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Gait and Trajectory Optimization for Legged
Systems through Phase-based End-Effector

Parameterization
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Abstract—We present a single Trajectory Optimization for-
mulation for legged locomotion that automatically determines
the gait-sequence, step-timings, footholds, swing-leg motions and
6D body motion over non-flat terrain, without any additional
modules. Our phase-based parameterization of feet motion and
forces allows to optimize over the discrete gait sequence using
only continuous decision variables. The system is represented
using a simplified Centroidal dynamics model that is influenced
by the feet’s location and forces. We explicitly enforce friction
cone constraints, depending on the shape of the terrain. The
NLP solver generates highly dynamic motion-plans with full
flight-phases for a variety of legged systems with arbitrary
morphologies in an efficient manner. We validate the feasibility
of the generated plans in simulation and on the real quadruped
robot ANYmal. Additionally, the entire solver software TOWR
used to generate these motions is made freely available.

Index Terms—Legged Robots, Motion and Path Planning,
Optimization and Optimal Control, Humanoid and Bipedal
Locomotion

I. INTRODUCTION

PLANNING physically feasible motions for legged sys-
tems is difficult. A core difficulty is that base movement

cannot be directly generated, but results from contact of the
feet with the environment. Therefore, the generated forces
acting at these contact points must be carefully planned to
achieve a desired behavior. Unfortunately, there are strong
restrictions on these forces, e.g. a force can only be generated
if the foot is touching the environment or feet can only push
into the ground, not pull on it.

Due to the complexity of theses restrictions, hand-crafting
valid trajectories for all these interdependent quantities (body,
feet, forces) is tedious. Instead, Trajectory Optimization (TO)
[1] can be used to generate motions in a more general, auto-
mated way. The user specifies only the high-level task, while
the optimizer determines the motions and forces given these
locomotion specific restrictions. The research problem is how
to transcribe this continuous-time optimization problem into
one with finite number of decision variables and constraints
to be solvable by a Nonlinear Programming Problem (NLP)
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Fig. 1. Motions produced by the solver TOWR [2] for single-legged hoppers,
bipeds and quadrupeds seen in video at https://youtu.be/0jE46GqzxMM.

solver. This approach is attractive, because once the problem
has been properly modeled, the program would, in an ideal
case, produce motions for any high-level task, solving legged
locomotion planning on a general level.

A. Related Work

In the following we categorize existing approaches to legged
locomotion by their used physical model and by which aspects
of the motion (e.g. body height and orientation, step sequence,
timings) are fixed in advance and which are determined by an
optimizer.

1) Dynamic Models: There exist a wide variety of ap-
proaches using the Linear Inverted Pendulum (LIP) model, that
optimize only over the Center of Mass (CoM) position, while
using predefined footholds and step timings. By modeling the
robot as an inverted pendulum, the position of the Center of
Pressure (CoP), or Zero-Moment-Point (ZMP) [3], can be used
as a substitute for the contact forces and is used to control
the motion of the CoM. This fast and effective approach
has been successfully applied in bipedal and quadrupedal
locomotion on real hardware [4]–[7]. This demonstrates that
even such drastic model simplifications can be valid and
useful. However, imposing where these contact forces will
be acting (by predefining the footholds) strongly restricts the

https://youtu.be/0jE46GqzxMM
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possible base motions. A slight relaxation is to still define
when each foot is in contact, but allow the algorithm to
determine the best location for the foothold. Together with a
simplified model this results in a very fast solver that can also
be used online [8], [9]. It is also possible to adapt step timings
or foothold locations for robust real robot execution. Many
other variations of using these simplified models to generate
impressive results have been shown by [10]–[17].

In order to generate more complex motions, involving
vertical movement and changes in body orientation, a more
sophisticated dynamics model becomes necessary. The (6+n)-
dimensional full rigid-body dynamics consider the mass and
inertia of each link and defines the relation between joint
torques and base- and joint-accelerations. This model takes
into account changing CoM positions and inertia properties
based on leg configurations and Coriolis forces generated by
leg motions and has been used by [18]–[21].

Another common dynamic model used in TO is the Cen-
troidal dynamics [22], which projects the effects of all link
motions onto the 6-dimensional base. The idea is that once
a physically feasible motion for the unactuated base has been
found, the leg torques can be readily calculated using standard,
fully-actuated inverse dynamics. The input that drives this
system are the contact forces, as opposed to the CoP in the
LIP or the joint torques in the full rigid-body dynamics model.
Variations of this model have been successfully used by [23]–
[26] to optimize for a wide variety of dynamic motions for
biped robots, including demonstrations on real bipeds.

Common to all these approaches is that some part of the
motion is specified beforehand. The different levels include
specifying (i) only order of feet in contact (ii) order and times
when each foot is in contact (iii) order, times and position of
each foot in contact. This decoupling can increase optimization
speed, however, it often introduces hand crafted heuristics
to link these separated problems. These can become hard to
tune for more complex problems and often limit the range of
achievable motions. The following discusses approaches how
(i)–(iii) can be automatically determined.

2) Contact Schedule Optimization: Before searching for the
optimal forces at a given time, it is necessary to know if a
foot is touching the environment and therefore can even exert
any force. This reasoning about which of the feet should be
in contact at a given time, or stated differently, when it is
necessary to generate forces at which foot is the problem of
finding a “contact schedule”.

Since feet are modeled as discrete variables N (e.g. left-
foot, right-foot), Integer Programming can be used to optimize
the contact-schedule and footholds, independent from the
dynamics of the system [26]–[28]. While this decoupling
increases speed and allows quick solutions for each separate
problem, it also necessitates heuristics that limit the range
of achievable motions. Additionally, Integer Programming
becomes very complex as the number of decision variables
increases. Another common approach is to use a soft-contact
model, which approximates the inherently hard contact sur-
faces as spring-damper systems [29]. The downside to this
approach is that these virtual spring-damper models must be
very stiff to most accurately resemble the real surface. These

abrupt changes in force from a foot hitting this stiff surface
hinder convergence of the optimizer. To avoid this, the problem
can also be solved by formulating a Linear Complementary
Problem (LCP), which enforces that either the foot is zero
distance from the contact surface (touching the environment),
or the force is zero [30]–[32]. These approaches produced
impressive results and are closest to the work presented in
this paper.

B. Contributions

We extend the above works with a single TO formulation
for legged locomotion that automatically determines the gait-
sequence, step timings, footholds, swing-leg motions, 6D body
motion and required contact forces over non-flat and inclined
terrain. No prior footstep planning is necessary, since our
formulation directly generates the complete motion given only
a desired goal position and the number of steps. We directly
enforce friction constrains, which allow the algorithm to use
inclined surfaces in physically feasible ways to complete
desired tasks. Our algorithm extends existing algorithms that
have the above capabilities in the following ways:

1) We generate motions for multiple steps in only a few
seconds while still optimizing over the gait sequence.
This is due to our novel phase-based parameterization of
the feet and forces that keep the optimization variables
continuous, and thereby the problem solvable by an NLP
solver.

2) Our NLP formulation is able to automatically generate
motions with full-flight phases, which are essential for
highly dynamics motions.

II. TRAJECTORY OPTIMIZATION FORMULATION

The complete TO formulation presented in this paper can be
seen in Fig. 2. The initial and desired final state of the system,
the total duration T and the amount of steps ns,i per foot i is
provided. With this information the algorithm finds a trajectory
for the linear CoM position r(t), its orientation θ(t), the feet
motion pi(t) and the contact force fi(t) for each foot, while
automatically discovering an appropriate gait pattern defined
by ∆Ti,j .

To ensure physically feasible behavior, a simplified Cen-
troidal dynamics model is used that relates feet position
and forces with the CoM motion. Additionally, kinematic
restriction between base and foot position are enforced in
Cartesian space. This robot model is explained in Section III.

Independent from the base motion and dynamics, there are
various restrictions on feet motions and forces described in
Section IV. To ensure that feet do not slip and forces are
produced only when touching the terrain, additional constraints
are necessary. We introduce a novel parameterization of the
variables based on each individual foot’s swing and stance
durations ∆Ti,j , which allows to automatically determine the
gait sequence and timings.

The presented NLP formulation allows to generate dynamic
motions with full flight-phases for systems with various num-
ber of feet in just a few seconds. It can handle non-flat terrain,
e.g walking over stairs and jumping over gaps. In Section V
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find r(t) ∈ R3 (CoM linear position)

θ(t) ∈ R3 (base euler angles)
for every foot i :

∆Ti,1 . . . ,∆Ti,2ns,i ∈ R (phase durations)

pi(t,∆Ti,1, . . . ) ∈ R3 (foot position)

fi(t,∆Ti,1, . . . ) ∈ R3 (force at foot)
s.t. [r,θ](t=0) = [r0,θ0] (initial state)

r(t=T ) = rg (desired goal)

[r̈, ω̇]T = fd(r,p1, . . . , f1, . . .) (dynamic model)
for every foot i :

pi(t) ∈ Ri(r,θ), (kinematic model)
if foot i in contact :

ṗi(t ∈ Ci) = 0 (no slip)
pzi (t ∈ Ci) = hterrain(pxy

i ) (terrain height)
fi(t ∈ Ci) · n(pxy

i ) ≥ 0 (pushing force)
fi(t ∈ Ci) ∈ F(µ,n,pxy

i ) (friction cone)
if foot i in air :

fi(t /∈ Ci) = 0 (no force in air)∑2ns,i

j=1 ∆Ti,j = T (total duration)

Fig. 2. Decision variables and constraints defining the legged locomotion TO
problem. The brown quantities show those aspects of the formulation that are
related to environmental contact (Section IV), while the other rows apply in
general to floating base systems.

we analyze selected motions, as well as validate the feasibility
of the generated motion plans on a real quadruped.

A. Parameterization of optimization quantities

The 6D base motion is represented by the linear CoM
position r(t) ∈ R3, while the orientation is parameterized by
Euler angles θ(t) ∈ R3. We use fourth-order polynomials of
fixed durations strung together to create a continuous spline
and optimize over the polynomial coefficients. For each foot’s
motion pi(t) ∈ R3, we use multiple third-order polynomials
per swing-phase, and a constant value ∈ R3 for the stance
phase. For each foot’s force profile fi(t) ∈ R3, multiple
polynomials represent each stance phase and zero force is
set during swing-phase. The duration of each phase, and with
that the duration of each foot’s polynomial, is changed based
on the optimized phase durations ∆Ti,j ∈ R. Since the
decision variables fully describe both the input (forces) and
the state evolution (base and feet motion), the optimization
can be considered a “simultaneous direct” method (as e.g.
Collocation) [33].

III. ROBOT MODEL

A. Kinematic Model

Instead of directly constraining joint angles, as is done in
full-body joint-space TO, we consider how the joint limits
constrain the Cartesian foot position. We approximate each

Fig. 3. The robot model known by the optimizer. The robot kinematic model
is conservatively approximated by keeping the respective foot pi inside the
range of motion Ri of each foot. The dynamics are approximated by a single
rigid-body with mass m and inertia I located at the robots CoM (Centroidal
dynamics). This can be controlled by the contact forces fi of the feet in
contact with the environment, while keeping these forces inside the friction
cone. The gray overlayed ANYmal model [34] is only for visualization and
not known by the optimizer.

foot’s workspace by a cube of edge length 2b (see Fig. 3),
centered at the nominal position of each foot pi relative to
the CoM. We assume the joint limits are not violated if every
foot i lies inside a cube, given by

pi(t) ∈ Ri(r,θ)

⇔ |R(θ)[pi(t)− r(t)]− pi| < b,
(1)

where R(θ) is the rotation matrix from the world frame to the
base frame. This condition is enforced at regularly sampled
states along the trajectory.

B. Dynamic Model

If we restrict the base orientation to be fixed, θ̇(t) = 0,
as well as the walking height to remain constant, rz(t) = h,
it is possible to represent the system as a LIP using
r̈xy = (rxy − pcop,xy)gh−1. However, keeping the base at
constant height and orientation restricts the range of achievable
motions, especially on rough terrain where some footholds
can only be reached when also tilting the base. Additionally,
by replacing the effect of individual contact forces with a
single CoP, important information is lost, e.g. keeping each
individual force inside the corresponding friction cone cannot
be enforced anymore. Finally, situations with all feet in the air
cannot be represented with this model, as a CoP pcop,xy must
always exist. For the above reasons, we decide this model is
not expressive enough to represent the motions we wish to
generate.

Another possibility for the dynamic model are the very
accurate joint-space rigid-body dynamics, using joints torques
as input. However, the main difficulty of legged locomotion
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remains in finding a physically feasible motion for the under-
actuated base given the locomotion specific restrictions seen
in Fig. 2. These physical constraints can be most intuitively
expressed in Cartesian-, not joint-space, as they relate to the
environment. Once a physically feasible motion for the base
has been found the joint torques can easily be obtained using
inverse dynamics.

We choose to remain in Cartesian space, since this allows
to formulate the relevant variables and constraints in a more
simple way and model the legged robot using simplified
Centroidal dynamics (see Fig. 3). The CoM linear r̈ and
angular ω̇ acceleration are determined by

mr̈(t) =

ni∑
i=1

fi(t)−mg

Iω̇(t) + ω(t)×Iω(t) =

ni∑
i=1

fi(t)×(r(t)− pi(t)),

(2)

where m is the mass of the robot, ni the number of feet,
g is the gravity acceleration and ω(t) represents the angular
velocity that can be calculated from the optimized Euler angles
θ(t) and rates θ̇(t) (see Appendix B). We use a constant
rotational inertia I ∈ R3×3 calculated for the robot in the
nominal pose. This assumes that either the limb masses are
negligible compared to the torso or that the limbs do not
deviate significantly from their default pose. These assump-
tions make the dynamics of the robot independent of the
joint configuration and express them solely in Cartesian space.
For the presented robots and motions the above assumptions
introduce only negligible modeling error while keeping the
formulation simpler and the solver fast. Further discussion of
the dynamic model is postponed to Section V.

To ensure physical behavior of the motion, we enforce (2)
at regular time intervals along the trajectory. Additionally, we
constrain the acceleration at the junction between two base
polynomials to be equal, as jumps in acceleration would imply
jumps in force or foot position, which we do not allow.

C. Contact independent dynamic model

Until now, the dynamic model (2) can just as well represent
a flying drone. What makes it specific to legged systems is that
the restriction on the forces and feet positions abruptly change
depending on whether a foot is in contact with the environ-
ment or not. These discretely switching contact configuration
and therefore discretely switching constraints are difficult to
handle. For example, NLP formulations don’t naturally allow
constraints to simply be turned on or off arbitrarily during the
iterations. This is why the sequence and durations of contacts
are often specified in advance when using an NLP to solve
the legged locomotion problem.

To partially simplify the problem, the robot model can
be viewed independently from concepts such as contacts or
phases and the discontinuities can be handled where they
actually occur – in the individual foot motion and forces.
As a consequence of treating every foot separately, concepts
that described multiple feet at once, such as phases or contact
configurations can be simplified to binary in contact or not.

Fig. 4. Two different contact schedules for a bipedal robot. L = left foot in
contact, R = right foot in contact, D = both feet standing, F = flight phase.
The change of gait is achieved solely by adapting the stance durations (red
delimiters) of the right foot.

The following section does not include any robot dependent
quantities (kinematic, dynamic) anymore, nor is it dependent
on the base motion. From now on each foot is treated sep-
arately and is only affected by the terrain and the physical
constraints coming from non-slip, frictional contact of rigid
bodies.

IV. CONTACT MODEL

In this section we first explain how arbitrary gaits can be
generated by modifying the durations of each individual foot’s
swing and stance phase. We then describe how we exploit this
knowledge to formulate an NLP with continuous optimization
variables, that is still able to optimize over the gait sequence.
Finally, we describe how we model the physical constraints
between the terrain and the foot motion and forces.

A. Contact Schedule Optimization

A biped walk can be characterized by phases (L,R,D, F )
as seen in Fig. 4. If the number of possible phases is low, these
can possibly be predefined in a sensible, intuitive way for a
given task. However, as the number of contact points increases
(e.g. quadruped, bipeds with hands, allowing other body parts
in contact), it becomes highly complex to determine which
of feet ∈ N should make contact in what order to achieve a
desired task.

However, we can observe that more than two phases only
exist when viewing multiple feet simultaneously. When look-
ing at a single-legged hopper, there exist exactly two phases –
a contact phase C and a flight phase. Furthermore, these two
phases always alternate: After the foot is in contact, it will be
in a flight phase, then again in contact, etc.

Analogously, we can view multi-legged robots as having
independent feet, each alternating between contact and flight.
What varies to generate the different gaits are the durations of
each foot’s swing and stance phase. Figure 4 shows that solely
by changing the phase durations ∆Ti,j ∈ R of the right foot,
a completely different gait can be generated. Since the phase
durations are continuous, these can be readily optimized by
NLP solvers and Integer Programming can be avoided.
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Fig. 5. Phase-based parameterization of foot i’s motion pi and force fi.
Each phase (swing or stance) is represented by either a constant value or a
sequence of cubic polynomials with continuous derivatives at the junctions.
The optimizer is able to modify the phase durations ∆Ti,j , thereby changing
the shape of the functions. Performing this for all feet allows to generate
arbitrary gait patterns, while still using continuous decision variables ∆Ti,j .

B. Feet Motion and Forces Parameterization

To exploit this regularity, each dimension of the quantities
pi(t), fi(t) is described by alternating sequences of constant
values and cubic polynomials

x(t) = a0 + a1t+ a2t
2 + a3t

3, ai = f(∆T,, x0, ẋ0, x1, ẋ1)

as shown in Fig. 5. Instead of optimizing over polynomial co-
efficients, we use the value x and derivative ẋ at the end-points
(“nodes”) and its duration ∆T to fully define each polynomial
(see Appendix A). This so-called “Hermite” parameterization
is more intuitive, since the optimization variables directly
describe the state. Furthermore, the node used as the end of
the previous polynomial can also be used as the starting node
of the next, which ensures continuous foot velocity and force
changes over the trajectory.

In Fig. 5 we use three polynomials of equal duration
∆Ti,j/3 to represent each swing phase of the foot motion and
each stance phase of the foot force. These can represent typi-
cally varying force and motion profiles while still keeping the
problem as small as possible. The other phases are represented
by a constant value for a duration of ∆Ti,j . We predefine the
maximum number of steps ns,i each foot can take. Note that
this is not a strong restriction, as phase durations can always
be set close to zero if less steps are required.

The times at which foot i is in contact for the sth time are
given by

Ci,s =
{
t
∣∣∣ 0 < t−

∑2s−1
j=1 ∆Ti,j < ∆Ti,2s

}
. (3)

This uses the intuition that every new foothold s is preceded
by exactly two phases j (swing and stance). The set of all
times that foot i is in contact is denoted by Ci = ∪ns,s

s=1Ci,s.
The individual polynomials carry information about whether

they represent a swing or stance phase, and this never changes.
However, the algorithm still has the flexibility to change the
contact state at a given time by adapting the relevant phase
durations and thereby make this time fall onto a polynomial of

different contact state. Therefore, by changing these durations,
all contact schedules/gaits can be generated. Since we are
changing the durations, we must ensure that the total duration
of each foot’s motion and force spline ends at the specified
total time. Therefore, we have the additional constraint for
every foot i that ∆Ti,1 + · · ·+ ∆Ti,2ns,i

= T .
With this parameterization we directly impose that a foot

in contact does not slip, more specifically, that the velocity
of the foot motion during stance phase is zero. This is not a
constraint of the optimization problem, but is ensured directly
by our parameterization through a single, constant position
variable pi,s as

ṗi(t ∈ Ci,s) = 0 ⇔ pi(t ∈ Ci,s) = pi,s = const. (4)

If a foot is not in contact, no force can be produced.
Therefore, we set each constant value representing the force
in the flight-phase to zero as

fi(t /∈ Ci) = 0. (5)

The above restrictions (4), (5) are handled before starting
the optimization and are equivalent to the LCP constraint
ṗi(t)fi(t) = 0 used in other TO formulations with automatic
gait discovery. However, instead of checking this conditions
at every sampling time t along the trajectory during the
optimization, our phase-duration based optimization allows us
to predefine this condition a-priori. This simplifies the problem
for the solver and decreases computation time.

As seen in Fig. 5, we additionally ensure that the foot
motion and force profiles are smooth at phase junctions (con-
tinuously differentiable) and thereby easier for the gradient
based solver to handle. Physically this is not required as
contact with the environment can be impulsive, which abruptly
zeros the foot velocity and spikes the contact force.

C. Terrain Height Constraint

A foot is only in contact if it is touching the terrain.
Therefore, the height of the foot during contact must match
the terrain at that 2D foot position pxy

i,s = (pxi,s, p
y
i,s). The

continuous height map hterrain(x, y) can be either manually
specified if the objects in the environment are known or be
generated from stereo camera data. We constrain the variable
representing the constant foothold height of foot i during
stance phase s by

pzi (t ∈ Ci,s) = pzi,s = hterrain(pxy
i,s). (6)

D. Stance Force Constraints

For physically correct locomotion it is necessary that forces
can only push into the contact surface, and not pull on it.
For flat ground and an LIP model this can be equivalently
formulated as keeping the CoP inside the area spanned by the
feet in contact. Since our formulation has explicit values for
the contact forces we can directly constrain these as

fn(t ∈ Ci,s) = fT (t)n(pxy
i,s) ≥ 0, (7)

where n(x, y) denotes the normal vector defining the slope
of the terrain at position x, y. The scalar product extracts the
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component of the force that is orthogonal to the terrain. For flat
ground, n(x, y) =

[
0 0 1

]T
and the constraint simplifies to

fz(t) ≥ 0.
It follows from Coulombs law that pushing stronger into

a surface allows to exert larger side-ways forces without
slipping. This is equivalent to keeping tangential forces ft1, ft2
inside the friction cone defined by the friction coefficient µ
as
√
f2t1 + f2t2 < µfn. We approximate this friction cone by

a friction pyramid, enforcing an upper and lower bound for
the force in both tangential directions t1, t2. This pyramid
approximation introduces only negligible error but linearizes
this constraint, simplifying the problem for the NLP solver.
The constraint is given by

−µfn <f{t1,t2} < µfn

⇔ |fT (t)t{1,2}(p
xy
i,s)| < fT (t)n(pxy

i,s).
(8)

V. RESULTS

This section discusses the variety of motions generated
with the presented algorithm for a single-legged hopper, a
biped robot and the quadruped robots ANYmal [34] and
HyQ [35]. First, the motion plans, fulfilling all the specified
physical constraints, are analyzed and discussed. Secondly,
we demonstrate a subset of motions in the realistic physics
simulator Gazebo as well as on the quadruped robot ANYmal
[34].

This requires a controller that is able to reliably track
the generated motion-plans by incorporating current sensor
data in order to calculate the appropriate joint torques. This
is not a trivial task, and just as much a research topic as
generating the plans. Our controller solves a hierarchy of tasks
using optimization to most accurately track the plans and is
described in detail in [36]. In simulation, we demonstrate
highly dynamic and full-body walking, trotting, pacing and
galloping, all produced by the same method and tracked with
the same controller. Additionally, we show that despite model
mismatches, sensor noise, torque tracking inaccuracies and
delays the motion plans are robust enough to be tracked on
a real system. A quadruped trot and walk with optimized
full 6D-body motion and directly planned contact forces is
executed on a real system. These examples are another form
of validation that our formulation produces motion plans that
are physically feasible.

The accompanying video1 shows a visualization of the gen-
erated motion plans using inverse kinematics and simulation
and real robot experiments. The biped gap crossing example
below can be seen in the video at 01:09 and is shown in Fig. 6.
The motions are optimized with TOWR [2] and visualized with
XPP [37], which also provide ROS bag files of some optimized
motions.

A. Example: Biped gap crossing

1) Dynamic consistency: A main focus in TO is to gen-
erate motions plans that are physically feasible. For shooting
methods that optimize only over the inputs and integrate to
get the state the dynamics are always fulfilled. For the used

1Video of generated motions: https://youtu.be/0jE46GqzxMM.
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Fig. 6. A generated motion plan for a 20 kg-bipedal robot crossing a 1 m wide
gap (see video at 01:09). The plots show the base vertical acceleration r̈z(t)
as well as the vertical position and vertical force of the left (L) and right (R)
leg. The planned base vertical acceleration is compared to the vertical body
acceleration that results from evaluating (2) with the current footholds and
forces. In this example we use fourth-order polynomials of duration 0.2 s for
the base motion parameterization. The red nodes, spaced 0.1 s apart, show
the times at which the dynamic constraint is enforced in the NLP. We use
two third-order polynomials to parameterize each foot motion in swing-phase
(white area), and three third-order polynomials for each force profile per foot
in stance-phase (shaded area).

simultaneous method the dynamic constraint (2) is enforced
only at discretized times (red nodes). We therefore calculate
the true base vertical acceleration r̈ztrue = m−1(fzL + fzR)− g
(black dashed line) from (2) using the optimized forces and
compare it to the optimized result r̈z (black solid line).
The same evaluation can be done for the other five base
coordinates r̈x, r̈y, ω̇x, ω̇y, ω̇z . As can be seen, these values
coincide exactly at the node values, as these are enforced by
hard constraints, and deviate only slightly in between, e.g.
during the dynamic sequence at t=2.0-2.2 s. The Root-Mean-
Squared-Error (RMSE) for the base vertical acceleration is
1.8433m

s2 .
In case more accuracy is required, dynamic constraints

can be enforced at a finer grid, e.g. every 50 ms. However,
one must keep in mind that (i) the dynamic model is an
approximation of the true dynamic system and will also never
be perfectly accurate (ii) enforcing the dynamics exactly might
be unnecessary since the controller cannot even track the
desired motions exactly, due to sensor noise, inaccurate force
tracking and delays. Taking the above into account, sensible
model accuracy must be chosen for each hardware, controller
and problem individually.

2) Foot contact constraints: The foot height pz(t) for the
left and right foot is shown by the blue lines. We notice that
the constant segments during stance phase (gray areas) are
mostly at the tableau height hterrain = 0 (blue dotted line)
as required by (6). The z-positions lower than zero are where
the biped steps into the sides of the gap while traversing it. In
order the have gradient information available, we model the
gap hgap(x, y) as a 5 m deep parabola, instead of a discretely

https://youtu.be/0jE46GqzxMM
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TABLE I
NLP SPECS FOR BIPEDAL GAP CROSSING

Horizon T: 4.4 s dt-kinematic: 0.05 s Variables: 926

Goal x: 3.7 m dt-dynamic: 0.1 s Constraints: 1543

Steps/foot ns,L/R :5 Iterations: 21 T-solve (Ipopt): 4.1 s

changing ground height. This helps the NLP solver to converge
to a solution.

Vertical forces fz(t) only exist whenever the corresponding
foot is in stance phase (gray area). This is enforced by the
parameterization of the force profile given by (5). During the
stance phase the force can only push into the terrain as required
by (7). Since the normal direction of the terrain changes at the
side of the gaps, negative z-forces are also physically feasible,
as seen at t = 2.8s.

3) Automatic gait discovery: The algorithm is able to
automatically change the initially provided gait sequence
and timings depending on the terrain and desired task. The
motion was initialized with a walking gait, with short two-
leg support phases between every step. As can be seen in
Fig. 6, flight-phases have been automatically inserted at e.g.
t = 0.62s − 0.7s. We constrain each phase duration variable
∆Ti,j to be greater than 0.1 s in this example to avoid very
quick swing- or extremely short stance phases. Flight-phases
allow the solver to respect kinematic limits while still covering
a large distance with few steps. Capabilities such as these show
the advantages of optimizing all the aspects of the motion
simultaneously.

4) Fast solver: As seen in Table I our formulation is able
to generate the sample biped motion in 4.1 s. This includes
optimization over the contact sequence, finding 6D-body,
foothold and swing-leg motions as well as enforcing friction
constraints. The kinematic constraint (1) is enforced every
0.05 s, while the dynamic constraint (2) is checked every 0.1 s.
Generating a motion of two steps per leg for a quadruped
robot takes ~300 ms. For the other motions shown in the video,
with time horizons around 5 s involving dozens of steps, the
algorithm takes ~20 s. These values vary depending on the
problem definition, terrain and other parameters. Nonetheless,
other approaches that can generate similarly complex motions
often take orders of magnitude longer. The results where
obtained using C++ code interfaced with Interior Point Method
solver Ipopt [38] on an Intel Core i7/2.8 GHz Quadcore laptop.
The Jacobians of the constraints are provided to the solver
analytically, which is important for performance. Another
factor that speeds up the optimization, is that we do not use
a cost function, as observed in Fig. 2. This also reduces the
amount of tuning parameters, as the relative importance of the
constraints does not have to be quantified – they all have to
be fulfilled for a motion to be physically feasible.

B. Limitations and Future Work

For humanoid robots with heavy limbs deviating far from
its nominal configuration the simplified Centroidal dynamics
model (2) might not be sufficient. If a more accurate dynamic

representation is necessary, the model can be refined by
calculating the joint angles q from the optimized foot positions
p using inverse kinematics and updating I(q). Likewise, opti-
mized foot velocities ṗ can be converted into angular velocities
ωi of each leg link (e.g. using the leg Jacobian) and used in
(2) explicitly. These refinements will increase the nonlinearity
of the dynamic constraint and possibly computation time, but
can still be handled by the proposed formulation and NLP
solver.

The solver enforces the terrain constraints (terrain collision,
unilateral force, friction cone) only at the junctions of the 3rd-
order feet polynomials. Since these polynomials are usually
short, violation of the constraints in between is often neg-
ligible. However, especially when a foot motion polynomial
enforces the terrain constraint (6) only at the borders and an
obstacle is in between, undesired terrain collision can occur.

Finally, for highly uneven terrain the solver is sometimes
trapped in local minima. One way to simplify the problem for
the solver is to fix the step timings, thereby not optimizing
over the gait sequence. As long as the range of motion is large
enough to reach the desired goal in the specified number of
steps the solver consistently finds solutions to the problem and
the solution time rapidly decreases.

VI. CONCLUSION

We presented a TO formulation that is able to efficiently
generate complex, highly dynamic motions for a variety of
legged systems over non-flat terrain, while also optimizing
over the contact sequence. The feasibility of the motion plan
is demonstrated in simulation and on a real quadruped. In the
future we will transfer even more motions to the real system
and also use this fast motion planner in an Model Predictive
Control (MPC) fashion.

APPENDIX

A. Hermite parameterization

Each cubic polynomial x(t) = a0 + a1t+ a2t
2 + a3t

3 can
either be parameterized by its coefficients or the value and
first derivative and the end points x0, x1 and the duration ∆T
as

a0 = x0

a1 = ẋ0

a2 = −∆T−2[3(x0 − x1) + ∆T (2ẋ0 + ẋ1)]

a3 = ∆T−3[2(x0 − x1) + ∆T (ẋ0 + ẋ1)].

B. Euler angles and rates to angular velocities

The transformation [39] from the optimized Euler angles
θ (order of application: yaw, pitch, roll) and rates θ̇ to the
angular velocities in world frame are

ω = C(θ)θ̇ =

 cos(θy) cos(θz) − sin(θz) 0
cos(θy) sin(θz) cos(θz) 0
− sin(θy) 0 1

θ̇xθ̇y
θ̇z


ω̇ = Ċ(θ, θ̇)θ̇ + C(θ)θ̈.
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