Skip to content
Branch: master
Find file History
Pull request Compare This branch is 70 commits ahead, 312 commits behind keras-team:master.
Permalink
Type Name Latest commit message Commit time
..
Failed to load latest commit information.
README.md Rebase to latest Keras April 20 2018 (#71) Aug 13, 2018
addition_rnn.py Improve addition_rnn example's code and comments (keras-team#11296) Oct 4, 2018
antirectifier.py
babi_memnn.py Prepare for keras-mxnet 2.2 release (#117) Aug 13, 2018
babi_rnn.py PEP8 fixed line length examples/ (keras-team#10724) Jul 18, 2018
cifar10_cnn.py PEP8 fixed line length examples/ (keras-team#10724) Jul 18, 2018
cifar10_cnn_capsule.py merge keras-mxnet with keras 2.2.4 Oct 8, 2018
cifar10_cnn_tfaugment2d.py Remove word “shuffled” from comments in examples (keras-team#9453) Feb 22, 2018
cifar10_mobilenet.py Prepare for keras-mxnet 2.2 release (#117) Aug 13, 2018
cifar10_resnet.py Add missing named arguments in ImageDataGenerator in examples (keras-… Jun 12, 2018
cifar10_resnet_multi_gpu.py Prepare for keras-mxnet 2.2 release (#117) Aug 13, 2018
conv_filter_visualization.py merge keras-mxnet with keras 2.2.4 Oct 8, 2018
conv_lstm.py Rebase to latest Keras April 20 2018 (#71) Aug 13, 2018
deep_dream.py merge keras-mxnet with keras 2.2.4 Oct 8, 2018
image_ocr.py Enable examples pep8 (keras-team#10968) Aug 25, 2018
imdb_bidirectional_lstm.py Basic style fixes in example docstrings Nov 8, 2017
imdb_cnn.py Basic style fixes in example docstrings Nov 8, 2017
imdb_cnn_lstm.py Style fix for examples. (keras-team#5980) Mar 26, 2017
imdb_fasttext.py Enable examples pep8 (keras-team#10968) Aug 25, 2018
imdb_lstm.py merge keras-mxnet with keras 2.2.4 Oct 8, 2018
lstm_seq2seq.py Rebase to latest Keras April 20 2018 (#71) Aug 13, 2018
lstm_seq2seq_restore.py keras-team#9287 Fix most of the file-handle resource leaks. (keras-te… Feb 4, 2018
lstm_stateful.py Fix SyntaxError: invalid syntax in lstm_stateful.py (keras-team#9078) Jan 15, 2018
lstm_text_generation.py Update lstm text generation example (keras-team#11038) Aug 30, 2018
mnist_acgan.py Fix line too long in mnist_acgan (keras-team#11040) Aug 30, 2018
mnist_cnn.py Remove word “shuffled” from comments in examples (keras-team#9453) Feb 22, 2018
mnist_dataset_api.py Updated for TF 1.7 (keras-team#9937) Apr 14, 2018
mnist_denoising_autoencoder.py Rebase to latest Keras April 20 2018 (#71) Aug 13, 2018
mnist_hierarchical_rnn.py Enable examples pep8 (keras-team#10968) Aug 25, 2018
mnist_irnn.py Remove word “shuffled” from comments in examples (keras-team#9453) Feb 22, 2018
mnist_mlp.py Remove word “shuffled” from comments in examples (keras-team#9453) Feb 22, 2018
mnist_net2net.py Enable examples pep8 (keras-team#10968) Aug 25, 2018
mnist_siamese.py Enable examples pep8 (keras-team#10968) Aug 25, 2018
mnist_sklearn_wrapper.py "from sklearn.grid_search import GridSearchCV" is out of date (keras-… Sep 28, 2018
mnist_swwae.py Rebase to latest Keras April 20 2018 (#71) Aug 13, 2018
mnist_tfrecord.py Enable examples pep8 (keras-team#10968) Aug 25, 2018
mnist_transfer_cnn.py
multi_hot_sparse_categorical_crossentropy.py
neural_doodle.py merge keras-mxnet with keras 2.2.4 Oct 8, 2018
neural_style_transfer.py merge keras-mxnet with keras 2.2.4 Oct 8, 2018
pretrained_word_embeddings.py merge keras-mxnet with keras 2.2.4 Oct 8, 2018
reuters_mlp.py Style fix for examples. (keras-team#5980) Mar 26, 2017
reuters_mlp_relu_vs_selu.py
tensorboard_embeddings_mnist.py FIX: Tensorboard callback only supports logging Embeddings layer weig… Jun 4, 2018
variational_autoencoder.py merge keras-mxnet with keras 2.2.4 Oct 8, 2018
variational_autoencoder_deconv.py merge keras-mxnet with keras 2.2.4 Oct 8, 2018

README.md

Keras examples directory

Vision models examples

mnist_mlp.py Trains a simple deep multi-layer perceptron on the MNIST dataset.

mnist_cnn.py Trains a simple convnet on the MNIST dataset.

cifar10_cnn.py Trains a simple deep CNN on the CIFAR10 small images dataset.

cifar10_cnn_capsule.py Trains a simple CNN-Capsule Network on the CIFAR10 small images dataset.

cifar10_resnet.py Trains a ResNet on the CIFAR10 small images dataset.

conv_lstm.py Demonstrates the use of a convolutional LSTM network.

image_ocr.py Trains a convolutional stack followed by a recurrent stack and a CTC logloss function to perform optical character recognition (OCR).

mnist_acgan.py Implementation of AC-GAN (Auxiliary Classifier GAN) on the MNIST dataset

mnist_hierarchical_rnn.py Trains a Hierarchical RNN (HRNN) to classify MNIST digits.

mnist_siamese.py Trains a Siamese multi-layer perceptron on pairs of digits from the MNIST dataset.

mnist_swwae.py Trains a Stacked What-Where AutoEncoder built on residual blocks on the MNIST dataset.

mnist_transfer_cnn.py Transfer learning toy example on the MNIST dataset.

mnist_denoising_autoencoder.py Trains a denoising autoencoder on the MNIST dataset.


Text & sequences examples

addition_rnn.py Implementation of sequence to sequence learning for performing addition of two numbers (as strings).

babi_rnn.py Trains a two-branch recurrent network on the bAbI dataset for reading comprehension.

babi_memnn.py Trains a memory network on the bAbI dataset for reading comprehension.

imdb_bidirectional_lstm.py Trains a Bidirectional LSTM on the IMDB sentiment classification task.

imdb_cnn.py Demonstrates the use of Convolution1D for text classification.

imdb_cnn_lstm.py Trains a convolutional stack followed by a recurrent stack network on the IMDB sentiment classification task.

imdb_fasttext.py Trains a FastText model on the IMDB sentiment classification task.

imdb_lstm.py Trains an LSTM model on the IMDB sentiment classification task.

lstm_stateful.py Demonstrates how to use stateful RNNs to model long sequences efficiently.

lstm_seq2seq.py Trains a basic character-level sequence-to-sequence model.

lstm_seq2seq_restore.py Restores a character-level sequence to sequence model from disk (saved by lstm_seq2seq.py) and uses it to generate predictions.

pretrained_word_embeddings.py Loads pre-trained word embeddings (GloVe embeddings) into a frozen Keras Embedding layer, and uses it to train a text classification model on the 20 Newsgroup dataset.

reuters_mlp.py Trains and evaluate a simple MLP on the Reuters newswire topic classification task.


Generative models examples

lstm_text_generation.py Generates text from Nietzsche's writings.

conv_filter_visualization.py Visualization of the filters of VGG16, via gradient ascent in input space.

deep_dream.py Deep Dreams in Keras.

neural_doodle.py Neural doodle.

neural_style_transfer.py Neural style transfer.

variational_autoencoder.py Demonstrates how to build a variational autoencoder.

variational_autoencoder_deconv.py Demonstrates how to build a variational autoencoder with Keras using deconvolution layers.


Examples demonstrating specific Keras functionality

antirectifier.py Demonstrates how to write custom layers for Keras.

mnist_sklearn_wrapper.py Demonstrates how to use the sklearn wrapper.

mnist_irnn.py Reproduction of the IRNN experiment with pixel-by-pixel sequential MNIST in "A Simple Way to Initialize Recurrent Networks of Rectified Linear Units" by Le et al.

mnist_net2net.py Reproduction of the Net2Net experiment with MNIST in "Net2Net: Accelerating Learning via Knowledge Transfer".

reuters_mlp_relu_vs_selu.py Compares self-normalizing MLPs with regular MLPs.

mnist_tfrecord.py MNIST dataset with TFRecords, the standard TensorFlow data format.

mnist_dataset_api.py MNIST dataset with TensorFlow's Dataset API.

cifar10_cnn_tfaugment2d.py Trains a simple deep CNN on the CIFAR10 small images dataset using Tensorflow internal augmentation APIs.

tensorboard_embeddings_mnist.py Trains a simple convnet on the MNIST dataset and embeds test data which can be later visualized using TensorBoard's Embedding Projector.

You can’t perform that action at this time.