Skip to content
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
45 lines (31 sloc) 1.82 KB

Step 4.3: Transform the Training Dataset and Upload It to Amazon S3

The XGBoost Algorithm expects comma-separated values (CSV) for its training input. The format of the training dataset is numpy.array. Transform the dataset from numpy.array format to the CSV format. Then upload it to the Amazon S3 bucket that you created in Step 1: Create an Amazon S3 Bucket

To convert the dataset to CSV format and upload it

  • Type the following code into a cell in your notebook and then run the cell.

    import struct
    import io
    import csv
    import boto3
    def convert_data():
        data_partitions = [('train', train_set), ('validation', valid_set), ('test', test_set)]
        for data_partition_name, data_partition in data_partitions:
            print('{}: {} {}'.format(data_partition_name, data_partition[0].shape, data_partition[1].shape))
            labels = [t.tolist() for t in data_partition[1]]
            features = [t.tolist() for t in data_partition[0]]
            if data_partition_name != 'test':
                examples = np.insert(features, 0, labels, axis=1)
                examples = features
            np.savetxt('data.csv', examples, delimiter=',')
            key = "{}/{}/examples".format(prefix,data_partition_name)
            url = 's3://{}/{}'.format(bucket, key)
            print('Done writing to {}'.format(url))

    After it converts the dataset to the CSV format, ,the code uploads the CSV file to the S3 bucket.

Next Step
Step 5: Train a Model

You can’t perform that action at this time.