

Special Thanks to: Vyrus

Intro

● RatNet is a protocol for simple one-way
message passing which is: Onion-routed,
Flood-routed, End-to-end encrypted,
Designed to run on any hardware & over
any transport.
– Reference implementation in Go

● First, Disclaimer
● Then Why, Then What, Then Who.

Disclaimer

● The code is a proof of concept and
should not be relied on for any
purpose until it’s been subjected to
some external scrutiny.

● I am here primarily for peer review.

Use Case: Iranian Election Problem

● State blocks all TLS in spurts.
● Targeted blocking of Tor, FB, Twitter,

Gmail, proxies, etc.
● Deanonymization => v& (ask an

Iranian)

Use Case: Protester Coordination
Problems

● Cell towers go down (for some strange
reason).

● Cops are on to the “organize everything
on FB” plan.

● Need a quick way to enroll people.
● Trust nightmare.

Why not Tor?

● Tor is the best existing thing that anonymizes
bidirectional sockets (which is impossible).

● Obviously, Tor has a lot of trouble living up to its
security promises (hidden services, exit node
control, no e2e encryption, browser bugs, blah
blah blah).

● Tor is a best-effort solution to an impossible
problem, no complaints about that…

● I have some different beef with Tor.

My Beef with Tor

● Tor was written to be difficult to embed and
difficult to cross-compile. On… fscking...
purpose.

● When asked, a dev told me:
 “We don’t want people to use it for botnets.”

● So I asked about embedded, and he said:
 “We don’t want to support platforms that
will only be clients.”

Tor: Intended Consequences

● The thing is such a mess there has been only
one partial port (to Java), and full version still
won’t build on an ARM Chromebook. And the
bugs, oh the bugs...

● Crippling functionality out of fear “the people” will
misuse it is traditional gov’t treatment of crypto.
– DES - Parity bits are super important, eh?
– SSL – 40 bits is OK for export?

If your life is depending on something,
you should be able to take it apart

and put it back together.

Crippling functionality to impose an arbitrary
morality on end users is just bad design.

Use Case: Criminal Problems

● Adversary is the state, purpose of communication is
technically illegal, although possibly legitimate.

● Absolutely anything goes on the network in terms of
detection, protocol blocking, and total outages.

● Deniability and hiding the intended destination of a
message has value.

● Detection will improve to track anomalous behavior,
we must have room to grow.

● Potentially life-and-death (why I’m here).

Why not FreeNet?

● …

● …

● …

● …

● …

● ...

● You know why, shut up.

Design Goals

● Sender and Recipient should be as hidden
as possible on the wire

● Non-Internet Unidirectional Transmission
(Packet Radio)

● Mesh-routable, for when there is no Internet

● Varied Internet Transports, for when Internet is
hostile

● End-to-end encryption, because users

Design Goals (cont.)

● Modular everything, any layer can be replaced

● Easy to embed in an application as a transport
layer

● Easy to understand (well, compared to Tor)

● Private nets, per-event nets, and botnets are all
first-class citizens

● Must compile for embedded and especially
ARM

Non-Goals

● Efficiency at all costs – if it was more efficient,
someone would already be doing it.

● Supporting a “socket” abstraction. This makes
correlation attacks too easy, plus doesn’t work well
unidirectional with high latencies.

● Forcing everyone on to a global network or into using
interoperable crypto or transport.
– Go make your own net. With blackjack. And hookers. (you

can use this library to do it more easily, of course)

Non-Goals (cont.)

● Preventing “unacceptable” use through code or
protocol obfuscation.
– I do pentest, I have a legal & legitimate use for a

RAT.

– Dissidents are criminals some places, it’s just that
the relevant laws may be illegitimate.

Room to Grow

● Virtual File Systems (AES-CTR via golang?)

● Key management should be portable to TPM, JavaCard, or
other KMS-type thing.

● “Meta” routing protocol that can control switching between
different types of physical transport.
– … more on this later

● The more physical transports implemented, the more
versatile.

● Network configuration management is going to be a huge
problem for scaling, but there is a good framework to build on.

Turbo Background & Influences

● Flood Routing

● FidoNet

● UUCP

● Bang Paths

● UseNet

● Onion Routing

Flood Routing (* goes *)

Flood Routing / Store-and-Forward

● Pros:
– Only real solution for mobile mesh routing:

● Potentially long-to-infinite delays between contacts

– Great for creating ‘whitenet’ noise.

● Cons:
– The most inefficient strategy possible.

– No guarantee a message will be delivered at all
(this can be handled up the stack).

– Loops are an issue.

Loop Detection

FidoNet, UUCP, & UseNet

● FidoNet
– For modems to relay BBS msgs to each other. No crypto

– Because long distance calls used to be a thing
● Zone:Network/Node – all nodes knew all other nodes addresses
● Zone mail hour
● FidoNet user addresses: bob @ 2:331:113.1

● Unix-to-Unix copy (UUCP)
– Bang Paths for source routing: node1!node1!node3!node4

– This might be interesting to implement Tor in RatNet or ?

UseNet

● Everything goes everywhere, but nodes
can filter in/out channels they can handle
based on hierarchy:
– alt.startrek.fan-fiction.parodies.time-

travel.twentieth-century.newt-
gingrich.changelings.infiltration

– alt.binaries.erotica.genitalia.Presidential

– alt.broke.unemployed.overeducated.misunde
rstood

Onion-Routing

Clear

Content
Encrypt

Routing
Encrypt

Onion-Routing: One Step

Notes on Threat Model

● Combination of Onion and Flood routing is good for
privacy, but bad for efficiency.

● Correlation attacks can always be screwed up with
dynamic topography and varied latency connections.

● However, this system is an engine for Denial of
Servicing itself if not careful.

● Nodes must be extra vigilant about managing their
own resources and saying no to peer pressure.

● Also stolen/lost phone scenarios are critical.

What did we do?

● RatNet is an onion-routed messaging layer
– Flood-routed, store-and-forward

– Completely modular network transports & crypto

– Builds to ARM (and everything else)

– Easily embeddable

– Supports open and private scenarios

● HushCom is an IRC-like chat client/server using
Ratnet

RatNet Component

● Acts as a Key Management Service
– Ask it to generate keys, store them, and

sign/encrypt things with them, but it won’t return the
private key.

● Provides an API which can be accessed locally
via Go or FFI native code, or accessed
remotely through any transport plugin.

● Ratnet is responsible for key management and
the message queue.

RatNet Component (cont.)

● Supports simple channels ([a-zA-Z0-9]+), but
no source routing or hierarchies or anything like
that yet.

● Ratnet makes calls to CryptoAPI module, but
the transport modules call in to RatNet…

RatNet API Flows

● Send / Send Channel:
– DestHash (16 byte random nonce

 + KDF(destPubKey)[16])
– Encrypts single msg to Destination Content Key (or

Channel key), and adds to outbound queue

● Pickup
– Bundles msgs since given time, from all or certain

channels
– Encrypts to Routing Key
– Prepends local current time

RatNet API Flows (cont.)

● Deliver
– Receives bundle from Pickup and

handles/fwd’s

– Drops repeating nonces via capped Hash
Table

– DestHashes each with all known
channel/private PubKeys

Crypto (Batches & Singles)

Roughly ECIES (RSA implementation is similar, but
sloooooow):

1) Generate new EC key. (Cheap!)

2) Determine shared key with public of destination.

3) Uses KDF to derive a symmetric encryption and a MAC key

4) Encrypts the message

5) Computes the HMAC digest of encrypted message

6) Outputs: SharedKey | CipherText | Digest

→ "Curve25519,AES-CBC-256,HMAC-SHA-256", etc.

HushCom

● Simple IRC-like that attempts to minimize the
amount of information left on the server.

● Server stores nothing unencrypted to disk, and
only caches in RAM:
– List of registered nicks/pubkeys (NickServ)

– List of registered channels/pubkeys (ChanServ)

● All other functionality is implemented P2P,
server cannot even read contents of channel
messages. At all.

HushCom Client

RatNet

Transport
TX

Transport
RX

HushCom Server

RatNet

Transport
RX

Transport
TX

Hushcom Flows: New User

● Hello Server, here is a nick and pubkey signed
with itself (inside the DestHash/encrypted usual
RatNet message).

● Ok, Client, that name is untaken, I will
remember you until I restart.

Hushcom Flows: New Channel

● What up Server, you remember me. I want to
register a public channel with:
– Name, Public Key

– And I signed the request with the key you know
from nick registry

● Client, OK, I will share the list of public
channels and pubkeys with any registered nick
until I restart.

Hushcom Flows: Channel Join

● User requests public channel list from server (or
already has it), gets name & pubkey.

● For private channels, have to get the channel pubkey
via QR code or some other way.

● User sends a Join request as a channel message,
server forwards it to everywhere.

● If Password matches (or set to auto), user in channel
will respond with the private key to the channel.

● User gets response w./key, adds key to keyring.

Future Tech

● Create a DSL for pushing dynamic routes out.
– Dynamically reconfigure whole nets based on

command, timing, or randomly.

– Behavior-based IDS will work eventually, but this
will fsck it for all time.

● More transports:
– Packet Radio – Iranian Election Tweets

– QUIC, UDT, ICMP, DTLS, Sneakernet, etc.

– Wifi Direct (prototype exists), maybe BT

Future Tech II

● Two obvious moves to protect against being
‘owned from below’ or a lost phone scenario:
– Sink the key management in RatNet into a TPM or

SE or TrustZone TEE, etc.

– Golang supports virtual filesystems. Can extend the
ZipFS example to use AES-CTR mode or similar.

– If both of these are done, the AES key can be
wrapped to the TPM. Add in periodic key rolling,
and this can become super nasty to recover
anything from.

Future Tech III

● Network Simulations for routing strategy
optimization.

● Investigate safety of source routing / bang path
schemes.

● QR Code key exchange in HushCom client.

● Optimize, Optimize, Optimize

● This could run on a con badge or be a ‘virtual
badge’… if you hadn’t worked that out yet...

O’Reilly Book Cover

Who?

● Hopefully, you.

● Looking for people to help with code/crypto review,
simulations, and feature work.

● Also looking for people who want to use this as a library
for their own projects!!!

Contact:

awgh@awgh.org

#ratnet on hackint

https://github.com/awgh/ratnet

mailto:awgh@awgh.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

