This repository was archived by the owner on Jul 16, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathdeepracer_racetrack_env.py
568 lines (494 loc) · 25.2 KB
/
deepracer_racetrack_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
from __future__ import print_function
import bisect
import boto3
import json
import logging
import math
import os
import time
import traceback
import sys
from collections import OrderedDict
import gym
import queue
import numpy as np
from gym import spaces
from PIL import Image
from markov import utils
logger = utils.Logger(__name__, logging.INFO).get_logger()
# Type of worker
SIMULATION_WORKER = "SIMULATION_WORKER"
SAGEMAKER_TRAINING_WORKER = "SAGEMAKER_TRAINING_WORKER"
node_type = os.environ.get("NODE_TYPE", SIMULATION_WORKER)
if node_type == SIMULATION_WORKER:
import rospy
from std_msgs.msg import Float64
from gazebo_msgs.msg import ModelState
from gazebo_msgs.srv import GetLinkState, GetModelState, JointRequest
from scipy.spatial.transform import Rotation
from sensor_msgs.msg import Image as sensor_image
from shapely.geometry import Point, Polygon
from shapely.geometry.polygon import LinearRing, LineString
from deepracer_simulation.srv import GetWaypointSrv, ResetCarSrv
# Type of job
TRAINING_JOB = 'TRAINING'
EVALUATION_JOB = 'EVALUATION'
# Dimensions of the input training image
TRAINING_IMAGE_SIZE = (160, 120)
# Local offset of the front of the car
RELATIVE_POSITION_OF_FRONT_OF_CAR = [0.14, 0, 0]
# Normalized track distance to move with each reset
ROUND_ROBIN_ADVANCE_DIST = 0.05
# Reward to give the car when it "crashes"
CRASHED = 1e-8
# Size of the image queue buffer, we want this to be one so that we consume 1 image
# at a time, but may want to change this as we add more algorithms
IMG_QUEUE_BUF_SIZE = 1
# List of required velocity topics, one topic per wheel
VELOCITY_TOPICS = ['/racecar/left_rear_wheel_velocity_controller/command',
'/racecar/right_rear_wheel_velocity_controller/command',
'/racecar/left_front_wheel_velocity_controller/command',
'/racecar/right_front_wheel_velocity_controller/command']
# List of required steering hinges
STEERING_TOPICS = ['/racecar/left_steering_hinge_position_controller/command',
'/racecar/right_steering_hinge_position_controller/command']
# List of all effort joints
EFFORT_JOINTS = ['/racecar/left_rear_wheel_joint', '/racecar/right_rear_wheel_joint',
'/racecar/left_front_wheel_joint','/racecar/right_front_wheel_joint',
'/racecar/left_steering_hinge_joint','/racecar/right_steering_hinge_joint']
# Radius of the wheels of the car in meters
WHEEL_RADIUS = 0.1
# The number of steps to wait before checking if the car is stuck
# This number should corespond to the camera FPS, since it is pacing the
# step rate.
NUM_STEPS_TO_CHECK_STUCK = 15
### Gym Env ###
class DeepRacerRacetrackEnv(gym.Env):
def __init__(self):
# Create the observation space
self.observation_space = spaces.Box(low=0, high=255,
shape=(TRAINING_IMAGE_SIZE[1], TRAINING_IMAGE_SIZE[0], 3),
dtype=np.uint8)
# Create the action space
self.action_space = spaces.Box(low=np.array([-1, 0]), high=np.array([+1, +1]), dtype=np.float32)
if node_type == SIMULATION_WORKER:
# ROS initialization
rospy.init_node('rl_coach', anonymous=True)
# wait for required services
rospy.wait_for_service('/deepracer_simulation/get_waypoints')
rospy.wait_for_service('/deepracer_simulation/reset_car')
rospy.wait_for_service('/gazebo/get_model_state')
rospy.wait_for_service('/gazebo/get_link_state')
rospy.wait_for_service('/gazebo/clear_joint_forces')
self.get_model_state = rospy.ServiceProxy('/gazebo/get_model_state', GetModelState)
self.get_link_state = rospy.ServiceProxy('/gazebo/get_link_state', GetLinkState)
self.clear_forces_client = rospy.ServiceProxy('/gazebo/clear_joint_forces',
JointRequest)
self.reset_car_client = rospy.ServiceProxy('/deepracer_simulation/reset_car',
ResetCarSrv)
get_waypoints_client = rospy.ServiceProxy('/deepracer_simulation/get_waypoints',
GetWaypointSrv)
# Create the publishers for sending speed and steering info to the car
self.velocity_pub_dict = OrderedDict()
self.steering_pub_dict = OrderedDict()
for topic in VELOCITY_TOPICS:
self.velocity_pub_dict[topic] = rospy.Publisher(topic, Float64, queue_size=1)
for topic in STEERING_TOPICS:
self.steering_pub_dict[topic] = rospy.Publisher(topic, Float64, queue_size=1)
# Read in parameters
self.world_name = rospy.get_param('WORLD_NAME')
self.job_type = rospy.get_param('JOB_TYPE')
self.aws_region = rospy.get_param('AWS_REGION')
self.metrics_s3_bucket = rospy.get_param('METRICS_S3_BUCKET')
self.metrics_s3_object_key = rospy.get_param('METRICS_S3_OBJECT_KEY')
self.metrics = []
self.simulation_job_arn = 'arn:aws:robomaker:' + self.aws_region + ':' + \
rospy.get_param('ROBOMAKER_SIMULATION_JOB_ACCOUNT_ID') + \
':simulation-job/' + rospy.get_param('AWS_ROBOMAKER_SIMULATION_JOB_ID')
if self.job_type == TRAINING_JOB:
from custom_files.customer_reward_function import reward_function
self.reward_function = reward_function
self.metric_name = rospy.get_param('METRIC_NAME')
self.metric_namespace = rospy.get_param('METRIC_NAMESPACE')
self.training_job_arn = rospy.get_param('TRAINING_JOB_ARN')
self.target_number_of_episodes = rospy.get_param('NUMBER_OF_EPISODES')
self.target_reward_score = rospy.get_param('TARGET_REWARD_SCORE')
else:
from markov.defaults import reward_function
self.reward_function = reward_function
self.number_of_trials = 0
self.target_number_of_trials = rospy.get_param('NUMBER_OF_TRIALS')
# Request the waypoints
waypoints = None
try:
resp = get_waypoints_client()
waypoints = np.array(resp.waypoints).reshape(resp.row, resp.col)
except Exception as ex:
utils.json_format_logger("Unable to retrieve waypoints: {}".format(ex),
**utils.build_system_error_dict(utils.SIMAPP_ENVIRONMENT_EXCEPTION,
utils.SIMAPP_EVENT_ERROR_CODE_500))
is_loop = np.all(waypoints[0,:] == waypoints[-1,:])
if is_loop:
self.center_line = LinearRing(waypoints[:,0:2])
self.inner_border = LinearRing(waypoints[:,2:4])
self.outer_border = LinearRing(waypoints[:,4:6])
self.road_poly = Polygon(self.outer_border, [self.inner_border])
else:
self.center_line = LineString(waypoints[:,0:2])
self.inner_border = LineString(waypoints[:,2:4])
self.outer_border = LineString(waypoints[:,4:6])
self.road_poly = Polygon(np.vstack((self.outer_border, np.flipud(self.inner_border))))
self.center_dists = [self.center_line.project(Point(p), normalized=True) for p in self.center_line.coords[:-1]] + [1.0]
self.track_length = self.center_line.length
# Queue used to maintain image consumption synchronicity
self.image_queue = queue.Queue(IMG_QUEUE_BUF_SIZE)
rospy.Subscriber('/camera/zed/rgb/image_rect_color', sensor_image, self.callback_image)
# Initialize state data
self.episodes = 0
self.start_ndist = 0.0
self.reverse_dir = False
self.change_start = rospy.get_param('CHANGE_START_POSITION', (self.job_type == TRAINING_JOB))
self.alternate_dir = rospy.get_param('ALTERNATE_DRIVING_DIRECTION', False)
self.is_simulation_done = False
self.steering_angle = 0
self.speed = 0
self.action_taken = 0
self.prev_progress = 0
self.prev_point = Point(0, 0)
self.prev_point_2 = Point(0, 0)
self.next_state = None
self.reward = None
self.reward_in_episode = 0
self.done = False
self.steps = 0
self.simulation_start_time = 0
self.allow_servo_step_signals = False
def reset(self):
if node_type == SAGEMAKER_TRAINING_WORKER:
return self.observation_space.sample()
# Simulation is done - so RoboMaker will start to shut down the app.
# Till RoboMaker shuts down the app, do nothing more else metrics may show unexpected data.
if (node_type == SIMULATION_WORKER) and self.is_simulation_done:
while True:
time.sleep(1)
self.steering_angle = 0
self.speed = 0
self.action_taken = 0
self.prev_progress = 0
self.prev_point = Point(0, 0)
self.prev_point_2 = Point(0, 0)
self.next_state = None
self.reward = None
self.reward_in_episode = 0
self.done = False
# Reset the car and record the simulation start time
if self.allow_servo_step_signals:
self.send_action(0, 0)
self.racecar_reset()
self.steps = 0
self.simulation_start_time = time.time()
self.infer_reward_state(0, 0)
return self.next_state
def set_next_state(self):
# Make sure the first image is the starting image
image_data = self.image_queue.get(block=True, timeout=None)
# Read the image and resize to get the state
image = Image.frombytes('RGB', (image_data.width, image_data.height), image_data.data, 'raw', 'RGB', 0, 1)
image = image.resize(TRAINING_IMAGE_SIZE, resample=2)
self.next_state = np.array(image)
def racecar_reset(self):
try:
for joint in EFFORT_JOINTS:
self.clear_forces_client(joint)
prev_index, next_index = self.find_prev_next_waypoints(self.start_ndist)
self.reset_car_client(self.start_ndist, next_index)
# First clear the queue so that we set the state to the start image
_ = self.image_queue.get(block=True, timeout=None)
self.set_next_state()
except Exception as ex:
utils.json_format_logger("Unable to reset the car: {}".format(ex),
**utils.build_system_error_dict(utils.SIMAPP_ENVIRONMENT_EXCEPTION,
utils.SIMAPP_EVENT_ERROR_CODE_500))
def set_allow_servo_step_signals(self, allow_servo_step_signals):
self.allow_servo_step_signals = allow_servo_step_signals
def step(self, action):
if node_type == SAGEMAKER_TRAINING_WORKER:
return self.observation_space.sample(), 0, False, {}
# Initialize next state, reward, done flag
self.next_state = None
self.reward = None
self.done = False
# Send this action to Gazebo and increment the step count
self.steering_angle = float(action[0])
self.speed = float(action[1])
if self.allow_servo_step_signals:
self.send_action(self.steering_angle, self.speed)
self.steps += 1
# Compute the next state and reward
self.infer_reward_state(self.steering_angle, self.speed)
return self.next_state, self.reward, self.done, {}
def callback_image(self, data):
try:
self.image_queue.put_nowait(data)
except queue.Full:
pass
except Exception as ex:
utils.json_format_logger("Error retrieving frame from gazebo: {}".format(ex),
**utils.build_system_error_dict(utils.SIMAPP_ENVIRONMENT_EXCEPTION, utils.SIMAPP_EVENT_ERROR_CODE_500))
def send_action(self, steering_angle, speed):
# Simple v/r to computes the desired rpm
wheel_rpm = speed/WHEEL_RADIUS
for _, pub in self.velocity_pub_dict.items():
pub.publish(wheel_rpm)
for _, pub in self.steering_pub_dict.items():
pub.publish(steering_angle)
def infer_reward_state(self, steering_angle, speed):
try:
self.set_next_state()
except Exception as ex:
utils.json_format_logger("Unable to retrieve image from queue: {}".format(ex),
**utils.build_system_error_dict(utils.SIMAPP_ENVIRONMENT_EXCEPTION, utils.SIMAPP_EVENT_ERROR_CODE_500))
# Read model state from Gazebo
model_state = self.get_model_state('racecar', '')
model_orientation = Rotation.from_quat([
model_state.pose.orientation.x,
model_state.pose.orientation.y,
model_state.pose.orientation.z,
model_state.pose.orientation.w])
model_location = np.array([
model_state.pose.position.x,
model_state.pose.position.y,
model_state.pose.position.z]) + \
model_orientation.apply(RELATIVE_POSITION_OF_FRONT_OF_CAR)
model_point = Point(model_location[0], model_location[1])
model_heading = model_orientation.as_euler('zyx')[0]
# Read the wheel locations from Gazebo
left_rear_wheel_state = self.get_link_state('racecar::left_rear_wheel', '')
left_front_wheel_state = self.get_link_state('racecar::left_front_wheel', '')
right_rear_wheel_state = self.get_link_state('racecar::right_rear_wheel', '')
right_front_wheel_state = self.get_link_state('racecar::right_front_wheel', '')
wheel_points = [
Point(left_rear_wheel_state.link_state.pose.position.x,
left_rear_wheel_state.link_state.pose.position.y),
Point(left_front_wheel_state.link_state.pose.position.x,
left_front_wheel_state.link_state.pose.position.y),
Point(right_rear_wheel_state.link_state.pose.position.x,
right_rear_wheel_state.link_state.pose.position.y),
Point(right_front_wheel_state.link_state.pose.position.x,
right_front_wheel_state.link_state.pose.position.y)
]
# Project the current location onto the center line and find nearest points
current_ndist = self.center_line.project(model_point, normalized=True)
prev_index, next_index = self.find_prev_next_waypoints(current_ndist)
distance_from_prev = model_point.distance(Point(self.center_line.coords[prev_index]))
distance_from_next = model_point.distance(Point(self.center_line.coords[next_index]))
closest_waypoint_index = (prev_index, next_index)[distance_from_next < distance_from_prev]
# Compute distance from center and road width
nearest_point_center = self.center_line.interpolate(current_ndist, normalized=True)
nearest_point_inner = self.inner_border.interpolate(self.inner_border.project(nearest_point_center))
nearest_point_outer = self.outer_border.interpolate(self.outer_border.project(nearest_point_center))
distance_from_center = nearest_point_center.distance(model_point)
distance_from_inner = nearest_point_inner.distance(model_point)
distance_from_outer = nearest_point_outer.distance(model_point)
track_width = nearest_point_inner.distance(nearest_point_outer)
is_left_of_center = (distance_from_outer < distance_from_inner) if self.reverse_dir \
else (distance_from_inner < distance_from_outer)
# Convert current progress to be [0,100] starting at the initial waypoint
if self.reverse_dir:
current_progress = self.start_ndist - current_ndist
else:
current_progress = current_ndist - self.start_ndist
if current_progress < 0.0: current_progress = current_progress + 1.0
current_progress = 100 * current_progress
if current_progress < self.prev_progress:
# Either: (1) we wrapped around and have finished the track,
delta1 = current_progress + 100 - self.prev_progress
# or (2) for some reason the car went backwards (this should be rare)
delta2 = self.prev_progress - current_progress
current_progress = (self.prev_progress, 100)[delta1 < delta2]
# Car is off track if all wheels are outside the borders
wheel_on_track = [self.road_poly.contains(p) for p in wheel_points]
all_wheels_on_track = all(wheel_on_track)
any_wheels_on_track = any(wheel_on_track)
# Compute the reward
if any_wheels_on_track:
done = False
params = {
'all_wheels_on_track': all_wheels_on_track,
'x': model_point.x,
'y': model_point.y,
'heading': model_heading * 180.0 / math.pi,
'distance_from_center': distance_from_center,
'progress': current_progress,
'steps': self.steps,
'speed': speed,
'steering_angle': steering_angle * 180.0 / math.pi,
'track_width': track_width,
'waypoints': list(self.center_line.coords),
'closest_waypoints': [prev_index, next_index],
'is_left_of_center': is_left_of_center,
'is_reversed': self.reverse_dir
}
try:
reward = float(self.reward_function(params))
except Exception as e:
utils.json_format_logger("Exception {} in customer reward function. Job failed!".format(e),
**utils.build_user_error_dict(utils.SIMAPP_SIMULATION_WORKER_EXCEPTION,
utils.SIMAPP_EVENT_ERROR_CODE_400))
traceback.print_exc()
os._exit(1)
else:
done = True
reward = CRASHED
# Reset if the car position hasn't changed in the last 2 steps
prev_pnt_dist = min(model_point.distance(self.prev_point), model_point.distance(self.prev_point_2))
if prev_pnt_dist <= 0.0001 and self.steps % NUM_STEPS_TO_CHECK_STUCK == 0:
done = True
reward = CRASHED # stuck
# Simulation jobs are done when progress reaches 100
if current_progress >= 100:
done = True
# Keep data from the previous step around
self.prev_point_2 = self.prev_point
self.prev_point = model_point
self.prev_progress = current_progress
# Set the reward and done flag
self.reward = reward
self.reward_in_episode += reward
self.done = done
# Trace logs to help us debug and visualize the training runs
# btown TODO: This should be written to S3, not to CWL.
logger.info('SIM_TRACE_LOG:%d,%d,%.4f,%.4f,%.4f,%.2f,%.2f,%d,%.4f,%s,%s,%.4f,%d,%.2f,%s\n' % (
self.episodes, self.steps, model_location[0], model_location[1], model_heading,
self.steering_angle,
self.speed,
self.action_taken,
self.reward,
self.done,
all_wheels_on_track,
current_progress,
closest_waypoint_index,
self.track_length,
time.time()))
# Terminate this episode when ready
if done and node_type == SIMULATION_WORKER:
self.finish_episode(current_progress)
def find_prev_next_waypoints(self, ndist):
if self.reverse_dir:
next_index = bisect.bisect_left(self.center_dists, ndist) - 1
prev_index = next_index + 1
if next_index == -1: next_index = len(self.center_dists) - 1
else:
next_index = bisect.bisect_right(self.center_dists, ndist)
prev_index = next_index - 1
if next_index == len(self.center_dists): next_index = 0
return prev_index, next_index
def stop_car(self):
self.steering_angle = 0
self.speed = 0
self.action_taken = 0
self.send_action(0, 0)
self.racecar_reset()
def finish_episode(self, progress):
# Increment episode count, update start position and direction
self.episodes += 1
if self.change_start:
self.start_ndist = (self.start_ndist + ROUND_ROBIN_ADVANCE_DIST) % 1.0
if self.alternate_dir:
self.reverse_dir = not self.reverse_dir
# Reset the car
self.stop_car()
# Update metrics based on job type
if self.job_type == TRAINING_JOB:
self.send_reward_to_cloudwatch(self.reward_in_episode)
self.update_training_metrics()
self.write_metrics_to_s3()
if self.is_training_done():
self.cancel_simulation_job()
elif self.job_type == EVALUATION_JOB:
self.number_of_trials += 1
self.update_eval_metrics(progress)
self.write_metrics_to_s3()
def update_eval_metrics(self, progress):
eval_metric = {}
eval_metric['completion_percentage'] = int(progress)
eval_metric['metric_time'] = int(round(time.time() * 1000))
eval_metric['start_time'] = int(round(self.simulation_start_time * 1000))
eval_metric['elapsed_time_in_milliseconds'] = int(round((time.time() - self.simulation_start_time) * 1000))
eval_metric['trial'] = int(self.number_of_trials)
self.metrics.append(eval_metric)
def update_training_metrics(self):
training_metric = {}
training_metric['reward_score'] = int(round(self.reward_in_episode))
training_metric['metric_time'] = int(round(time.time() * 1000))
training_metric['start_time'] = int(round(self.simulation_start_time * 1000))
training_metric['elapsed_time_in_milliseconds'] = int(round((time.time() - self.simulation_start_time) * 1000))
training_metric['episode'] = int(self.episodes)
self.metrics.append(training_metric)
def write_metrics_to_s3(self):
session = boto3.session.Session()
s3_url = os.environ.get('S3_ENDPOINT_URL')
s3_client = session.client('s3', region_name=self.aws_region, endpoint_url=s3_url)
metrics_body = json.dumps({'metrics': self.metrics})
s3_client.put_object(
Bucket=self.metrics_s3_bucket,
Key=self.metrics_s3_object_key,
Body=bytes(metrics_body, encoding='utf-8')
)
def is_training_done(self):
if ((self.target_number_of_episodes > 0) and (self.target_number_of_episodes == self.episodes)) or \
((isinstance(self.target_reward_score, (int, float))) and (self.target_reward_score <= self.reward_in_episode)):
self.is_simulation_done = True
return self.is_simulation_done
def cancel_simulation_job(self):
isLocal = os.environ.get("LOCAL")
if isLocal != None:
session = boto3.session.Session()
robomaker_client = session.client('robomaker', region_name=self.aws_region)
robomaker_client.cancel_simulation_job(
job=self.simulation_job_arn
)
def send_reward_to_cloudwatch(self, reward):
isLocal = os.environ.get("LOCAL")
if isLocal == None:
s3_client = session.client('s3', region_name=self.aws_region)
session = boto3.session.Session()
cloudwatch_client = session.client('cloudwatch', region_name=self.aws_region)
cloudwatch_client.put_metric_data(
MetricData=[
{
'MetricName': self.metric_name,
'Dimensions': [
{
'Name': 'TRAINING_JOB_ARN',
'Value': self.training_job_arn
},
],
'Unit': 'None',
'Value': reward
},
],
Namespace=self.metric_namespace
)
else:
print("{}: {}".format(self.metric_name, reward))
class DeepRacerRacetrackCustomActionSpaceEnv(DeepRacerRacetrackEnv):
def __init__(self):
DeepRacerRacetrackEnv.__init__(self)
try:
# Try loading the custom model metadata (may or may not be present)
with open('custom_files/model_metadata.json', 'r') as f:
model_metadata = json.load(f)
self.json_actions = model_metadata['action_space']
logger.info("Loaded action space from file: {}".format(self.json_actions))
except Exception as ex:
# Failed to load, fall back on the default action space
from markov.defaults import model_metadata
self.json_actions = model_metadata['action_space']
logger.info("Exception {} on loading custom action space, using default: {}".format(ex, self.json_actions))
self.action_space = spaces.Discrete(len(self.json_actions))
def step(self, action):
self.steering_angle = float(self.json_actions[action]['steering_angle']) * math.pi / 180.0
self.speed = float(self.json_actions[action]['speed'])
self.action_taken = action
return super().step([self.steering_angle, self.speed])