
Planning and Execution of Dynamic Whole-Body Locomotion
for a Hydraulic Quadruped on Challenging Terrain

Alexander W. Winkler†∗, Carlos Mastalli∗, Ioannis Havoutis∗,
Michele Focchi∗, Darwin G. Caldwell∗, Claudio Semini∗

Abstract— We present a framework for dynamic
quadrupedal locomotion over challenging terrain, where
the choice of appropriate footholds is crucial for the success
of the behaviour. We build a model of the environment on-line
and on-board using an efficient occupancy grid representation.
We use Any-time-Repairing A* (ARA*) to search over a tree
of possible actions, choose a rough body path and select the
locally-best footholds accordingly. We run a n-step lookahead
optimization of the body trajectory using a dynamic stability
metric, the Zero Moment Point (ZMP), that generates natural
dynamic whole-body motions. A combination of floating-base
inverse dynamics and virtual model control accurately
executes the desired motions on an actively compliant system.
Experimental trials show that this framework allows us to
traverse terrains at nearly 6 times the speed of our previous
work, evaluated over the same set of trials.

I. INTRODUCTION

Agile locomotion is one of the key abilities that legged
ground robots need to master. Wheeled or tracked vehicles
are efficient in structured environments but can suffer from
limited mobility in many real-world scenarios. Legged robots
offer a clear advantage in unstructured and challenging
terrain. Such environments are common in disaster relief,
search & rescue, forestry and construction site scenarios.

This paper presents the newest development in a stream of
research that aims to increase the autonomy and flexibility of
legged robots in unstructured and challenging environments.
We present a framework for dynamic quadrupedal locomo-
tion over highly challenging terrain where the choice of ap-
propriate footholds is crucial for the success of the behaviour.
We use perception to build a map of the environment, decide
on a rough body path and choose appropriate footholds. We
are able to generate feasible footholds on-line and on-board
for various types of scenarios such as climbing up and down
pallets, traversing stepping stones using an irregular swing-
leg sequence and passing over a 35 cm gap. We optimize
the body trajectory according to a dynamic stability metric
(ZMP) to produce agile and natural dynamic whole-body
motions up to 5.8 times the speed of our previous work
[1]. Compliant execution of the motions is performed using
a floating-base inverse dynamics controller that ensures the
accurate execution of dynamic motions, in combination with
a virtual model controller that generates feedback torques to
account for model and tracking inaccuracies.

∗Department of Advanced Robotics, Istituto Italiano di Tecnologia, via
Morego, 30, 16163 Genova, Italy. email: {carlos.mastalli, ioannis.havoutis,
michele.focchi, darwin.caldwell, claudio.semini}@iit.it.
†Agile & Dexterous Robotics Lab, Institute of Robotics and Intelligent
Systems, ETH Zurich, Switzerland. email: alexander.winkler@mavt.ethz.ch

Fig. 1. The hydraulically actuated and fully torque controlled quadruped
robot HyQ [2]. The inset plot shows the on-line built environment perception
alongside with the planned footholds and the current on-board robot state
estimate.

Our contribution includes on-line perception, map building
and foothold planning, generation and execution of optimized
dynamic whole-body motions despite irregular swing-leg
sequences and the use of an elegant inverse-dynamics/virtual-
model control formulation that exploits the natural partition-
ing of the robot’s dynamic equations.

The rest of the paper is structured as follows: After
discussing previous research in the field of dynamic whole-
body locomotion (II) we describe the on-line map building
and how appropriate footholds are chosen (III). Section IV
explains, how dynamically stable whole-body motions are
generated based on an arbitrary footstep sequence. Section V
shows how these desired motions are accurately and compli-
antly executed. In Section VI we evaluate the performance
of our framework on the Hydraulic Quadruped robot HyQ
(Fig. 1) in real-world experimental trials before Section VII
summarizes this work and presents ideas for future work.

II. RELATED WORK

In environments where smooth, continuous support is
available (flats, fields, roads, etc.), where exact foot place-
ment is not crucial for the success of the behaviour, legged
systems can utilize a variety of dynamic gaits, e.g. trotting,
galloping. Marc Raibert pioneered the study of the principles
of dynamic balancing with legged robots [3], resulting in the
quadruped BigDog. The reactive controllers used in these
legged systems are partially capable to overcome unstruc-
tured terrain. Likewise, HyQ can traverse lightly unstructured
terrain using reactive control [4], [5] or reflex strategies [6].

2015 IEEE International Conference on Robotics and Automation (ICRA)
Washington State Convention Center
Seattle, Washington, May 26-30, 2015

978-1-4799-6923-4/15/$31.00 ©2015 IEEE 5148

However, for more complex environments with obstacles
like large gaps or stairs, such systems quickly reach their lim-
its. In this case, higher level motion planning that considers
the environment and carefully selects appropriate footholds is
required. In these terrains, e.g. stairs, gaps, cluttered rooms,
legged robots have the potential to use non-gaited locomotion
strategies that rely more on accurate foothold planning based
on features of the terrain. There exist a number of successful
control architectures [7], [8], [9], [10] to plan and execute
footsteps to traverse such terrain. Some avoid global footstep
planning by simply choosing the next best reachable foothold
[8], while others plan the complete footstep sequence from
start to goal [10], often requiring time consuming re-planning
in case of slippage or deviation from the planned path.

The approach in [7] stands between the two above men-
tioned methods and plans a global rough body path to avoid
local minima, but the specific footholds are chosen only a
few steps in advance. This reduces the necessary time for re-
planning in case of slippage, while still considering a locally
optimal plan. We recently built on this approach with a path
planning and control framework that uses on-line force-based
foothold adaptation to update the planned motion according
to the perceived state of the environment during execution
[1].

The whole-body locomotion framework described in this
paper further extends this work: We use real-time perception
to create, evaluate and update a terrain cost map on-board.
Compared to previous approaches our framework does not
make use of any external state measuring system, e.g. a
marker-based tracking system. The incorporation of domain
knowledge, e.g. body motion primitives and an ARA* plan-
ner, allows us to re-plan actions and footholds on-line. As
in [7] the Center of Gravity (CoG) trajectory is now chosen
to comply with the ZMP dynamic stability metric [11] to
produce agile, fast and natural motions.

III. PERCEPTION AND (RE-)PLANNING

This section describes the pipeline from the acquisition
and evaluation of terrain information to the generation of
appropriate footholds (Fig. 2)1. The on-board terrain infor-
mation server continuously holds the state of the environ-
ment. The body action planner decides the general direction
of movement and the footstep sequence planner chooses
specific footholds along this path.

A. Terrain Information

We develop a terrain information server that computes the
required information for the body action and the footstep
sequence planners, e.g. the terrain cost map of the environ-
ment. We build a 3D occupancy grid map [13] from a RGBD
sensor mounted on a scanning pan & tilt unit, alongside with
the state estimate of the robot using the Extended Kalman
Filter [14]. The voxel-based map is built using a (x, y, z)
resolution of (4 cm × 4 cm × 2 cm) which roughly matches
the dimensions of the robot’s foot.

1A more in-depth presentation of the perception and terrain evaluation
pipeline can be found in [12].

Footstep Planner

Robot State

Footstep Sequence

Body Action Planner

Terrain Information

Whole-Body Motion Generation

E
xe

cu
ti

o
n

 (
2

0
0

H
z)

P
la

n
n
in

g
 (

~
0

.5
H

z)
Pe

rc
e
p

ti
o
n

 (
~

2
H

z)

Planned Actions

Terrain Cost Map

Fig. 2. An overview of the perception and planning system that generates
footstep sequences according to the terrain information.

The terrain cost map quantifies how desirable it is to place
a foot at a specific location. The terrain cost ct for each
voxel in the map is computed using geometric terrain features
as in [1]. Namely, we use the standard deviation of height
values, the slope and the curvature of the cell in question.
The terrain cost ct for each voxel of the map is computed
as a weighted linear combination of the individual features
ct(x, y) = wT c(x, y). The cost map is locally re-computed
(in a 2.5 m×5 m area around the robot) whenever a change
in the map is detected.

B. Body Action Planner

The state s = (x, y, θ) ∈ S of the robot body includes
the current position (x, y) and the yaw angle θ. Given a
desired goal state, the body action planner finds a sequence
of actions a0...N = {a0,a1, . . . ,aN} that move the robot
in a nearly optimal way to this state. This implies that
terrain features, the difficulty of specific actions, kinematic
reachability and collision with the environment must be
considered and quantified. A feasible action a is the change
of state that can be achieved through one step from s to s′

as
a = (∆x,∆y,∆θ) ∈ A. (1)

We define A as the set of -empirically chosen- feasible
motion primitives (e.g. move left, diagonally forward, back)
that correspond to the kinematics and dynamics of the robot.
The cost of an action a given a current state s is computed
as a weighted linear combination of costs:

c(s,a) = wT c(s,a) (2)

with c(s,a) consisting of:
c̄t The average of the best n terrain costs around each

leg after performing action a.
ca The difficulty of a specific action, e.g. sideways

steps are more difficult than forward ones.
cpc Penalizes actions that potentially cause the swing-

leg to collide with the environment.
cpo Penalizes actions that potentially end up in uneven

terrain that require large roll and pitch angles.

5149

Fig. 3. A sketch of the body action graph. The objective is to find a
sequence of actions a from the current body state s = (x, y, θ) to the goal
state g, that minimizes the accumulated action costs c(s,a). For simplicity
only three possible actions are shown, namely move left (al), right (ar) and
forward (af). The optimal action sequence {al,ar, . . . ,ar} found through
ARA* is shown in red.

The set of actions A and the current state s of the robot
is used to construct a directed graph G = (S,A) (Fig. 3).
We use the ARA* [15] algorithm to search the tree for a
sequence of actions with the lowest accumulated cost from
the current to the goal state. ARA* uses a heuristic h(s) =
−c̄F(‖g − s‖) to decide along which states to search first.
F(·) is the estimated remaining steps (actions) to reach the
goal state and c̄ is an estimated lower bound on the average
future action costs, considering the terrain costs between the
current and the goal state.

ARA* initially runs an A* search with an inflated heuris-
tic, ε · h(s), which quickly finds a first sequence of actions.
Unfortunately, since the inflated heuristic is no longer ad-
missible (always lower than the true cost), the sequence
of actions may be sub-optimal. As long as computational
time is still available, ARA* repeatedly runs A* search,
continuously decreasing the inflation factor ε and thereby
finding closer to optimal sequences of actions. Since a
first solution, although suboptimal, is found quickly, this
algorithm can be used online.

C. Footstep Sequence Planner

Given the desired body action plan, the footstep sequence
planner computes the sequence of footholds that corresponds
to these body actions. In our previous work, we selected
the optimal foothold around the nominal stance positions in
a predefined swing-leg sequence. In this paper, we modify
the position of the search area and the swing-leg sequence
depending on the corresponding action, which improves the
robustness of the planned actions. For example, when moving
left (action al) it is advantageous to swing one of the left
legs to avoid small areas of support.

The footstep location in each search area with the lowest
foothold cost, cf = wtct + wstcst + wccc + woco, is then
selected, where ct is the terrain cost below a foothold, cst is
the support triangle cost, cc is the leg collision cost and co
is the body orientation cost.

D. Re-planning/Updating during Execution

Compared to our previous approach the graph is signifi-
cantly smaller, since we only search over feasible actions A
and not over every discretized change in state. Additionally,
ARA* provides intermediate solutions, so the exhaustive and

time-costly search procedure does not need to be completed
before the robot can react. This combination of the efficient
voxel-based occupancy map, the graph representation over
feasible actions, and the efficient search through ARA*
allows us to re-plan the motions and set of planned footholds
online to cope with changes in the environment as is shown
in Fig. 4.

IV. WHOLE-BODY MOTION GENERATION

We generate a body trajectory that ensures that the robot
is dynamically stable at every time step. We follow the
approach presented in [7] that finds a CoG trajectory that
respects stability constraints without explicitly generating
a ZMP trajectory. We build on this approach by enabling
swing-leg sequences in any order through insertion of four-
leg support phases.

A. Problem Formulation

For a CoG trajectory to be feasible it must be continu-
ous and double differentiable. This way we avoid steps in
accelerations that produce discontinuous torques which can
damage the hardware and affect stability. The body trajectory,
xcog , is given by a spline comprised of multiple fifth-order
polynomials:

xcog(t) = axt
5 + bxt

4 + cxt
3 + dxt

2 + ext+ fx. (3)

At each spline junction we require the last state (t = Ti)
of spline i to be equal to the first state (t = 0) of the next
spline i+1 as:

(xcog, ẋcog, ẍcog)
i
t=Ti

= (xcog, ẋcog, ẍcog)
i+1
t=0. (4)

This ensures double differentiability and continuity of
the trajectory, required by the floating-base inverse dy-
namics. Finding an optimal CoG trajectory can then
be reduced to finding optimal polynomial coefficients
qi = (ax, . . . , fx, ay, . . . , fy)T ∈ R12 for each spline
segment i.

B. Dynamic Stability

To execute the planned footsteps, a body trajectory must
be found that ensures a stable stance at all time instances.
For slow movements this is achieved by keeping the CoG
inside the support polygon, i.e. the polygon formed by
the legs in stance. To consider dynamic effects of larger

Fig. 4. (Re-)planning and perception. The left image shows how a map
of the environment is built (cost values in grayscale) along with the body
path (green line) and the footstep sequence plan (colored spheres). Once
the environments changes the map is updated and the footsteps re-planned.

5150

Fig. 5. Left: Cart-Table model for representing a quadruped robot: The
total mass of the robot is concentrated in the cart that moves on the table.
The base of the table represents the current area of support, determined
by the current footholds. The ZMP must lie inside this area for dynamic
stability. Right: Disjoint support triangles due to the added stability margin
d. When switching between swinging the left-front (LF) to right-hind (RH)
the ZMP must move from the brown to the blue support triangle. Since all
four feet are in stance during this phase, the ZMP is only restricted by the
red support polygon.

body accelerations we estimate the position of the ZMP by
modeling the robot as a cart-table (Fig. 5, left). The ZMP
can then be calculated by:

xzmp = xcog −
zcogẍcog
z̈cog + g0

, (5)

where xzmp and xcog are the position of the ZMP and the
CoG respectively, zcog describes the height of the robot
with respect to its feet, z̈cog is the vertical acceleration of
the body and g0 represents the gravitational acceleration.
Dynamic stability requires the ZMP to be inside the current
support triangle, expressed by three lines l of the form
px + qy + r = 0. The ZMP is considered to be inside a
support triangle, if the following conditions are met at every
sampling interval:

plxzmp + qlyzmp + rl > 0 for l = 1, 2, 3. (6)

In reality there exist discrepancies between the cart-table
model and the real robot. Additionally, desired body trajec-
tories cannot be perfectly tracked as modelling, sensing and
actuation inaccuracies are hard to avoid. Therefore, it is best
to avoid the border of stable configurations by shrinking the
support triangles by a stability margin d (Fig. 5, right). With
the introduction of d, there is no continuous ZMP trajectory
when switching between diagonally opposite swing legs
as the support triangles are disjoint. We therefore allow a
transition period (‘four-leg support phase’) during which the
ZMP is only restricted by the shrunk support polygon created
by the four stance feet.

We built on [7] by allowing a completely irregular se-
quence of steps for the ZMP optimization. Our trajectory
generator needs no knowledge of a predefined gait. For every
step it checks if the next swing leg is diagonally opposite of
the current swing leg. If so, the disjoint support triangles
require a four-leg support phase for the optimization to find
a solution. This allows a greater decoupling from the footstep
planner, which can generate swing leg sequences in any order
useful for the success of the behaviour.

C. Cost function

In addition to moving in a dynamically stable way, the
trajectory should accelerate as little as possible during the

Whole-Body Motion Generation

Low Level Control

H
a
rd

 r
e
a
l

ti
m

e
 (

1
k
H

z)
E
xe

cu
ti

o
n

 (
2

0
0

H
z)

Online Footstep Planning

PD

Inverse Dynamics

n FootstepsR
e
p
la

n
 (

n
 s

te
p
s)

VM

,,

+

_

+ _

Fig. 6. Pipeline that uses planned footholds to generate dynamic whole-
body motions and compliantly executes them using a combination of
feedforward and feedback terms.

execution period T . This increases possible execution speed
and reduces required joint torques. This is achieved by
minimizing

J = wx

∫ T

0

ẍ2cog(t) dt+ wy

∫ T

0

ÿ2cog(t) dt. (7)

The directional weights w penalize sideways accelerations
(wy = 1.5wx) more than forward-backward motions, since
sideways motions are more likely to cause instability. This
results in a convex quadratic program (QP) with the cost
function (7), the equality constraints (4) and the inequality
constraints (6). We solve it using the freely available QP
solver, namely QuadProg++ [16] to obtain the spline coef-
ficients q and therefore the desired and stable (x, y)-body
trajectory (3). The remaining degrees of freedom (zcog , roll,
pitch, yaw) and the swing-leg trajectories are chosen based
mostly on the foothold heights and described in detail in [1].

V. EXECUTION OF WHOLE-BODY MOTIONS

Dynamic whole-body motions require orchestrated and
precise actuation of all the joints. Simple PD controllers do
not suffice for such motions, especially when considering
uncertainties in the environment and/or model inaccuracies.
We use a control scheme (Fig. 6) that combines a virtual
model with a floating-base inverse dynamics controller. After
receiving an arbitrary sequence of footholds from the foot-
step planner, the whole-body motion generator calculates
desired (feedforward) accelerations ẍd for the body and a
virtual model (VM) control loop adds feedback accelerations
ẍfb should the robot deviate from the desired trajectory.
The inverse dynamics produce the majority of the joint
torques which are combined with a low-gain joint-space PD
controller to compensate for possible model inaccuracies.
The computed reference torques are then tracked by the low-
level torque controller. Note that x describes the linear and
rotational coordinates of the body as

x = (xcog,Rb), ẋ = (ẋcog,ωb), ẍ = (ẍcog, ω̇b), (8)

5151

where Rb ∈ R3×3 is a coordinate rotation matrix represent-
ing the orientation of the base w.r.t. the world frame and
ωb ∈ R3 is the angular velocity of the base.

A. Virtual Model

The feedback action which compensates for inaccurate
execution and drift can be imagined as virtual springs and
dampers attached to the robot’s trunk on one side and the
desired body trajectory on the other [17]. Deviation between
these causes the springs and dampers to produce virtual
forces Fvm and torques Tvm on the body that “pull” the
robot back into the desired state through

Fvm = Px(xdcog − xcog) + Dx(ẋdcog − ẋcog)

Tvm = Pθe(R
d
bR
>
b) + Dθ(ω

d
b − ωb),

(9)

where the superscript d refers to the desired values, planned
by the whole-body motion generator and non-superscript
values describe the state of the robot as estimated by the
on-board state estimator. Respectively, e(.) : R3×3 → R3 is
a mapping from a rotation matrix to the associated rotation
vector [18]. Px,Dx,Pθ,Dθ ∈ R3×3 are positive-definite
diagonal matrices of proportional and derivative gains, re-
spectively. Expressing the body feedback action in terms of
forces and moments allows us give the virtual model gains a
physical meaning of stiffness and damping and thus can be
intuitively set and used.

Since the inverse dynamics computation requires reference
accelerations, we multiply the forces/moments (wrench)
Wvm = (Fvm,Tvm) with the inverse of the composite
rigid body inertia Ic of the robot at its current configuration.
Adding this body feedback acceleration to the desired body
acceleration produced by the whole-body motion generator
creates the 6D reference acceleration (linear and rotational)
for the inverse dynamics computation as:

ẍref = ẍd + I−1c Wvm. (10)

By combining a feedforward acceleration ẍd with a body-
feedback acceleration, we achieve accurate tracking while
maintaining a compliant behaviour.

B. Floating Base Inverse Dynamics

The floating base inverse dynamics algorithm calculates
the joint torques required to execute the reference body
accelerations. We can partition [19] the dynamics equation
of the robot into the unactuated base coordinates qb ∈ R6

and the active joints’ q ∈ R12 as

M(R,q)

[
q̈b
q̈

]
+

[
hb
hq

]
(R,q,ω, q̇)︸ ︷︷ ︸

b

=

[
0
τ

]
+

[
JTcb
JTcq

]
λ,

(11)
where M is the floating base mass matrix, h = (hb,hq) is
the force vector that accounts for Coriolis, centrifugal, and
gravitational forces, λ are the ground contact forces, and
their corresponding Jacobian Jc =

[
Jcb Jcq

]
and τ are the

torques that we wish to calculate.
The left hand term b = (bb,bq) can be computed

efficiently using the Featherstone implementation of the

Recursive Newton-Euler Algorithm (RNEA) [20]. Since the
CoG acceleration ẍrefcog is defined in a frame aligned with
the base frame but with the origin in the CoG, we perform a
translational coordinate transform bXcog to get the 6D base
spatial acceleration: q̈b = bXcogẍ

ref as in [20].
By partitioning the dynamics equation as in (11) and given

that the base is not actuated, we can directly compute, in a
least-squares way, the vector of ground reaction forces λ
from the first nb equations, λ = J+

cbbb, where ()+ denotes
the Moore-Penrose generalized inverse. We then use the last
n equations to produce the reference joint torques, τ id =
bq − JTcqλ.

VI. EXPERIMENTAL RESULTS

This section describes the experiments conducted to val-
idate the effectiveness and quantify the performance of our
framework.

A. Experimental Setup

We use the hydraulically-actuated quadruped robot HyQ in
our experiments. HyQ weighs approximately 90 kg, is fully-
torque controlled and equipped with precision joint encoders,
a depth camera (Asus Xtion) and an Inertial Measurement
Unit (MicroStrain). We perform on-board state estimation
and do not make use of any external state measuring system,
e.g. a marker-based tracking system. All computations are
done on-board, using a PC104 stack for the real-time critical
part of the framework, and a commodity i7/2.8 GHz PC for
perception and planning.

The first experiment starts with flat, obstacle-free terrain.
After the robot has planned initial footsteps, a pallet is placed
into the terrain. In the next experiments the robot must climb
one and two pallets of dimensions 1.2 m × 0.8 m × 0.15 m.
The height of one pallet is equal to 20% of the leg length.
Furthermore we show that the robot traverses a gap of 35 cm,
which is approximately half the robot’s body length. The
final experiment consist of two pallets connected by a sparse
path of stepping stones. The pallets are 1.2 m apart and the
stepping stones lie 0.08 m lower than the pallets.

For each experiment, we specify the (x, y, θ) goal state.
The footstep planner finds a sequence of footsteps of an arbi-
trary order, which the controller then executes dynamically.
We validate the performance of our framework in 4 scenarios
as seen in Fig. 7 and compare it to our previously achieved
results (Table I) on the same benchmark tasks. Additionally,
the reader is strongly encouraged to view the accompanying
video2 as it provides the most intuitive way to demonstrate
the performance of our framework.

B. Results and Discussion

1) Perception and (re-)planning: Efficient occupancy
grid-based mapping and focusing our computations to an
area of interest around the robot body greatly increase
computation speed. This allows us to incrementally build
a model of the environment and update the terrain cost
map at a frequency of 2 Hz. Using the action based search

2http://youtu.be/MF-qxA_syZg

5152

Fig. 7. Snapshots of experimental trials used to evaluate the performance of our framework. From top to bottom: crossing a 15 cm pallet; climbing a
stair-like structure consisting of two stacked pallets; traversing a 35 cm gap and crossing a sparse set of stepping stones.

TABLE I
FORWARD SPEED AND SUCCESS RATE OF EXPERIMENTS AVERAGED

OVER 10 TRIALS AND COMPARED TO PREVIOUS RESULTS FROM [1].

Speed [cm/s] Success Rate [%]

Terrain Curr. Prev. Ratio Curr. Prev. Ratio

Step. Stones 7.3 1.7 4.2 60 70 0.9
Pallet 9.5 2.1 4.5 100 90 1.1
Two Pallets 10.2 1.8 5.8 90 80 1.1
Gap 12.7 - - 90 0 -

graph together with ARA* allows us to replan footholds at a
frequency of approximately 0.5 Hz for goal states up to 5 m.

2) Speed while dynamically stable: The pallet climbing
and gap experiments show the speed (Table I) that our
framework can achieve: This is due to the fact, that the
body can move faster while still being stable, since we are
using a dynamic stability criterion. All accelerations and
decelerations are optimized, so that the ZMP never leaves
the support polygon. In addition, since we are not directly
producing torques with the virtual model feedback controller,
but only accelerations for the inverse dynamics controller,
our feedback actions also respect the dynamics of the system.
Furthermore, the duration of the four-leg-support phase is
significantly reduced: It is much faster to move the ZMP
from one support triangle to another than the CoG (e.g.
entire body), because this can be achieved by manipulating
the acceleration.

3) Model accuracy: Walking over a 35 cm gap (approx-
imately half of the body length) shows the stability of the
robot despite of highly dynamic motions. When crossing the
gap the robot accelerates up to a body velocity of 0.5 m/s
and is able to decelerate again without loosing balance.
This shows, that the simple cart-table model is a sufficient

approximation for large quadrupeds performing locomotion
tasks.

4) Avoiding kinematic limits: Attempting to cross the
gap with a statically stable gait tends to overextend the
legs, since large body motions are required to move the
robot into statically stable positions. Dynamic motions allow
us to keep the CoG closer to the center of all four feet,
since stability can be achieved by appropriate accelerations,
avoiding kinematic limits.

5) Stability despite irregular swing-leg sequences: Walk-
ing over the stepping stones demonstrates the ability of
the controller to execute irregular swing-leg sequences in
a dynamically stable manner (Fig. 8). Starting from a lat-
eral sequence gait (LH-LF-RH-RF) the foothold sequence
changes to traverse these irregularly placed stepping stones.
Despite this, the produced CoG trajectory (colored solid line)
is dynamically stable, since the ZMP (asterisk) is always
kept inside the current support triangle. When comparing the
actual (top) and desired (bottom) CoG trajectories, a tracking
error is evident. By keeping the ZMP e.g. d = 6 cm away
from the stability borders, we are robust even against these
inaccuracies.

The whole body motion generator inserts four-leg-support
phases (red section) only whenever it detects disjoint support
triangles in the swing-leg sequence. While executing steps 1
and 2 (Fig. 8) no four-leg-support phase is necessary, because
the triangles are not disjoint. Only after returning to swing
the right-front leg, the robot requires a four-leg support phase
for the ZMP to transition from the green (LH) to the yellow
(RF) support triangle at (x, y) = (1.1, 0).

VII. CONCLUSION

We presented a dynamic, whole-body locomotion frame-
work that executes footholds planned on-board. We showed,

5153

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x (m)

y
(m

)
12

3

Estimated CoG

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x (m)

y
(m

)

4-leg-support

* ZMP

CoG

LF RF LH RH

Fig. 8. Top: The body motion when walking over the stepping stones
is show in black. The planned footholds are shown and the irregular step
sequence LF(1) → LH(2) → RF(3) is highlighted (red). Bottom: The 3
shrunk support triangles corresponding to the highlighted step sequence
brown→ green→ yellow are shown. Additionally the planned CoG (solid
line) and ZMP trajectory for the duration of these 3 steps is illustrated
(asterix). While the CoG (solid line) does not reach the support triangles,
the ZMP does, causing dynamic stability. When switching between disjoint
support triangles (green→ yellow) four-leg support phases are inserted (red)
to allow a smooth transition.

how a change in the environment causes the foothold gener-
ator to re-plan footholds on-line. We presented a whole body
motion planner, which is able to generate a ZMP-stable body
trajectory despite irregular swing-leg sequences to execute
footholds dynamically. We showed how a combination of
virtual model and floating-base inverse dynamics control
can compliantly, yet accurately, track the desired whole-
body motions. Real world experimental trials on challenging
terrain demonstrate the capability of our framework.

We are currently working on bringing the kinematic plan-
ning and dynamic execution closer together. The idea is
to produce desired state trajectories and required torques
through one trajectory optimization problem, taking into
account torque/joint limits, the dynamic model of the robot,
foothold positions, friction coefficients and other constraints.
With this approach we aim to produce even more dynamic
motions such as jumping and rearing, during which fewer or
no legs are in contact.

ACKNOWLEDGEMENTS
This research is funded by the Fondazione Istituto Italiano di Tecnologia.

Alexander W. Winkler was partially supported by the Swiss National
Science Foundation (SNF) through a Professorship Award to Jonas Buchli
and the NCCR Robotics. The authors would like to thank the colleagues

that collaborated for the success of this project: Roy Featherstone, Marco
Frigerio, Marco Camurri, Bilal Rehman, Hamza Khan, Jake Goldsmith,
Victor Barasuol, Jesus Ortiz, Stephane Bazeille and our team of technicians.

REFERENCES

[1] A. W. Winkler, I. Havoutis, S. Bazeille, J. Ortiz, M. Focchi, R. Dill-
mann, D. Caldwell, and C. Semini, “Path planning with force-based
foothold adaptation and virtual model control for torque controlled
quadruped robots,” in IEEE International Conference on Robotics and
Automation (ICRA), 2014,

[2] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella,
and D. G. Caldwell, “Design of HyQ – a hydraulically and electrically
actuated quadruped robot,” Journal of Systems and Control Engineer-
ing, 2011,

[3] M. H. Raibert, Legged robots that balance. MIT press Cambridge,
MA, 1986, vol. 3,

[4] V. Barasuol, J. Buchli, C. Semini, M. Frigerio, E. R. De Pieri, and
D. G. Caldwell, “A reactive controller framework for quadrupedal
locomotion on challenging terrain,” in IEEE International Conference
on Robotics and Automation (ICRA), 2013,

[5] I. Havoutis, C. Semini, J. Buchli, and D. G. Caldwell, “Quadrupedal
trotting with active compliance,” IEEE International Conference on
Mechatronics (ICM), 2013,

[6] M. Focchi, V. Barasuol, I. Havoutis, C. Semini, D. G. Caldwell,
V. Barasul, and J. Buchli, “Local Reflex Generation for Obstacle
Negotiation in Quadrupedal Locomotion,” International Conference
on Climbing and Walking Robots and the Support Technologies for
Mobile Machines (CLAWAR), pp. 1–8, 2013,

[7] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal,
“Learning, planning, and control for quadruped locomotion over
challenging terrain,” The International Journal of Robotics Research,
vol. 30, no. 2, pp. 236–258, 2010,

[8] J. R. Rebula, P. D. Neuhaus, B. V. Bonnlander, M. J. Johnson, and
J. E. Pratt, “A controller for the littledog quadruped walking on
rough terrain,” in IEEE International Conference on Robotics and
Automation, 2007, pp. 1467–1473,

[9] J. Z. Kolter, M. P. Rodgers, and A. Y. Ng, “A control architecture
for quadruped locomotion over rough terrain,” in IEEE International
Conference on Robotics and Automation (ICRA), 2008, pp. 811–818,

[10] M. Zucker, N. Ratliff, M. Stolle, J. Chestnutt, J. A. Bagnell,
C. G. Atkeson, and J. Kuffner, “Optimization and learning for
rough terrain legged locomotion,” International Journal of Robotics
Research (IJRR), vol. 30, no. 2, pp. 175–191, Feb. 2011,

[11] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” 2003 IEEE International Conference
on Robotics and Automation, pp. 1620–1626, 2003,

[12] C. Mastalli, I. Havoutis, A. W. Winkler, D. G. Caldwell, and C. Semini,
“On-line and on-board planning for quadrupedal locomotion, using
practical, on-board perception,” in IEEE International Conference on
Technologies for Practical Robot Applications (TePRA), May 2015,

[13] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard, “OctoMap: An efficient probabilistic 3D mapping
framework based on octrees,” Autonomous Robots, 2013,

[14] M. Bloesch, M. Hutter, M. Hoepflinger, S. Leutenegger, C. Gehring,
C. Remy, and R. Siegwart, “State estimation for legged robots -
consistent fusion of leg kinematics and imu,” in Robotics: Science
and Systems Conference (RSS), 2012,

[15] M. Likhachev, G. J. Gordon, and S. Thrun, “Ara*: Anytime a*
with provable bounds on sub-optimality,” in Advances in Neural
Information Processing Systems, 2003, p. None,

[16] G. Guennebaud, A. Furfaro, and L. D. Gaspero, “eiquadprog.hh,”
2011,”

[17] J. Pratt, C.-M. Chew, A. Torres, P. Dilworth, and G. Pratt, “Virtual
model control: An intuitive approach for bipedal locomotion,” Inter-
national Journal of Robotics Research (IJRR), 2001,

[18] F. Caccavale, C. Natale, B. Siciliano, and L. Villani, “Six-DOF
impedance control based on angle/axis representations,” IEEE Trans-
actions on Robotics and Automation, vol. 15, pp. 289–300, 1999,

[19] Y. Fujimoto, S. Obata, and A. Kawamura, “Robust biped walking with
active interaction control between foot and ground,” Proceedings. 1998
IEEE International Conference on Robotics and Automation (Cat.
No.98CH36146), vol. 3, 1998,

[20] R. Featherstone, Rigid Body Dynamics Algorithms. Boston, MA:
Springer US, 2008.

5154

