From 287bd072671ae2af6a81e454478fc0c91a13c4ad Mon Sep 17 00:00:00 2001 From: Jin Woo Ahn Date: Mon, 14 May 2018 18:54:23 +0200 Subject: [PATCH] Add documentation on f1, recall and precision score with averaging mechanisms in api.rst. --- doc/api.rst | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/doc/api.rst b/doc/api.rst index 34107e78a7..03e446b112 100644 --- a/doc/api.rst +++ b/doc/api.rst @@ -37,6 +37,11 @@ Built-in Metrics Classification ~~~~~~~~~~~~~~ +Note: The default ``autosklearn.metrics.f1``, ``autosklearn.metrics.precision`` and ``autosklearn.metrics.recall`` +built-in metrics are applicable only for binary classification. In order to apply them on multilabel and multiclass +classification, please use the corresponding metrics with an appropriate averaging mechanism, such as ``autosklearn.metrics.f1_macro``. +For more information about how these metrics are used, please read +`this scikit-learn documentation `_. .. autoclass:: autosklearn.metrics.accuracy