Retrieved March 10, 2015.

[28] Weka. CorrelationAttributeEval. http://weka.sourceforge.net/doc.dev/

weka/attributeSelection/CorrelationAttributeEval.html, 2014. Retrieved
June 20, 2015.

[29] Willmott, C. J., and Matsuura, K. Advantages of the mean absolute er-
ror (MAE) over the root mean square error (RMSE) in assessing average model
performance. Climate research 30, 1 (2005), 79.

62

http://www.melexis.com/Infrared-Thermometer-Sensors/Infrared-Thermometer-Sensors/MLX90620-776.aspx
http://www.melexis.com/Infrared-Thermometer-Sensors/Infrared-Thermometer-Sensors/MLX90620-776.aspx
https://www.sparkfun.com/products/13233
http://www.aph.gov.au/About_Parliament/Parliamentary_Departments/Parliamentary_Library/pubs/BriefingBook44p/EnergyPrices
http://www.aph.gov.au/About_Parliament/Parliamentary_Departments/Parliamentary_Library/pubs/BriefingBook44p/EnergyPrices
http://www.eng.yale.edu/enalab/publications/human_sensing_enalabWIP.pdf
http://www.eng.yale.edu/enalab/publications/human_sensing_enalabWIP.pdf
http://www.cs.waikato.ac.nz/ml/weka/
http://weka.sourceforge.net/doc.dev/weka/attributeSelection/CorrelationAttributeEval.html
http://weka.sourceforge.net/doc.dev/weka/attributeSelection/CorrelationAttributeEval.html

APPENDIX A

Statistical Measures

A.1 Root-Mean-Square Error

Root-Mean-Square Error (RMSE), or Root-Mean-Square Deviation, is a method
of measuring the average error, or deviation, between a model’s set of predicted
values and the actual correct values (ground truth). The Root-Mean-Square
aspect derives from the fact that this model averages the square of each deviation,
and then performs a square root of this average to prevent positive and negative
deviations from effectively cancelling each other out [29].

The basic formula for RMSE involves n model values and n corresponding
true results, with the set x̂ = {x̂0, ..., x̂n} of all model results and the set x =
{x0, ..., xn} of corresponding true results.

The “deviation” between a given model value x̂i and a corresponding true
value xi is the difference between these two. The RMSE is the average of these
differences values, which are then squared and summated. This aggregate value
is then divided by the total number of values, n, to give the average. The square
root of this average is then calculated to give the final result:

RMSE =
2

√
Σn

i=1(x̂i − xi)2
n

(A.1)

A.2 Precision and Recall

Precision and Recall refer to different measures of a model’s accuracy, based on
the number of True Positives (TP), False Positives (FP) and/or False Negatives
(FN) within the prediction space. When discussing “accuracy” generally, we are
referring to Precision.

Precision and Recall are defined as follows:

63

Precision =
TP

TP + FP
(A.2)

Recall =
TP

TP + FN
(A.3)

A.3 Correlation

Within this document, the standard Pearson product-moment correlation coeffi-
cient (referred to as “r”, or “Pearson’s r” in text) is used to measure the corre-
lation between two different variables. Values of r can range between -1 and +1,
with either extreme indicating a perfect correlation with a leftwards or rightwards
slant, and zero indicating that the different variables have no correlation.

With our machine learning models, an ideal correlation is one of -1 or +1
(as a correlation of -1 can be equated to one of +1 through inversion). Weka’s
“correlation” results are that of Pearson’s r [28].

64

APPENDIX B

Classification Algorithms

Here we describe the basic operation of the common classification algorithms
used to classify our occupancy information. For those algorithms not discussed
in detail in Chapter 4, we also provide information on how to implement them in
Weka. Based on information in Han, Kamber and Pei’s “Data Mining: Concepts
and Techniques” [16].

B.1 Artificial Neural Networks

An Artificial Neural Network (ANN) uses neurons as a model for machine learn-
ing. A number of input neurons connected to the feature vectors is fed into
another network of neurons (the “hidden layer”), each of which has an activation
function which determines what set of inputs will make it fire. This network then
connects to a number of output neurons which can be examined to determine the
network’s predicted result.

In the nominal result case, there is one neuron for each possible class, and in
the numeric result case, there is one neuron without an activation function that
outputs a raw numerical estimate. Neural networks can approximate functions
of nearly any complexity with sufficient neurons in the correct topology, and are
a commonly used classification technique.

B.2 K Nearest Neighbours

A k-nearest Neighbours (KNN) approach uses the topology of the training data
as a means to classify future data. For each data point that requires classifi-
cation, a majority vote of its k nearest neighbours (defined by some distance
function, typically Euclidean) in the training data determines which class it be-
longs to. KNN is one of the simplest machine learning algorithms, and due to its
classification technique, is highly sensitive to classes that overlap.

65

B.3 Linear Regression

A Linear Regression approach attempts to construct a linear equation to describe
the relationship between a dependent variable (in this case, the number of people
in the space), and a number of other indicator variables (in this case, the three
feature vectors). Generally, the equation takes the form y = m1x1+...+mnxn+c,
where each of the feature vectors (xn) is multiplied by a weight (mn), and then
a final constant (c) is added to provide the final prediction.

B.4 Naive Bayes

A Naive Bayes approaches uses a simple application of Bayes’ probability theorem
to construct a probability of a given value belonging to a given class taking into
account what is already known about the distribution of each of the classes in
the data set and the surrounding points. One of the disadvantages of the Naive
Bayes approach (and the source of its naivety) is that it assumes independence
between each of the variables used for classification.

In our data, the assumption of variable independence is not correct, as each of
the features are different representations of the same underlying data. However,
due to Naive Bayes’ ubiquity and simplicity, it can be illuminating to see how
well a common but poorly suited classifier fares with our data set. Within Weka,
we use the “NaiveBayes” function, which has little by way of configuration, thus
is left in its default state.

B.5 Support Vector Machines

Support Vector Machines (SVM) attempt to classify data by trying to find a
plane that best separates two classes in a higher dimensional space. They do
this by determining “support vectors,” which are those data points that lie on
the “edge” of the separation between classes, and then finding the plane that
maximizes the margin between the two classes being tested. SVM is another
common classification technique that we elect to investigate.

For our purposes, we use Weka’s “SMO” function, which implements the
Sequential Minimal Optimization algorithm, an efficient and recent method for
training SVMs. For datasets with more than two classes (such as ours), the “one
vs. one” method is used, whereby an SVM is created for each pair of classes,

66

and then a method of majority voting is used to determine which class is the
ultimately correct one.

B.6 Decision Trees

Decision Tree based approaches use a flow-chart of logical conditions which when
met cause a data point to be classified as a specific class. Decision Tree classifiers
generally use a partitioning approach whereby they split the data using a specific
metric to maximize the tree’s effectiveness. The advantages of Decision Trees
are that they are considered to be “white boxes,” meaning that the result that
they generate is human readable. This is useful, as in addition to the classifier
providing its prediction of which class suits the data best, the tree can also be
inspected to determine if the decisions it has extrapolated appear to be sensible,
and even tweaked by humans if necessary.

One common algorithm for generating decision trees is C4.5, which is imple-
mented by the “J48” function in Weka. C4.5 uses a measure of information gain,
a concept rooted in information theory and entropy, to determine when to create
splits in the tree. There are few configurable parameters for this approach, and
for those we use the Weka defaults.

B.7 0-R

0-R is our final classification algorithm. 0-R is a simple classifier that on nominal
prediction will classify all new data as belonging to the category that was most
common in the training data, and on numeric prediction will classify all new
data as being the mean of all test data. A 0-R classifier, clearly, is not a serious
classification technique, however it is useful in establishing a baseline from which
to compare all other classification results.

In Weka, the 0-R classifier is known as “ZeroR” and accepts no parameters.

67

APPENDIX C

Knowledge Flows

Figure C.1: Weka Knowledge flow for numeric classification techniques

68

Figure C.2: Weka Knowledge flow for nominal classification techniques

In Weka, Knowledge Flows can be defined, which provide an easy way to replicate a series of Weka functions.
We provide a unified knowledge flow in the run flow.py script to execute it on a given data set. We replicate the
numeric and nominal flows separately here.

69

APPENDIX D

Original Honours Proposal

Title: Developing a robust system for occupancy detection in the house-
hold

Author: Ash Tyndall

Supervisor: Professor Rachel Cardell-Oliver

Degree: BCompSci (24 point project)

Date: October 8, 2014

D.1 Background

The proportion of elderly and mobility-impaired people is predicted to grow dra-
matically over the next century, leaving a large proportion of the population
unable to care for themselves, and consequently less people able care for these
groups. [5] With this issue looming, investments are being made into a variety of
technologies that can provide the support these groups need to live independent
of human assistance.

With recent advancements in low cost embedded computing, such as the Ar-
duino [1] and Raspberry Pi, [14] the ability to provide a set of interconnected
sensors, actuators and interfaces to enable a low-cost ‘smart home for the dis-
abled’ is becoming increasingly achievable.

Sensing techniques to determine occupancy, the detection of the presence and
number of people in an area, are of particular use to the elderly and disabled.
Detection can be used to inform various devices that change state depending
on the user’s location, including the better regulation energy hungry devices to
help reduce financial burden. Household climate control, which in some regions
of Australia accounts for up to 40% of energy usage [2] is one particular area

70

in which occupancy detection can reduce costs, as efficiency can be increased
dramatically with annual energy savings of up to 25% found in some cases. [7]

Significant research has been performed into the occupancy field, with a fo-
cus on improving the energy efficiency of both office buildings and households.
This is achieved through a variety of sensing means, including thermal arrays,
[4] ultrasonic sensors, [10] smart phone tracking, [11][3] electricity consumption,
[12] network traffic analysis, [15] sound, [9] CO2, [9] passive infrared, [9] video
cameras, [6] and various fusions of the above. [16][15]

D.2 Aim

While many of the above solutions achieve excellent accuracies, in many cases
they suffer from problems of installation logistics, difficult assembly, assumptions
on user’s technology ownership and component cost. In a smart home for the
disabled, accuracy is important, but accessibility is paramount.

The goal of this research project is to devise an occupancy detection system
that forms part of a larger ‘smart home for the disabled’ that meets the following
accessibility criteria;

• Low Cost: The set of components required should aim to minimise cost, as
these devices are intended to be deployed in situations where the serviced
user may be financially restricted.

• Non-Invasive: The sensors used in the system should gather as little infor-
mation as necessary to achieve the detection goal; there are privacy concerns
with the use of high-definition sensors.

• Energy Efficient: The system may be placed in a location where there is no
access to mains power (i.e. roof), and the retrofitting of appropriate power
can be difficult; the ability to survive for long periods on only battery power
is advantageous.

• Reliable: The system should be able to operate without user intervention
or frequent maintenance, and should be able to perform its occupancy de-
tection goal with a high degree of accuracy.

Success in this project would involve both

71

1. Devising a bill of materials that can be purchased off-the-shelf, assembled
without difficulty, on which a software platform can be installed that per-
forms analysis of the sensor data and provides a simple answer to the oc-
cupancy question, and

2. Using those materials and softwares to create a final demonstration proto-
type whose success can be tested in controlled and real-world conditions.

This system would be extensible, based on open standards such as REST or
CoAP, [8][13] and could easily fit into a larger ‘smart home for the disabled’ or
internet-of-things system.

D.3 Method

Achieving these aims involves performing research and development in several
discrete phases.

D.3.1 Hardware

A list of possible sensor candidates will be developed, and these candidates will
be ranked according to their adherence to the four accessibility criteria outlined
above. Primarily the sensor ranking will consider the cost, invasiveness and
reliability of detection, as the sensors themselves do not form a large part of the
power requirement.

Similarly, a list of possible embedded boards to act as the sensor’s host and
data analysis platform will be created. Primarily, they will be ranked on cost,
energy efficiency and reliability of programming/system stability.

Low-powered wireless protocols will also be investigated, to determine which
is most suitable for the device; providing enough range at low power consumption
to allow easy and reliable communication with the hardware.

Once promising candidates have been identified, components will be pur-
chased and analysed to determine how well they can integrate.

D.3.2 Classification

Depending on the final sensor choice, relevant experiments will be performed
to determine the classification algorithm with the best occupancy determina-

72

tion accuracy. This will involve the deployment of a prototype to perform data
gathering, as well as another device/person to assess ground truth.

D.3.3 Robustness / API

Once the classification algorithm and hardware are finalised, an easy to use API
will be developed to allow the data the device collects to be integrated into a
broader system.

The finalised product will be architected into a easy-to-install software solu-
tion that will allow someone without domain knowledge to use the software and
corresponding hardware in their own environment.

D.4 Timeline

Date Task
Fri 15 August Project proposal and project summary due to Coordi-

nator
August Hardware shortlisting / testing
25–29 August Project proposal talk presented to research group
September Literature review
Fri 19 September Draft literature review due to supervisor(s)
October - November Core Hardware / Software development
Fri 24 October Literature Review and Revised Project Proposal due

to Coordinator
November - February End of year break
February Write dissertation
Thu 16 April Draft dissertation due to supervisor
April - May Improve robustness and API
Thu 30 April Draft dissertation available for collection from supervi-

sor
Fri 8 May Seminar title and abstract due to Coordinator
Mon 25 May Final dissertation due to Coordinator
25–29 May Seminar Presented to Seminar Marking Panel
Thu 28 May Poster Due
Mon 22 June Corrected Dissertation Due to Coordinator

73

D.5 Software and Hardware Requirements

A large part of this research project is determining the specific hardware and
software that best fit the accessibility criteria. Because of this, an exhaustive list
of software and hardware requirements are not given in this proposal.

A budget of up to $300 has been allocated by my supervisor for project
purchases. Some technologies with promise that will be investigated include;

Raspberry Pi Model B+ Small form-factor Linux computer
Available from http://arduino.cc/en/Guide/Introduction; $38

Arduino Uno Small form-factor microcontroller
Available from http://arduino.cc/en/Main/arduinoBoardUno; $36

Panasonic Grid-EYE Infrared Array Sensor
Available from http://www3.panasonic.biz/ac/e/control/sensor/infrared/

grid-eye/index.jsp; approx. $33

Passive Infrared Sensor
Available from various places; $10–$20

74

http://arduino.cc/en/Guide/Introduction
http://arduino.cc/en/Main/arduinoBoardUno
http://www3.panasonic.biz/ac/e/control/sensor/infrared/grid-eye/index.jsp
http://www3.panasonic.biz/ac/e/control/sensor/infrared/grid-eye/index.jsp

D.6 Proposal References

[1] Ardunio. http://arduino.cc/en/Guide/Introduction. Accessed: 2014-
08-09.

[2] Australian Bureau of Statistics. Household water and energy use,
Victoria: Heating and cooling. Tech. Rep. 4602.2, October 2011. Retrieved
October 6, 2014 from http://www.abs.gov.au/ausstats/abs@.nsf/0/

85424ADCCF6E5AE9CA257A670013AF89.

[3] Balaji, B., Xu, J., Nwokafor, A., Gupta, R., and Agarwal, Y.
Sentinel: occupancy based HVAC actuation using existing WiFi infrastruc-
ture within commercial buildings. In Proceedings of the 11th ACM Confer-
ence on Embedded Networked Sensor Systems (2013), ACM, p. 17.

[4] Beltran, A., Erickson, V. L., and Cerpa, A. E. ThermoSense:
Occupancy thermal based sensing for HVAC control. In Proceedings of the
5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings
(2013), ACM, pp. 1–8.

[5] Chan, M., Campo, E., Estève, D., and Fourniols, J.-Y. Smart
homes - current features and future perspectives. Maturitas 64, 2 (2009),
90–97.

[6] Erickson, V. L., Achleitner, S., and Cerpa, A. E. POEM: Power-
efficient occupancy-based energy management system. In Proceedings of the
12th international conference on Information processing in sensor networks
(2013), ACM, pp. 203–216.

[7] Erickson, V. L., Beltran, A., Winkler, D. A., Esfahani, N. P.,
Lusby, J. R., and Cerpa, A. E. Demo abstract: ThermoSense: thermal
array sensor networks in building management. In Proceedings of the 11th
ACM Conference on Embedded Networked Sensor Systems (2013), ACM,
p. 87.

[8] Guinard, D., Ion, I., and Mayer, S. In search of an internet of things
service architecture: REST or WS-*? a developers perspective. In Mobile
and Ubiquitous Systems: Computing, Networking, and Services. Springer,
2012, pp. 326–337.

75

http://arduino.cc/en/Guide/Introduction
http://www.abs.gov.au/ausstats/abs@.nsf/0/85424ADCCF6E5AE9CA257A670013AF89
http://www.abs.gov.au/ausstats/abs@.nsf/0/85424ADCCF6E5AE9CA257A670013AF89

[9] Hailemariam, E., Goldstein, R., Attar, R., and Khan, A. Real-
time occupancy detection using decision trees with multiple sensor types. In
Proceedings of the 2011 Symposium on Simulation for Architecture and Ur-
ban Design (2011), Society for Computer Simulation International, pp. 141–
148.

[10] Hnat, T. W., Griffiths, E., Dawson, R., and Whitehouse, K.
Doorjamb: unobtrusive room-level tracking of people in homes using door-
way sensors. In Proceedings of the 10th ACM Conference on Embedded
Network Sensor Systems (2012), ACM, pp. 309–322.

[11] Kleiminger, W., Beckel, C., Dey, A., and Santini, S. Poster ab-
stract: Using unlabeled Wi-Fi scan data to discover occupancy patterns of
private households. In Proceedings of the 11th ACM Conference on Embed-
ded Networked Sensor Systems (2013), ACM, p. 47.

[12] Kleiminger, W., Beckel, C., Staake, T., and Santini, S. Occu-
pancy detection from electricity consumption data. In Proceedings of the
5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings
(2013), ACM, pp. 1–8.

[13] Kovatsch, M. CoAP for the web of things: from tiny resource-constrained
devices to the web browser. In Proceedings of the 2013 ACM conference
on Pervasive and ubiquitous computing adjunct publication (2013), ACM,
pp. 1495–1504.

[14] Raspberry pi. http://www.raspberrypi.org/. Accessed: 2014-08-09.

[15] Ting, K., Yu, R., and Srivastava, M. Poster Abstract: Occupancy
inferencing from non-intrusive data sources. In Proceedings of the 5th ACM
Workshop on Embedded Systems For Energy-Efficient Buildings (2013),
ACM, pp. 1–2.

[16] Yang, Z., Li, N., Becerik-Gerber, B., and Orosz, M. A multi-
sensor based occupancy estimation model for supporting demand driven
HVAC operations. In Proceedings of the 2012 Symposium on Simulation
for Architecture and Urban Design (2012), Society for Computer Simulation
International, p. 2.

76

http://www.raspberrypi.org/

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Literature Review
	Intrinsic Traits
	Static Traits
	Dynamic Traits

	Extrinsic Traits
	Instrumented Traits
	Correlative Traits

	Analysis
	Research Gap

	Design and Implementation
	Hardware
	Sensing
	Pre-Processing
	Analysis / Classification
	Component Costs

	Software
	ThermoSense Implementation
	Sensing
	Pre-Processing
	Analysis / Classification

	Summary

	Evaluation
	Sensor Properties
	Bias
	Noise
	Sensitivity

	Classification
	Data Collection
	Data Labelling
	Feature Extraction and Data Conversion
	Executing Weka Tests
	Classifier Experiment Set

	Results
	Classification
	Energy Efficiency

	Discussion
	Classification
	Energy Efficiency

	Conclusions
	Evaluation of Criteria
	Low Cost
	Non-Invasive
	Reliable
	Energy Efficient

	Future Work
	Broader Data Collection
	Different Feature Vectors
	Different Classification Algorithms
	Sub-Pixel Localisation
	Improving Robustness
	Field-Of-View Modifications
	New Sensors

	Summary

	Bibliography
	Statistical Measures
	Root-Mean-Square Error
	Precision and Recall
	Correlation

	Classification Algorithms
	Artificial Neural Networks
	K Nearest Neighbours
	Linear Regression
	Naive Bayes
	Support Vector Machines
	Decision Trees
	0-R

	Knowledge Flows
	Original Honours Proposal
	Background
	Aim
	Method
	Hardware
	Classification
	Robustness / API

	Timeline
	Software and Hardware Requirements

