Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
vif.mer <- function (fit) {
## adapted from rms::vif
v <- vcov(fit)
nam <- names(fixef(fit))
## exclude intercepts
ns <- sum(1 * (nam == "Intercept" | nam == "(Intercept)"))
if (ns > 0) {
v <- v[-(1:ns), -(1:ns), drop = FALSE]
nam <- nam[-(1:ns)]
}
d <- diag(v)^0.5
v <- diag(solve(v/(d %o% d)))
names(v) <- nam
v
}
kappa.mer <- function (fit,
scale = TRUE, center = FALSE,
add.intercept = TRUE,
exact = FALSE) {
X <- fit@pp$X
nam <- names(fixef(fit))
## exclude intercepts
nrp <- sum(1 * (nam == "(Intercept)"))
if (nrp > 0) {
X <- X[, -(1:nrp), drop = FALSE]
nam <- nam[-(1:nrp)]
}
if (add.intercept) {
X <- cbind(rep(1), scale(X, scale = scale, center = center))
kappa(X, exact = exact)
} else {
kappa(scale(X, scale = scale, center = scale), exact = exact)
}
}
colldiag.mer <- function (fit,
scale = TRUE, center = FALSE,
add.intercept = TRUE) {
## adapted from perturb::colldiag, method in Belsley, Kuh, and
## Welsch (1980). look for a high condition index (> 30) with
## more than one high variance propotion. see ?colldiag for more
## tips.
result <- NULL
if (center)
add.intercept <- FALSE
if (is.matrix(fit) || is.data.frame(fit)) {
X <- as.matrix(fit)
nms <- colnames(fit)
}
else if (class(fit) == "mer") {
nms <- names(fixef(fit))
X <- fit@X
if (any(grepl("(Intercept)", nms))) {
add.intercept <- FALSE
}
}
X <- X[!is.na(apply(X, 1, all)), ]
if (add.intercept) {
X <- cbind(1, X)
colnames(X)[1] <- "(Intercept)"
}
X <- scale(X, scale = scale, center = center)
svdX <- svd(X)
svdX$d
condindx <- max(svdX$d)/svdX$d
dim(condindx) <- c(length(condindx), 1)
Phi = svdX$v %*% diag(1/svdX$d)
Phi <- t(Phi^2)
pi <- prop.table(Phi, 2)
colnames(condindx) <- "cond.index"
if (!is.null(nms)) {
rownames(condindx) <- nms
colnames(pi) <- nms
rownames(pi) <- nms
} else {
rownames(condindx) <- 1:length(condindx)
colnames(pi) <- 1:ncol(pi)
rownames(pi) <- 1:nrow(pi)
}
result <- data.frame(cbind(condindx, pi))
zapsmall(result)
}
maxcorr.mer <- function (fit,
exclude.intercept = TRUE) {
so <- summary(fit)
corF <- so@vcov@factors$correlation
nam <- names(fixef(fit))
## exclude intercepts
ns <- sum(1 * (nam == "Intercept" | nam == "(Intercept)"))
if (ns > 0 & exclude.intercept) {
corF <- corF[-(1:ns), -(1:ns), drop = FALSE]
nam <- nam[-(1:ns)]
}
corF[!lower.tri(corF)] <- 0
maxCor <- max(corF)
minCor <- min(corF)
if (abs(maxCor) > abs(minCor)) {
zapsmall(maxCor)
} else {
zapsmall(minCor)
}
}