
Sockeye Alignment Matrix Report

ingus.pret

April 2024

Contents

1 Summary 2

2 Datasets 2

3 Learning Alignments and their Quality 3
3.1 Experiment Metric Details . 3
3.2 Testing shifting alignments . 4
3.3 Marian Comparison . 5

4 Translation Quality Impact 6

5 Training Time Impact 8

6 Translation/Inference Time Impact 8

7 RAM usage Impact 9

8 vRAM usage Impact 10

A RAM and vRAM logging script 12

B Long Training Experiments 13

C Translation Speed, RAM and vRAM Measurement 15

D Training Speed, RAM and vRAM Measurment 16

1

1 Summary

During experimentation 4 types of systems were tested. For succinctness, let’s
define these acronyms:

• O - Systems that use original Sockeye code.

• N - Systems that use the new Sockeye code but don’t enable alignment
matrix training.

• NA - Systems that use the new Sockeye code and use alignment learn-
ing/alignment output.

• NSA - Systems that use the new Sockeye code and use alignment learn-
ing/alignment output and alignment shifting.

The positive conclusions of our experiments are:

• The changes made to the code not affect the runtime, RAM use, vRAM
or translation quality by any considerable amount, if the newly added
features are not enabled.

• Enabling alignment learning features does not affect translation quality
metrics by any considerable amount.

• The quality of the alignments, learned by NSA systems, are satisfactory for
our company’s needs. The alignments are comparable to Marian NMT—
the framework we used in production before Sockeye.

• Shifting the alignments by one target token forward increases the quality
of the alignments learned.

The negative conclusions of our experiments are:

• Shard loading seems a lot slower when alignment learning features are
enabled. About 2 minutes for 5’000’000 parallel sentences and their align-
ments.

• Peak RAM usage is 4x higher when alignment matrix learning is enabled
during training.

2 Datasets

For training models we used a dataset of 5’000’000 parallel EN→LV sentences
with statistical alignments. We refer to this dataset as the Training Set
throughout the report.

For validation we used the EN→LV NewsDev set from WMT 2017. We refer
to this dataset as the Newsdev Dataset throughout the report.

2

For alignment quality evaluation we also used a small dataset with human
created alignments. The dataset contains 512 parallel EN→LV sentences. We
refer to this dataset as the Evaluation Set throughout the report.

3 Learning Alignments and their Quality

[2] proposes that the alignments are calculated by doing the decoding twice:
once with masked attention to construct the translation, the second with full
attention to predict the alignments. We, however, opted for learning the align-
ments in the masked pass, to simplify implementation.

[1] shows that shifting the alignments one target token forward is beneficial.
Shifting means the decoding step of a target token predicts the alignments of
the previous target token rather than the current one. We added this as an
argument –shift-alignments during the data preparation and translation steps.
We preformed experiments (see Table 1) that show shifting alignments is indeed
beneficial.

3.1 Experiment Metric Details

In further subsections You’ll see metrics intended for discrete alignments. These
were produced by an in-house heuristic algorithm we use to turn attention ma-
trices over tokens into discrete word alignments (see Figure 1 for example). The
discrete alignments were then used for calculating Recall, Precision, F1 and
AER.

3

(a) Token-wise attention matrix. Out-
put of a trained NSA translation model.

(b) Word-level discrete alignments, at-
tained by passing (a) through our heuris-
tic discretization algorithm.

Figure 1: Example input (a) and output (b) of our heuristic discretization
algorithm.

3.2 Testing shifting alignments

Question asked in this subsection: Are alignments produced by NSA sys-
tems bettter than NA systems?

Test we performed: To verify that shifting alignments is useful, we trained
2 systems on the Training Set - NA without shifting the alignments and NSA
with shifted alignments (see Appendix B for configs). Then we force decoded
them on the Evaluation Set.

Result interpretation: All metrics suggest that shifting the alignments during
training, indeed produces better alignments (See Table 1).

4

Table 1: Alignment quality metrics on the alignment Evaluation Set after dis-
cretization. NA - new with alignments; NSA - new with shifted alignments.
MSE was calculated as the mean over all cells in attention matrices before dis-
cretization.

Metric NA NSA

Recall 0.741 0.769
Precision 0.671 0.707
F1 0.704 0.737
AER 0.296 0.263
MSE 0.0112 0.0101

3.3 Marian Comparison

Question asked in this subsection: Are alignments produced by NSA sys-
tems good enough for our purpouses?

How we tested it: We currently use Marian NMT. We wanted to compare
the alignments produced by Sockeye and Marian. This however proved difficult.
This is because Marian, unlike Sockeye, doesn’t support forced decoding.

Never the less, we performed an experiment to see how different Marian’s
and Sockeye’s produced alignments were. The experiment procedure was:

1. Train a Sockeye and Marian model on the same training dataset with
alignments.

2. Use Marian to produce translations of the Newsdev Dataset.

3. Force decode Marian’s translations using a Sockeye model trained with
alignments.

4. Compare the output attentions.

Result interpertaion: Table 2 shows the results of the experiment. Both
systems seem to produce very similar alignments. By visualizing a few examples
we concluded that both Sockeye and Marian seem to perform comparably well.
It’s likely the disagreement among the systems arises from them not being very
strongly trained models and having to align relatively poor translations.

We concluded that the alignments produced by our changes are satisfactory
for our needs.

5

Table 2: Comparison between Marian and a NSA Sockeye system’s produced
alignments. Discretized Marian attentions were considered to be ”Ground
Truth” and Sockeye’s discretized attentions were considered the predicting
model. MSE was calculated for the attentions pre discretization.

Metric Value

Recall 0.839
Precision 0.854
F1 0.847
AER 0.153
MSE 0.0040

4 Translation Quality Impact

Question asked in this subsection: Do our changes influence translation
quality?

How we tested it: We trained 4 different systems (see Appendix B for configs).
The data about validation metrics ware just parsed from the training logs.

Result Interpretation: The validation metrics during training can be seen
seen in Figure 2 and Table 3.

It seems like translation quality is not impacted significantly by any of our
changes even when alignment matrix learning is enabled. Which is a good sign
we haven’t broken anything.

Table 3: Comparison of validation metrics on best checkpoints for each system.

Metric O N NA NSA

Validation-ppl 26.8 26.7 27.1 27.1

Validation-bleu 0.263 0.265 0.263 0.265

Validation-chrf 53.7 53.7 53.6 53.7

Validation-rouge1 0.489 0.489 0.489 0.489

Validation-rouge2 0.300 0.301 0.302 0.303

Validation-rougel 0.456 0.456 0.459 0.459

Validation-length-ratio-mse 1.007 1.007 1.000 1.006

Validation-ter 59.1 59.0 58.8 58.9

Best Checkpoint Number 43 29 30 21

6

Figure 2: Validation metrics of systems during training. Horizonal axis is a
logarithmic scale of update count.

7

5 Training Time Impact

Question asked in this section: How do our changes impact training time?

How did we test this: We trained 4 systems for 1000 Training Set batches of
9000 tokens (see Appendix D for configs).

Training time data was extracted from the Sockeye logs.

Result interpretation: Results can be seen in Table 4 and Table 5.
There was no impact on training time if the new features were not enabled.

This is a good sign we haven’t broken anything.
The total training time seemed to differ by about 2 minutes when using

alignments (see Table 5). This discrepancy was investigated. It seems like
shard loading without alignment matrices takes about 3 seconds, while shard
loading with alignment matrices takes about 2 minutes.

The good news is training with alignments seems to have a negligible impact
on training speed itself (see Table 4).

Table 4: Time it took (in seconds) to train on batches 100-1000 with each
config/system. O - original Sockeye; N - new without alignments; NA - new
with alignments; NSA - new with shifted alignments.

Resource Usage O N NA NSA

Time 352 351 356 354

Table 5: Time it took (in seconds) to train system from start to finish on 1000
batches (including loading data and creating checkpoint) with 5 million samples
of prepared data (the Training Set). O - original sockeye; N - new without
alignments; NA - new with alignments; NSA - new with shifted alignments. NA
and NSA systems seem to be by about 2 minutes slower.

Resource Usage O N NA NSA

Time 705 706 831 830

6 Translation/Inference Time Impact

Question asked in this section: How is inference time impacted by our
changes?

How we tested it: We produced four systems O, N, NA, NSA, each trained
for one batch with a learning rate of 10−10. And then used it to translate the
Newsdev Dataset. (see Appendix C for configs)

8

We used untrained models, because of the assumption that untrained models
are unlikely to accidentally predict EOS. This means all systems would just
decode to their maximum translation limit, giving a fair comparison.

Inference times are just taken from the output sockeye translation logs.

Result interpretation:
Results can be seen in Table 6. The translation time doesn’t seem to have

been considerably affected.

Table 6: Time it took to translate 2002 samples from newsdev. O - original
sockeye; N - new without alignments; NA - new with alignments; NSA - new
with shifted alignments.

Resource Usage O N NA NSA

Time 772.7 758.9 749.6 758.6

7 RAM usage Impact

Question asked in this section: How is RAM usage impacted by our changes
during training and translation?

How we tested it: For testing training we measured RAM usage during train-
ing on the Training Set for 1000 batches of size 9000 (see Appendix D for con-
figurations).

For testing translation we measured RAM usage on 4 systems that were
trained for 1 batch with a learning rate of 10−10. (see Appendix C for configu-
ration)

RAM use was measured by logging the RAM of the specific process being
run and all it’s child processes (See Appendix A for code).

Result interpretation: The results are seen in Table 7.
During training, when not enabling the alignment learning features, the

changes in memory use seem negligible - about 1%.
However, enabling alignment learning seemed to increase RAM use consid-

erably. This was investigated. It seems like peak RAM use occurs during shard
loading.

No apparent differences in RAM use a visible during translation.

9

Table 7: Peak RAM usage during training and inference in MiB. O - original
sockeye; N - new without alignments; NA - new with alignments; NSA - new
with shifted alignments.

Resource Usage O N NA NSA

VMS RAM Usage Training 28’576 28’600 32’389 32’430

RSS RAM Usage Training 4’268 4’328 16’647 16’638

VMS RAM Usage Translation 11’260 11’261 11’261 11’237

RSS RAM Usage Translation 2’350 2’344 2’359 2’340

8 vRAM usage Impact

Question asked in this section: How is vRAM usage impacted by our
changes during training and translation?

How we tested it: For this we measured vRAM use of the same systems as
in the previous section.

Model vRAM usage was measured by just looking at vRAM use of the
specific GPU overall (See appendix A for code).

Result interpretation: The vRAM usage seems almost unaffected (see Table
8).

Table 8: Peak vRAM usage during training and inference. O - original sockeye;
N - new without alignments; NA - new with alignments; NSA - new with shifted
alignments.

Resource Usage O N NA NSA

vRAM Usage Training 15’573 15’573 15’593 15’593

vRAM Usage Translation 931 931 937 933

10

References

[1] Yun Chen, Yang Liu, Guanhua Chen, Xin Jiang, and Qun Liu. Accu-
rate word alignment induction from neural machine translation. CoRR,
abs/2004.14837, 2020.

[2] Sarthak Garg, Stephan Peitz, Udhyakumar Nallasamy, and Matthias Paulik.
Jointly learning to align and translate with transformer models. CoRR,
abs/1909.02074, 2019.

11

A RAM and vRAM logging script

In large part this code is courtesy of GPT4. The script is called ”monitor ram2.py”.

1 import subprocess

2 import psutil

3 import time

4 import sys

5 import nvidia_smi

6

7 def log_memory_usage(cmd , log_file):

8 # Initialize the GPU access

9 nvidia_smi.nvmlInit ()

10 handle = nvidia_smi.nvmlDeviceGetHandleByIndex (2) # For GPU

with ID 2

11

12 # Start the process

13 process = subprocess.Popen(cmd , shell=True)

14 pid = process.pid

15 main_process = psutil.Process(pid)

16

17 with open(log_file , ’w’) as f:

18 # Log memory usage every second

19 try:

20 while True:

21 if process.poll() is not None: # Check if main

process has terminated

22 f.write("Main process terminated .\n")

23 break

24 # Check memory info on GPU

25 info = nvidia_smi.nvmlDeviceGetMemoryInfo(handle)

26 gpu_mem_usage = info.used

27 children = main_process.children(recursive=True)

28 total_vms = sum([child.memory_info ().vms for child

in children] + [main_process.memory_info ().vms])

29 f.write(f"Total VMS: {total_vms} bytes , GPU Memory

Usage: {gpu_mem_usage} bytes\n")

30 time.sleep (1) # Log every second

31 except psutil.NoSuchProcess:

32 f.write("Process completed or terminated unexpectedly .\

n")

33 except nvidia_smi.NVMLError as e:

34 f.write(f"Failed to read GPU memory usage: {e}\n")

35 finally:

36 # Additional check for any remaining active children

37 if any(child.is_running () for child in main_process.

children(recursive=True)):

38 f.write("Child processes still running after main

process terminated .\n")

39 else:

40 f.write("All processes terminated .\n")

41 # Cleanup the NVML handle

42 nvidia_smi.nvmlShutdown ()

43

44 if __name__ == "__main__":

45 if len(sys.argv) != 3:

46 print("Usage: python memory_logger.py ’<command >’ ’<

log_file >’")

12

47 else:

48 _, command , log_file = sys.argv

49 log_memory_usage(command , log_file)

B Long Training Experiments

The training for different systems was performed on different machines.
4 systems (O, N, NA and NSA) were allowed to train until the early stop-

ping condition was met. The section contains configurations used to train the
systems.

For original Sockeye (O):

1 python -m torch.distributed.run --master_port 1337 --no_python

--nproc_per_node 3 python -m sockeye.train \

2 --prepared -data datanoalign/ \

3 --output models \

4 --validation -source ./test.en \

5 --validation -target ./test.lv \

6 --dist \

7 --learning -rate -scheduler -type inv -sqrt -decay \

8 --learning -rate -warmup 16000 \

9 --initial -learning -rate 0.06325 \

10 --optimizer adam \

11 --optimizer -betas 0.9:0.98 \

12 --batch -size 9000 \

13 --update -interval 8 \

14 --checkpoint -interval 3000 \

15 --amp \

16 --batch -type max -word \

17 --seed 1 \

18 --quiet -secondary -workers \

19 --max -num -checkpoint -not -improved 10 \

20 --checkpoint -improvement -threshold 0.0003 \

21 --optimized -metric bleu \

22 --decode -and -evaluate -1 \

23 --keep -last -params 25 \

24 -o baselineoriginal

For Sockeye with changes but alignment learning disabled (N):

1 python -m torch.distributed.run --master_port 1337 --no_python

--nproc_per_node 2 python -m sockeye.train \

2 --prepared -data data/ \

3 --output models \

4 --validation -source ./test.en \

5 --validation -target ./test.lv \

6 --dist \

7 --learning -rate -scheduler -type inv -sqrt -decay \

8 --learning -rate -warmup 16000 \

9 --initial -learning -rate 0.06325 \

10 --optimizer adam \

11 --optimizer -betas 0.9:0.98 \

12 --batch -size 9000 \

13 --update -interval 12 \

14 --checkpoint -interval 3000 \

13

15 --amp \

16 --batch -type max -word \

17 --seed 1 \

18 --quiet -secondary -workers \

19 --max -num -checkpoint -not -improved 10 \

20 --checkpoint -improvement -threshold 0.0003 \

21 --optimized -metric bleu \

22 --decode -and -evaluate -1 \

23 --keep -last -params 25 \

24 -o baseline

For Sockeye with alignment learning (NA):

1 python -m torch.distributed.run --master_port 1338 --no_python

--nproc_per_node 2 python -m sockeye.train \

2 --prepared -data data/ \

3 --output models \

4 --validation -source ./test.en \

5 --validation -target ./test.lv \

6 --dist \

7 --learning -rate -scheduler -type inv -sqrt -decay \

8 --learning -rate -warmup 16000 \

9 --initial -learning -rate 0.06325 \

10 --optimizer adam \

11 --optimizer -betas 0.9:0.98 \

12 --batch -size 9000 \

13 --update -interval 12 \

14 --checkpoint -interval 3000 \

15 --amp \

16 --batch -type max -word \

17 --seed 1 \

18 --quiet -secondary -workers \

19 --max -num -checkpoint -not -improved 10 \

20 --checkpoint -improvement -threshold 0.0003 \

21 --optimized -metric bleu \

22 --decode -and -evaluate -1 \

23 --keep -last -params 25 \

24 --attention -alignment -layer 4 \

25 --alignment -matrix -weight 0.05 \

26 -o baseline

For Sockeye with shifted alignment learning (NSA):

1 python -m torch.distributed.run --master_port 1337 --no_python

--nproc_per_node 2 python -m sockeye.train \

2 --prepared -data datashifted/ \

3 --output models \

4 --validation -source ./test.en \

5 --validation -target ./test.lv \

6 --dist \

7 --learning -rate -scheduler -type inv -sqrt -decay \

8 --learning -rate -warmup 16000 \

9 --initial -learning -rate 0.06325 \

10 --optimizer adam \

11 --optimizer -betas 0.9:0.98 \

12 --batch -size 9000 \

13 --update -interval 12 \

14 --checkpoint -interval 3000 \

15 --amp \

14

16 --batch -type max -word \

17 --seed 1 \

18 --quiet -secondary -workers \

19 --max -num -checkpoint -not -improved 10 \

20 --checkpoint -improvement -threshold 0.0003 \

21 --optimized -metric bleu \

22 --decode -and -evaluate -1 \

23 --keep -last -params 25 \

24 --attention -alignment -layer 4 \

25 --alignment -matrix -weight 0.05 \

26 --shift -alignments \

27 -o baseline

C Translation Speed, RAM and vRAM Mea-
surement

These experiments were done on a server with 100GB of RAM, and a Quadro
RTX 6000 GPU.

Used for measuring N, NA & NSA systems:

1 export CUDA_VISIBLE_DEVICES =2

2 python monitor_ram2.py "python -m sockeye.train --prepared -data

./../en-lv -sockeye -new/datanoalign/ -o Ni --validation -source

./../en-lv -sockeye -new/test.en --validation -target ../en-lv-

sockeye -new/test.lv --batch -size 9000 --max -updates 1 --initial

-learning -rate 0.000000001" "logNit.txt"

3 python monitor_ram2.py "python -m sockeye.train --prepared -data

./../en-lv -sockeye -new/data/ -o NAi --validation -source ./../en

-lv -sockeye -new/test.en --validation -target ../en-lv -sockeye -

new/test.lv --batch -size 9000 --max -updates 1 --initial -

learning -rate 0.000000001 --align -attention" "logNAit.txt"

4 python monitor_ram2.py "python -m sockeye.train --prepared -data

./../en-lv -sockeye -new/data/ -o NSAi --validation -source ./../

en-lv-sockeye -new/test.en --validation -target ../en -lv-sockeye -

new/test.lv --batch -size 9000 --max -updates 1 --initial -

learning -rate 0.000000001 --shift -alignments --align -attention"

"logNSAit.txt"

5 python monitor_ram2.py "python -m sockeye.translate -m Ni --output -

type json --input ./../en-lv-sockeye -new/test.en >> trash.txt"

"logNi.txt"

6 python monitor_ram2.py "python -m sockeye.translate -m NAi --output

-type json --input ./../en-lv-sockeye -new/test.en >> trash.txt"

"logNAi.txt"

7 python monitor_ram2.py "python -m sockeye.translate -m NSAi --

output -type json --input ./../en-lv -sockeye -new/test.en --shift

-alignments >> trash.txt" "logNSAi.txt"

Used for measuring O system:

1 export CUDA_VISIBLE_DEVICES =2

2 python monitor_ram2.py "python -m sockeye.train --prepared -data

./../en-lv -sockeye -new/datanoalign/ -o Oi --validation -source

./../en-lv -sockeye -new/test.en --validation -target ../en-lv-

sockeye -new/test.lv --batch -size 9000 --max -updates 1 --initial

-learning -rate 0.000000001" "logOit.txt"

15

3 python monitor_ram2.py "python -m sockeye.translate -m Oi --input

./../en-lv -sockeye -new/test.in >> trash.txt" "logOi.txt"

D Training Speed, RAM and vRAM Measur-
ment

The commands used to perform training speed, RAM use and vRAM use for N,
NA and NSA systems were:

1 export CUDA_VISIBLE_DEVICES =2

2 python monitor_ram2.py "python -m sockeye.train --prepared -data

./../en-lv -sockeye -new/datanoalign/ -o N --validation -source

./../en-lv -sockeye -new/test.en --validation -target ../en-lv-

sockeye -new/test.lv --batch -size 9000 --max -updates 1000" "logN

.txt"

3 python monitor_ram2.py "python -m sockeye.train --prepared -data

./../en-lv -sockeye -new/data/ -o NA --validation -source ./../en-

lv-sockeye -new/test.en --validation -target ../en-lv -sockeye -new

/test.lv --batch -size 9000 --max -updates 1000 --align -attention

" "logNA.txt"

4 python monitor_ram2.py "python -m sockeye.train --prepared -data

./../en-lv -sockeye -new/data/ -o NSA --validation -source ./../en

-lv -sockeye -new/test.en --validation -target ../en-lv -sockeye -

new/test.lv --batch -size 9000 --max -updates 1000 --shift -

alignments --align -attention" "logNSA.txt"

The commands used to perform training speed, RAM use and vRAM use
for original sockeye were:

1 export CUDA_VISIBLE_DEVICES =2

2 python monitor_ram2.py "python -m sockeye.train --prepared -data

./../en-lv -sockeye -new/datanoalign/ -o O --validation -source

./../en-lv -sockeye -new/test.en --validation -target ../en-lv-

sockeye -new/test.lv --batch -size 9000 --max -updates 1000" "logO

.txt"

16

