Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

file 6016 lines (5216 sloc) 228.348 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
*eval.txt* For Vim version 7.0aa. Last change: 2005 Jan 31


VIM REFERENCE MANUAL by Bram Moolenaar


Expression evaluation *expression* *expr* *E15* *eval*

Using expressions is introduced in chapter 41 of the user manual |usr_41.txt|.

Note: Expression evaluation can be disabled at compile time. If this has been
done, the features in this document are not available. See |+eval| and
|no-eval-feature|.

1. Variables |variables|
    1.1 Variable types
    1.2 Function references |Funcref|
    1.3 Lists |List|
    1.4 Dictionaries |Dictionaries|
    1.5 More about variables |more-variables|
2. Expression syntax |expression-syntax|
3. Internal variable |internal-variables|
4. Builtin Functions |functions|
5. Defining functions |user-functions|
6. Curly braces names |curly-braces-names|
7. Commands |expression-commands|
8. Exception handling |exception-handling|
9. Examples |eval-examples|
10. No +eval feature |no-eval-feature|
11. The sandbox |eval-sandbox|

{Vi does not have any of these commands}

==============================================================================
1. Variables *variables*

1.1 Variable types ~
*E712*
There are four types of variables:

Number A 32 bit signed number.
Examples: -123 0x10 0177

String A NUL terminated string of 8-bit unsigned characters (bytes).
Examples: "ab\txx\"--" 'x-z''a,c'

Funcref A reference to a function |Funcref|.
Example: function("strlen")

List An ordered sequence of items |List|.
Example: [1, 2, ['a', 'b']]

The Number and String types are converted automatically, depending on how they
are used.

Conversion from a Number to a String is by making the ASCII representation of
the Number. Examples: >
Number 123 --> String "123"
Number 0 --> String "0"
Number -1 --> String "-1"

Conversion from a String to a Number is done by converting the first digits
to a number. Hexadecimal "0xf9" and Octal "017" numbers are recognized. If
the String doesn't start with digits, the result is zero. Examples: >
String "456" --> Number 456
String "6bar" --> Number 6
String "foo" --> Number 0
String "0xf1" --> Number 241
String "0100" --> Number 64
String "-8" --> Number -8
String "+8" --> Number 0

To force conversion from String to Number, add zero to it: >
:echo "0100" + 0

For boolean operators Numbers are used. Zero is FALSE, non-zero is TRUE.

Note that in the command >
:if "foo"
"foo" is converted to 0, which means FALSE. To test for a non-empty string,
use strlen(): >
:if strlen("foo")
< *E728* *E729* *E730* *E731*
List and Funcref types are not automatically converted.

*E706*
You will get an error if you try to change the type of a variable. You need
to |:unlet| it first to avoid this error. String and Number are considered
equivalent though. Consider this sequence of commands: >
:let l = "string"
:let l = 44 " changes type from String to Number
:let l = [1, 2, 3] " error!


1.2 Function references ~
*Funcref* *E695* *E703* *E718*
A Funcref variable is obtained with the |function()| function. It can be used
in an expression in the place of a function name, before the parenthesis
around the arguments, to invoke the function it refers to. Example: >

:let Fn = function("MyFunc")
:echo Fn()
< *E704* *E705* *E707*
A Funcref variable must start with a capital, "s:", "w:" or "b:". You cannot
have both a Funcref variable and a function with the same name.

A special case is defining a function and directly assigning its Funcref to a
Dictionary entry. Example: >
:function dict.init() dict
: let self.val = 0
:endfunction

The key of the Dictionary can start with a lower case letter. The actual
function name is not used here. Also see |numbered-function|.

A Funcref can also be used with the |:call| command: >
:call Fn()
:call dict.init()

The name of the referenced function can be obtained with |string()|. >
:let func = string(Fn)

You can use |call()| to invoke a Funcref and use a list variable for the
arguments: >
:let r = call(Fn, mylist)


1.3 Lists ~
*List* *E686*
A List is an ordered sequence of items. An item can be of any type. Items
can be accessed by their index number. Items can be added and removed at any
position in the sequence.


List creation ~
*E696* *E697*
A List is created with a comma separated list of items in square brackets.
Examples: >
:let mylist = [1, two, 3, "four"]
:let emptylist = []

An item can be any expression. Using a List for an item creates a
nested List: >
:let nestlist = [[11, 12], [21, 22], [31, 32]]

An extra comma after the last item is ignored.


List index ~
*list-index* *E684*
An item in the List can be accessed by putting the index in square brackets
after the List. Indexes are zero-based, thus the first item has index zero. >
:let item = mylist[0] " get the first item: 1
:let item = mylist[2] " get the third item: 3

When the resulting item is a list this can be repeated: >
:let item = nestlist[0][1] " get the first list, second item: 12
<
A negative index is counted from the end. Index -1 refers to the last item in
the List, -2 to the last but one item, etc. >
:let last = mylist[-1] " get the last item: "four"

To avoid an error for an invalid index use the |get()| function. When an item
is not available it returns zero or the default value you specify: >
:echo get(mylist, idx)
:echo get(mylist, idx, "NONE")


List concatenation ~

Two lists can be concatenated with the "+" operator: >
:let longlist = mylist + [5, 6]
:let mylist += [7, 8]

To prepend or append an item turn the item into a list by putting [] around
it. To change a list in-place see |list-modification| below.


Sublist ~

A part of the List can be obtained by specifying the first and last index,
separated by a colon in square brackets: >
:let shortlist = mylist[2:-1] " get List [3, "four"]

Omitting the first index is similar to zero. Omitting the last index is
similar to -1. The difference is that there is no error if the items are not
available. >
:let endlist = mylist[2:] " from item 2 to the end: [3, "four"]
:let shortlist = mylist[2:2] " List with one item: [3]
:let otherlist = mylist[:] " make a copy of the List

The second index can be just before the first index. In that case the result
is an empty list. If the second index is lower, this results in an error. >
:echo mylist[2:1] " result: []
:echo mylist[2:0] " error!


List identity ~
*list-identity*
When variable "aa" is a list and you assign it to another variable "bb", both
variables refer to the same list. Thus changing the list "aa" will also
change "bb": >
:let aa = [1, 2, 3]
:let bb = aa
:call add(aa, 4)
:echo bb
< [1, 2, 3, 4]

Making a copy of a list is done with the |copy()| function. Using [:] also
works, as explained above. This creates a shallow copy of the list: Changing
a list item in the list will also change the item in the copied list: >
:let aa = [[1, 'a'], 2, 3]
:let bb = copy(aa)
:call add(aa, 4)
:let aa[0][1] = 'aaa'
:echo aa
< [[1, aaa], 2, 3, 4] >
:echo bb
< [[1, aaa], 2, 3]

To make a completely independent list use |deepcopy()|. This also makes a
copy of the values in the list, recursively. Up to a hundred levels deep.

The operator "is" can be used to check if two variables refer to the same
List. "isnot" does the opposite. In contrast "==" compares if two lists have
the same value. >
:let alist = [1, 2, 3]
:let blist = [1, 2, 3]
:echo alist is blist
< 0 >
:echo alist == blist
< 1


List unpack ~

To unpack the items in a list to individual variables, put the variables in
square brackets, like list items: >
:let [var1, var2] = mylist

When the number of variables does not match the number of items in the list
this produces an error. To handle any extra items from the list append ";"
and a variable name: >
:let [var1, var2; rest] = mylist

This works like: >
:let var1 = mylist[0]
:let var2 = mylist[1]
:let rest = mylist[2:]

Except that there is no error if there are only two items. "rest" will be an
empty list then.


List modification ~
*list-modification*
To change a specific item of a list use |:let| this way: >
:let list[4] = "four"
:let listlist[0][3] = item

To change part of a list you can specify the first and last item to be
modified. The value must at least have the number of items in the range: >
:let list[3:5] = [3, 4, 5]

Adding and removing items from a list is done with functions. Here are a few
examples: >
:call insert(list, 'a') " prepend item 'a'
:call insert(list, 'a', 3) " insert item 'a' before list[3]
:call add(list, "new") " append String item
:call add(list, [1, 2]) " append a List as one new item
:call extend(list, [1, 2]) " extend the list with two more items
:let i = remove(list, 3) " remove item 3
:unlet list[3] " idem
:let l = remove(list, 3, -1) " remove items 3 to last item
:unlet list[3 : ] " idem
:call filter(list, 'v:val !~ "x"') " remove items with an 'x'

Changing the order of items in a list: >
:call sort(list) " sort a list alphabetically
:call reverse(list) " reverse the order of items


For loop ~

The |:for| loop executes commands for each item in a list. A variable is set
to each item in the list in sequence. Example: >
:for item in mylist
: call Doit(item)
:endfor

This works like: >
:let index = 0
:while index < len(mylist)
: let item = mylist[index]
: :call Doit(item)
: let index = index + 1
:endwhile

Note that all items in the list should be of the same type, otherwise this
results in error |E706|. To avoid this |:unlet| the variable at the end of
the loop.

If all you want to do is modify each item in the list then the |map()|
function will be a simpler method than a for loop.

Just like the |:let| command, |:for| also accepts a list of variables. This
requires the argument to be a list of lists. >
:for [lnum, col] in [[1, 3], [2, 8], [3, 0]]
: call Doit(lnum, col)
:endfor

This works like a |:let| command is done for each list item. Again, the types
must remain the same to avoid an error.

It is also possible to put remaining items in a List variable: >
:for [i, j; rest] in listlist
: call Doit(i, j)
: if !empty(rest)
: echo "remainder: " . string(rest)
: endif
:endfor


List functions ~
*E714*
Functions that are useful with a List: >
:let r = call(funcname, list) " call a function with an argument list
:if empty(list) " check if list is empty
:let l = len(list) " number of items in list
:let big = max(list) " maximum value in list
:let small = min(list) " minimum value in list
:let xs = count(list, 'x') " count nr of times 'x' appears in list
:let i = index(list, 'x') " index of first 'x' in list
:let lines = getline(1, 10) " get ten text lines from buffer
:call append('$', lines) " append text lines in buffer
:let list = split("a b c") " create list from items in a string
:let string = join(list, ', ') " create string from list items
:let s = string(list) " String representation of list
:call map(list, '">> " . v:val') " prepend ">> " to each item


1.4 Dictionaries ~
*Dictionaries* *Dictionary*
A Dictionary is an associative array: Each entry has a key and a value. The
entry can be located with the key. The entries are stored without a specific
ordering.


Dictionary creation ~
*E720* *E721* *E722* *E723*
A Dictionary is created with a comma separated list of entries in curly
braces. Each entry has a key and a value, separated by a colon. Each key can
only appear once. Examples: >
:let mydict = {1: 'one', 2: 'two', 3: 'three'}
:let emptydict = {}
< *E713* *E716* *E717*
A key is always a String. You can use a Number, it will be converted to a
String automatically. Thus the String '4' and the number 4 will find the same
entry. Note that the String '04' and the Number 04 are different, since the
Number will be converted to the String '4'.

A value can be any expression. Using a Dictionary for a value creates a
nested Dictionary: >
:let nestdict = {1: {11: 'a', 12: 'b'}, 2: {21: 'c'}}

An extra comma after the last entry is ignored.


Accessing entries ~

The normal way to access an entry is by putting the key in square brackets: >
:let val = mydict["one"]
:let mydict["four"] = 4

You can add new entries to an existing Dictionary this way, unlike Lists.

For keys that consist entirely of letters, digits and underscore the following
form can be used |expr-entry|: >
:let val = mydict.one
:let mydict.four = 4

Since an entry can be any type, also a List and a Dictionary, the indexing and
key lookup can be repeated: >
:echo dict.key[idx].key


Dictionary to List conversion ~

You may want to loop over the entries in a dictionary. For this you need to
turn the Dictionary into a List and pass it to |:for|.

Most often you want to loop over the keys, using the |keys()| function: >
:for key in keys(mydict)
: echo key . ': ' . mydict[key]
:endfor

The List of keys is unsorted. You may want to sort them first: >
:for key in sort(keys(mydict))

To loop over the values use the |values()| function: >
:for v in values(mydict)
: echo "value: " . v
:endfor

If you want both the key and the value use the |items()| function. It returns
a List in which each item is a List with two items, the key and the value: >
:for entry in items(mydict)
: echo entry[0] . ': ' . entry[1]
:endfor


Dictionary identity ~

Just like Lists you need to use |copy()| and |deepcopy()| to make a copy of a
Dictionary. Otherwise, assignment results in referring to the same
Dictionary: >
:let onedict = {'a': 1, 'b': 2}
:let adict = onedict
:let adict['a'] = 11
:echo onedict['a']
11

For more info see |list-identity|.


Dictionary modification ~
*dict-modification*
To change an already existing entry of a Dictionary, or to add a new entry,
use |:let| this way: >
:let dict[4] = "four"
:let dict['one'] = item

Removing an entry from a Dictionary is done with |remove()| or |:unlet|.
Three ways to remove the entry with key "aaa" from dict: >
:let i = remove(dict, 'aaa')
:unlet dict.aaa
:unlet dict['aaa']

Merging a Dictionary with another is done with |extend()|: >
:call extend(adict, bdict)
This extends adict with all entries from bdict. Duplicate keys cause entries
in adict to be overwritten. An optional third argument can change this.
Note that the order of entries in a Dictionary is irrelevant, thus don't
expect ":echo adict" to show the items from bdict after the older entries in
adict.

Weeding out entries from a Dictionary can be done with |filter()|: >
:call filter(dict 'v:val =~ "x"')
This removes all entries from "dict" with a value not matching 'x'.


Dictionary function ~
*Dictionary-function* *self* *E725*
When a function is defined with the "dict" attribute it can be used in a
special way with a dictionary. Example: >
:function Mylen() dict
: return len(self.data)
:endfunction
:let mydict = {'data': [0, 1, 2, 3], 'len': function("Mylen")}
:echo mydict.len()

This is like a method in object oriented programming. The entry in the
Dictionary is a |Funcref|. The local variable "self" refers to the dictionary
the function was invoked from.

It is also possible to add a function without the "dict" attribute as a
Funcref to a Dictionary, but the "self" variable is not available then.

*numbered-function*
To avoid the extra name for the function it can be defined and directly
assigned to a Dictionary in this way: >
:let mydict = {'data': [0, 1, 2, 3]}
:function mydict.len() dict
: return len(self.data)
:endfunction
:echo mydict.len()

The function will then get a number and the value of dict.len is a |Funcref|
that references this function. The function can only be used through a
|Funcref|. It will automatically be deleted when there is no |Funcref|
remaining that refers to it.

It is not necessary to use the "dict" attribute for a numbered function.


Functions for Dictionaries ~
*E715*
Functions that can be used with a Dictionary: >
:if has_key(dict, 'foo') " TRUE if dict has entry with key "foo"
:if empty(dict) " TRUE if dict is empty
:let l = len(dict) " number of items in dict
:let big = max(dict) " maximum value in dict
:let small = min(dict) " minimum value in dict
:let xs = count(dict, 'x') " count nr of times 'x' appears in dict
:let s = string(dict) " String representation of dict
:call map(dict, '">> " . v:val') " prepend ">> " to each item


1.5 More about variables ~
*more-variables*
If you need to know the type of a variable or expression, use the |type()|
function.

When the '!' flag is included in the 'viminfo' option, global variables that
start with an uppercase letter, and don't contain a lowercase letter, are
stored in the viminfo file |viminfo-file|.

When the 'sessionoptions' option contains "global", global variables that
start with an uppercase letter and contain at least one lowercase letter are
stored in the session file |session-file|.

variable name can be stored where ~
my_var_6 not
My_Var_6 session file
MY_VAR_6 viminfo file


It's possible to form a variable name with curly braces, see
|curly-braces-names|.

==============================================================================
2. Expression syntax *expression-syntax*

Expression syntax summary, from least to most significant:

|expr1| expr2 ? expr1 : expr1 if-then-else

|expr2| expr3 || expr3 .. logical OR

|expr3| expr4 && expr4 .. logical AND

|expr4| expr5 == expr5 equal
expr5 != expr5 not equal
expr5 > expr5 greater than
expr5 >= expr5 greater than or equal
expr5 < expr5 smaller than
expr5 <= expr5 smaller than or equal
expr5 =~ expr5 regexp matches
expr5 !~ expr5 regexp doesn't match

expr5 ==? expr5 equal, ignoring case
expr5 ==# expr5 equal, match case
etc. As above, append ? for ignoring case, # for
matching case

expr5 is expr5 same List instance
expr5 isnot expr5 different List instance

|expr5| expr6 + expr6 .. number addition or list concatenation
expr6 - expr6 .. number subtraction
expr6 . expr6 .. string concatenation

|expr6| expr7 * expr7 .. number multiplication
expr7 / expr7 .. number division
expr7 % expr7 .. number modulo

|expr7| ! expr7 logical NOT
- expr7 unary minus
+ expr7 unary plus


|expr8| expr8[expr1] byte of a String or item of a List
expr8[expr1 : expr1] substring of a String or sublist of a List
expr8.name entry in a Dictionary
expr8(expr1, ...) function call with Funcref variable

|expr9| number number constant
"string" string constant, backslash is special
'string' string constant, ' is doubled
[expr1, ...] List
{expr1: expr1, ...} Dictionary
&option option value
(expr1) nested expression
variable internal variable
va{ria}ble internal variable with curly braces
$VAR environment variable
@r contents of register 'r'
function(expr1, ...) function call
func{ti}on(expr1, ...) function call with curly braces


".." indicates that the operations in this level can be concatenated.
Example: >
&nu || &list && &shell == "csh"

All expressions within one level are parsed from left to right.


expr1 *expr1* *E109*
-----

expr2 ? expr1 : expr1

The expression before the '?' is evaluated to a number. If it evaluates to
non-zero, the result is the value of the expression between the '?' and ':',
otherwise the result is the value of the expression after the ':'.
Example: >
:echo lnum == 1 ? "top" : lnum

Since the first expression is an "expr2", it cannot contain another ?:. The
other two expressions can, thus allow for recursive use of ?:.
Example: >
:echo lnum == 1 ? "top" : lnum == 1000 ? "last" : lnum

To keep this readable, using |line-continuation| is suggested: >
:echo lnum == 1
:\ ? "top"
:\ : lnum == 1000
:\ ? "last"
:\ : lnum


expr2 and expr3 *expr2* *expr3*
---------------

*expr-barbar* *expr-&&*
The "||" and "&&" operators take one argument on each side. The arguments
are (converted to) Numbers. The result is:

input output ~
n1 n2 n1 || n2 n1 && n2 ~
zero zero zero zero
zero non-zero non-zero zero
non-zero zero non-zero zero
non-zero non-zero non-zero non-zero

The operators can be concatenated, for example: >

&nu || &list && &shell == "csh"

Note that "&&" takes precedence over "||", so this has the meaning of: >

&nu || (&list && &shell == "csh")

Once the result is known, the expression "short-circuits", that is, further
arguments are not evaluated. This is like what happens in C. For example: >

let a = 1
echo a || b

This is valid even if there is no variable called "b" because "a" is non-zero,
so the result must be non-zero. Similarly below: >

echo exists("b") && b == "yes"

This is valid whether "b" has been defined or not. The second clause will
only be evaluated if "b" has been defined.


expr4 *expr4*
-----

expr5 {cmp} expr5

Compare two expr5 expressions, resulting in a 0 if it evaluates to false, or 1
if it evaluates to true.

*expr-==* *expr-!=* *expr->* *expr->=*
*expr-<* *expr-<=* *expr-=~* *expr-!~*
*expr-==#* *expr-!=#* *expr->#* *expr->=#*
*expr-<#* *expr-<=#* *expr-=~#* *expr-!~#*
*expr-==?* *expr-!=?* *expr->?* *expr->=?*
*expr-<?* *expr-<=?* *expr-=~?* *expr-!~?*
*expr-is*
use 'ignorecase' match case ignore case ~
equal == ==# ==?
not equal != !=# !=?
greater than > ># >?
greater than or equal >= >=# >=?
smaller than < <# <?
smaller than or equal <= <=# <=?
regexp matches =~ =~# =~?
regexp doesn't match !~ !~# !~?
same instance is
different instance isnot

Examples:
"abc" ==# "Abc" evaluates to 0
"abc" ==? "Abc" evaluates to 1
"abc" == "Abc" evaluates to 1 if 'ignorecase' is set, 0 otherwise

*E691* *E692*
A List can only be compared with a List and only "equal", "not equal" and "is"
can be used. This compares the values of the list, recursively. Ignoring
case means case is ignored when comparing item values.

*E735* *E736*
A Dictionary can only be compared with a Dictionary and only "equal", "not
equal" and "is" can be used. This compares the key/values of the Dictionary,
recursively. Ignoring case means case is ignored when comparing item values.

*E693* *E694*
A Funcref can only be compared with a Funcref and only "equal" and "not equal"
can be used. Case is never ignored.

When using "is" or "isnot" with a List this checks if the expressions are
referring to the same List instance. A copy of a List is different from the
original List. When using "is" without a List it is equivalent to using
"equal", using "isnot" equivalent to using "not equal". Except that a
different type means the values are different. "4 == '4'" is true, "4 is '4'"
is false.

When comparing a String with a Number, the String is converted to a Number,
and the comparison is done on Numbers. This means that "0 == 'x'" is TRUE,
because 'x' converted to a Number is zero.

When comparing two Strings, this is done with strcmp() or stricmp(). This
results in the mathematical difference (comparing byte values), not
necessarily the alphabetical difference in the local language.

When using the operators with a trailing '#", or the short version and
'ignorecase' is off, the comparing is done with strcmp().

When using the operators with a trailing '?', or the short version and
'ignorecase' is set, the comparing is done with stricmp().

The "=~" and "!~" operators match the lefthand argument with the righthand
argument, which is used as a pattern. See |pattern| for what a pattern is.
This matching is always done like 'magic' was set and 'cpoptions' is empty, no
matter what the actual value of 'magic' or 'cpoptions' is. This makes scripts
portable. To avoid backslashes in the regexp pattern to be doubled, use a
single-quote string, see |literal-string|.
Since a string is considered to be a single line, a multi-line pattern
(containing \n, backslash-n) will not match. However, a literal NL character
can be matched like an ordinary character. Examples:
"foo\nbar" =~ "\n" evaluates to 1
"foo\nbar" =~ "\\n" evaluates to 0


expr5 and expr6 *expr5* *expr6*
---------------
expr6 + expr6 .. Number addition or List concatenation *expr-+*
expr6 - expr6 .. Number subtraction *expr--*
expr6 . expr6 .. String concatenation *expr-.*

For Lists only "+" is possible and then both expr6 must be a list. The result
is a new list with the two lists Concatenated.

expr7 * expr7 .. number multiplication *expr-star*
expr7 / expr7 .. number division *expr-/*
expr7 % expr7 .. number modulo *expr-%*

For all, except ".", Strings are converted to Numbers.

Note the difference between "+" and ".":
"123" + "456" = 579
"123" . "456" = "123456"

When the righthand side of '/' is zero, the result is 0x7fffffff.
When the righthand side of '%' is zero, the result is 0.

None of these work for Funcrefs.


expr7 *expr7*
-----
! expr7 logical NOT *expr-!*
- expr7 unary minus *expr-unary--*
+ expr7 unary plus *expr-unary-+*

For '!' non-zero becomes zero, zero becomes one.
For '-' the sign of the number is changed.
For '+' the number is unchanged.

A String will be converted to a Number first.

These three can be repeated and mixed. Examples:
!-1 == 0
!!8 == 1
--9 == 9


expr8 *expr8*
-----
expr8[expr1] item of String or List *expr-[]* *E111*

If expr8 is a Number or String this results in a String that contains the
expr1'th single byte from expr8. expr8 is used as a String, expr1 as a
Number. Note that this doesn't recognize multi-byte encodings.

Index zero gives the first character. This is like it works in C. Careful:
text column numbers start with one! Example, to get the character under the
cursor: >
:let c = getline(line("."))[col(".") - 1]

If the length of the String is less than the index, the result is an empty
String. A negative index always results in an empty string (reason: backwards
compatibility). Use [-1:] to get the last byte.

If expr8 is a List then it results the item at index expr1. See |list-index|
for possible index values. If the index is out of range this results in an
error. Example: >
:let item = mylist[-1] " get last item

Generally, if a List index is equal to or higher than the length of the List,
or more negative than the length of the List, this results in an error.


expr8[expr1a : expr1b] substring or sublist *expr-[:]*

If expr8 is a Number or String this results in the substring with the bytes
from expr1a to and including expr1b. expr8 is used as a String, expr1a and
expr1b are used as a Number. Note that this doesn't recognize multi-byte
encodings.

If expr1a is omitted zero is used. If expr1b is omitted the length of the
string minus one is used.

A negative number can be used to measure from the end of the string. -1 is
the last character, -2 the last but one, etc.

If an index goes out of range for the string characters are omitted. If
expr1b is smaller than expr1a the result is an empty string.

Examples: >
:let c = name[-1:] " last byte of a string
:let c = name[-2:-2] " last but one byte of a string
:let s = line(".")[4:] " from the fifth byte to the end
:let s = s[:-3] " remove last two bytes

If expr8 is a List this results in a new List with the items indicated by the
indexes expr1a and expr1b. This works like with a String, as explained just
above, except that indexes out of range cause an error. Examples: >
:let l = mylist[:3] " first four items
:let l = mylist[4:4] " List with one item
:let l = mylist[:] " shallow copy of a List

Using expr8[expr1] or expr8[expr1a : expr1b] on a Funcref results in an error.


expr8.name entry in a Dictionary *expr-entry*

If expr8 is a Dictionary and it is followed by a dot, then the following name
will be used as a key in the Dictionary. This is just like: expr8[name].

The name must consist of alphanumeric characters, just like a variable name,
but it may start with a number. Curly braces cannot be used.

There must not be white space before or after the dot.

Examples: >
:let dict = {"one": 1, 2: "two"}
:echo dict.one
:echo dict .2

Note that the dot is also used for String concatenation. To avoid confusion
always put spaces around the dot for String concatenation.


expr8(expr1, ...) Funcref function call

When expr8 is a |Funcref| type variable, invoke the function it refers to.



*expr9*
number
------
number number constant *expr-number*

Decimal, Hexadecimal (starting with 0x or 0X), or Octal (starting with 0).


string *expr-string* *E114*
------
"string" string constant *expr-quote*

Note that double quotes are used.

A string constant accepts these special characters:
\... three-digit octal number (e.g., "\316")
\.. two-digit octal number (must be followed by non-digit)
\. one-digit octal number (must be followed by non-digit)
\x.. byte specified with two hex numbers (e.g., "\x1f")
\x. byte specified with one hex number (must be followed by non-hex char)
\X.. same as \x..
\X. same as \x.
\u.... character specified with up to 4 hex numbers, stored according to the
current value of 'encoding' (e.g., "\u02a4")
\U.... same as \u....
\b backspace <BS>
\e escape <Esc>
\f formfeed <FF>
\n newline <NL>
\r return <CR>
\t tab <Tab>
\\ backslash
\" double quote
\<xxx> Special key named "xxx". e.g. "\<C-W>" for CTRL-W.

Note that "\000" and "\x00" force the end of the string.


literal-string *literal-string* *E115*
---------------
'string' string constant *expr-'*

Note that single quotes are used.

This string is taken as it is. No backslashes are removed or have a special
meaning. The only exception is that two quotes stand for one quote.

Single quoted strings are useful for patterns, so that backslashes do not need
to be doubled. These two commands are equivalent: >
if a =~ "\\s*"
if a =~ '\s*'


option *expr-option* *E112* *E113*
------
&option option value, local value if possible
&g:option global option value
&l:option local option value

Examples: >
echo "tabstop is " . &tabstop
if &insertmode

Any option name can be used here. See |options|. When using the local value
and there is no buffer-local or window-local value, the global value is used
anyway.


register *expr-register*
--------
@r contents of register 'r'

The result is the contents of the named register, as a single string.
Newlines are inserted where required. To get the contents of the unnamed
register use @" or @@. The '=' register can not be used here. See
|registers| for an explanation of the available registers.


nesting *expr-nesting* *E110*
-------
(expr1) nested expression


environment variable *expr-env*
--------------------
$VAR environment variable

The String value of any environment variable. When it is not defined, the
result is an empty string.
*expr-env-expand*
Note that there is a difference between using $VAR directly and using
expand("$VAR"). Using it directly will only expand environment variables that
are known inside the current Vim session. Using expand() will first try using
the environment variables known inside the current Vim session. If that
fails, a shell will be used to expand the variable. This can be slow, but it
does expand all variables that the shell knows about. Example: >
:echo $version
:echo expand("$version")
The first one probably doesn't echo anything, the second echoes the $version
variable (if your shell supports it).


internal variable *expr-variable*
-----------------
variable internal variable
See below |internal-variables|.


function call *expr-function* *E116* *E117* *E118* *E119* *E120*
-------------
function(expr1, ...) function call
See below |functions|.


==============================================================================
3. Internal variable *internal-variables* *E121*
*E461*
An internal variable name can be made up of letters, digits and '_'. But it
cannot start with a digit. It's also possible to use curly braces, see
|curly-braces-names|.

An internal variable is created with the ":let" command |:let|.
An internal variable is explicitly destroyed with the ":unlet" command
|:unlet|.
Using a name that is not an internal variable or refers to a variable that has
been destroyed results in an error.

There are several name spaces for variables. Which one is to be used is
specified by what is prepended:

(nothing) In a function: local to a function; otherwise: global
|buffer-variable| b: Local to the current buffer.
|window-variable| w: Local to the current window.
|global-variable| g: Global.
|local-variable| l: Local to a function.
|script-variable| s: Local to a |:source|'ed Vim script.
|function-argument| a: Function argument (only inside a function).
|vim-variable| v: Global, predefined by Vim.

The scope name by itself can be used as a Dictionary. For example, to delete
all script-local variables: >
:for k in keys(s:)
: unlet s:[k]
:endfor
<
*buffer-variable* *b:var*
A variable name that is preceded with "b:" is local to the current buffer.
Thus you can have several "b:foo" variables, one for each buffer.
This kind of variable is deleted when the buffer is wiped out or deleted with
|:bdelete|.

One local buffer variable is predefined:
*b:changedtick-variable* *changetick*
b:changedtick The total number of changes to the current buffer. It is
incremented for each change. An undo command is also a change
in this case. This can be used to perform an action only when
the buffer has changed. Example: >
:if my_changedtick != b:changedtick
: let my_changedtick = b:changedtick
: call My_Update()
:endif
<
*window-variable* *w:var*
A variable name that is preceded with "w:" is local to the current window. It
is deleted when the window is closed.

*global-variable* *g:var*
Inside functions global variables are accessed with "g:". Omitting this will
access a variable local to a function. But "g:" can also be used in any other
place if you like.

*local-variable* *l:var*
Inside functions local variables are accessed without prepending anything.
But you can also prepend "l:" if you like.

*script-variable* *s:var*
In a Vim script variables starting with "s:" can be used. They cannot be
accessed from outside of the scripts, thus are local to the script.

They can be used in:
- commands executed while the script is sourced
- functions defined in the script
- autocommands defined in the script
- functions and autocommands defined in functions and autocommands which were
  defined in the script (recursively)
- user defined commands defined in the script
Thus not in:
- other scripts sourced from this one
- mappings
- etc.

script variables can be used to avoid conflicts with global variable names.
Take this example:

let s:counter = 0
function MyCounter()
let s:counter = s:counter + 1
echo s:counter
endfunction
command Tick call MyCounter()

You can now invoke "Tick" from any script, and the "s:counter" variable in
that script will not be changed, only the "s:counter" in the script where
"Tick" was defined is used.

Another example that does the same: >

let s:counter = 0
command Tick let s:counter = s:counter + 1 | echo s:counter

When calling a function and invoking a user-defined command, the context for
script variables is set to the script where the function or command was
defined.

The script variables are also available when a function is defined inside a
function that is defined in a script. Example: >

let s:counter = 0
function StartCounting(incr)
if a:incr
function MyCounter()
let s:counter = s:counter + 1
endfunction
else
function MyCounter()
let s:counter = s:counter - 1
endfunction
endif
endfunction

This defines the MyCounter() function either for counting up or counting down
when calling StartCounting(). It doesn't matter from where StartCounting() is
called, the s:counter variable will be accessible in MyCounter().

When the same script is sourced again it will use the same script variables.
They will remain valid as long as Vim is running. This can be used to
maintain a counter: >

if !exists("s:counter")
let s:counter = 1
echo "script executed for the first time"
else
let s:counter = s:counter + 1
echo "script executed " . s:counter . " times now"
endif

Note that this means that filetype plugins don't get a different set of script
variables for each buffer. Use local buffer variables instead |b:var|.


Predefined Vim variables: *vim-variable* *v:var*

*v:charconvert_from* *charconvert_from-variable*
v:charconvert_from
The name of the character encoding of a file to be converted.
Only valid while evaluating the 'charconvert' option.

*v:charconvert_to* *charconvert_to-variable*
v:charconvert_to
The name of the character encoding of a file after conversion.
Only valid while evaluating the 'charconvert' option.

*v:cmdarg* *cmdarg-variable*
v:cmdarg This variable is used for two purposes:
1. The extra arguments given to a file read/write command.
Currently these are "++enc=" and "++ff=". This variable is
set before an autocommand event for a file read/write
command is triggered. There is a leading space to make it
possible to append this variable directly after the
read/write command. Note: The "+cmd" argument isn't
included here, because it will be executed anyway.
2. When printing a PostScript file with ":hardcopy" this is
the argument for the ":hardcopy" command. This can be used
in 'printexpr'.

*v:cmdbang* *cmdbang-variable*
v:cmdbang Set like v:cmdarg for a file read/write command. When a "!"
was used the value is 1, otherwise it is 0. Note that this
can only be used in autocommands. For user commands |<bang>|
can be used.

*v:count* *count-variable*
v:count The count given for the last Normal mode command. Can be used
to get the count before a mapping. Read-only. Example: >
:map _x :<C-U>echo "the count is " . v:count<CR>
< Note: The <C-U> is required to remove the line range that you
get when typing ':' after a count.
"count" also works, for backwards compatibility.

*v:count1* *count1-variable*
v:count1 Just like "v:count", but defaults to one when no count is
used.

*v:ctype* *ctype-variable*
v:ctype The current locale setting for characters of the runtime
environment. This allows Vim scripts to be aware of the
current locale encoding. Technical: it's the value of
LC_CTYPE. When not using a locale the value is "C".
This variable can not be set directly, use the |:language|
command.
See |multi-lang|.

*v:dying* *dying-variable*
v:dying Normally zero. When a deadly signal is caught it's set to
one. When multiple signals are caught the number increases.
Can be used in an autocommand to check if Vim didn't
terminate normally. {only works on Unix}
Example: >
:au VimLeave * if v:dying | echo "\nAAAAaaaarrrggghhhh!!!\n" | endif
<
*v:errmsg* *errmsg-variable*
v:errmsg Last given error message. It's allowed to set this variable.
Example: >
:let v:errmsg = ""
:silent! next
:if v:errmsg != ""
: ... handle error
< "errmsg" also works, for backwards compatibility.

*v:exception* *exception-variable*
v:exception The value of the exception most recently caught and not
finished. See also |v:throwpoint| and |throw-variables|.
Example: >
:try
: throw "oops"
:catch /.*/
: echo "caught" v:exception
:endtry
< Output: "caught oops".

*v:fname_in* *fname_in-variable*
v:fname_in The name of the input file. Only valid while evaluating:
option used for ~
'charconvert' file to be converted
'diffexpr' original file
'patchexpr' original file
'printexpr' file to be printed

*v:fname_out* *fname_out-variable*
v:fname_out The name of the output file. Only valid while
evaluating:
option used for ~
'charconvert' resulting converted file (*)
'diffexpr' output of diff
'patchexpr' resulting patched file
(*) When doing conversion for a write command (e.g., ":w
file") it will be equal to v:fname_in. When doing conversion
for a read command (e.g., ":e file") it will be a temporary
file and different from v:fname_in.

*v:fname_new* *fname_new-variable*
v:fname_new The name of the new version of the file. Only valid while
evaluating 'diffexpr'.

*v:fname_diff* *fname_diff-variable*
v:fname_diff The name of the diff (patch) file. Only valid while
evaluating 'patchexpr'.

*v:folddashes* *folddashes-variable*
v:folddashes Used for 'foldtext': dashes representing foldlevel of a closed
fold.
Read-only in the |sandbox|. |fold-foldtext|

*v:foldlevel* *foldlevel-variable*
v:foldlevel Used for 'foldtext': foldlevel of closed fold.
Read-only in the |sandbox|. |fold-foldtext|

*v:foldend* *foldend-variable*
v:foldend Used for 'foldtext': last line of closed fold.
Read-only in the |sandbox|. |fold-foldtext|

*v:foldstart* *foldstart-variable*
v:foldstart Used for 'foldtext': first line of closed fold.
Read-only in the |sandbox|. |fold-foldtext|

*v:insertmode* *insertmode-variable*
v:insertmode Used for the |InsertEnter| and |InsertChange| autocommand
events. Values:
i Insert mode
r Replace mode
v Virtual Replace mode

*v:key* *key-variable*
v:key Key of the current item of a Dictionary. Only valid while
evaluating the expression used with |map()| and |filter()|.
Read-only.

*v:lang* *lang-variable*
v:lang The current locale setting for messages of the runtime
environment. This allows Vim scripts to be aware of the
current language. Technical: it's the value of LC_MESSAGES.
The value is system dependent.
This variable can not be set directly, use the |:language|
command.
It can be different from |v:ctype| when messages are desired
in a different language than what is used for character
encoding. See |multi-lang|.

*v:lc_time* *lc_time-variable*
v:lc_time The current locale setting for time messages of the runtime
environment. This allows Vim scripts to be aware of the
current language. Technical: it's the value of LC_TIME.
This variable can not be set directly, use the |:language|
command. See |multi-lang|.

*v:lnum* *lnum-variable*
v:lnum Line number for the 'foldexpr' |fold-expr| and 'indentexpr'
expressions. Only valid while one of these expressions is
being evaluated. Read-only when in the |sandbox|.

*v:prevcount* *prevcount-variable*
v:prevcount The count given for the last but one Normal mode command.
This is the v:count value of the previous command. Useful if
you want to cancel Visual mode and then use the count. >
:vmap % <Esc>:call MyFilter(v:prevcount)<CR>
< Read-only.

*v:progname* *progname-variable*
v:progname Contains the name (with path removed) with which Vim was
invoked. Allows you to do special initialisations for "view",
"evim" etc., or any other name you might symlink to Vim.
Read-only.

*v:register* *register-variable*
v:register The name of the register supplied to the last normal mode
command. Empty if none were supplied. |getreg()| |setreg()|

*v:servername* *servername-variable*
v:servername The resulting registered |x11-clientserver| name if any.
Read-only.

*v:shell_error* *shell_error-variable*
v:shell_error Result of the last shell command. When non-zero, the last
shell command had an error. When zero, there was no problem.
This only works when the shell returns the error code to Vim.
The value -1 is often used when the command could not be
executed. Read-only.
Example: >
:!mv foo bar
:if v:shell_error
: echo 'could not rename "foo" to "bar"!'
:endif
< "shell_error" also works, for backwards compatibility.

*v:statusmsg* *statusmsg-variable*
v:statusmsg Last given status message. It's allowed to set this variable.

*v:termresponse* *termresponse-variable*
v:termresponse The escape sequence returned by the terminal for the |t_RV|
termcap entry. It is set when Vim receives an escape sequence
that starts with ESC [ or CSI and ends in a 'c', with only
digits, ';' and '.' in between.
When this option is set, the TermResponse autocommand event is
fired, so that you can react to the response from the
terminal.
The response from a new xterm is: "<Esc>[ Pp ; Pv ; Pc c". Pp
is the terminal type: 0 for vt100 and 1 for vt220. Pv is the
patch level (since this was introduced in patch 95, it's
always 95 or bigger). Pc is always zero.
{only when compiled with |+termresponse| feature}

*v:this_session* *this_session-variable*
v:this_session Full filename of the last loaded or saved session file. See
|:mksession|. It is allowed to set this variable. When no
session file has been saved, this variable is empty.
"this_session" also works, for backwards compatibility.

*v:throwpoint* *throwpoint-variable*
v:throwpoint The point where the exception most recently caught and not
finished was thrown. Not set when commands are typed. See
also |v:exception| and |throw-variables|.
Example: >
:try
: throw "oops"
:catch /.*/
: echo "Exception from" v:throwpoint
:endtry
< Output: "Exception from test.vim, line 2"

*v:val* *val-variable*
v:val Value of the current item of a List or Dictionary. Only valid
while evaluating the expression used with |map()| and
|filter()|. Read-only.

*v:version* *version-variable*
v:version Version number of Vim: Major version number times 100 plus
minor version number. Version 5.0 is 500. Version 5.1 (5.01)
is 501. Read-only. "version" also works, for backwards
compatibility.
Use |has()| to check if a certain patch was included, e.g.: >
if has("patch123")
< Note that patch numbers are specific to the version, thus both
version 5.0 and 5.1 may have a patch 123, but these are
completely different.

*v:warningmsg* *warningmsg-variable*
v:warningmsg Last given warning message. It's allowed to set this variable.

==============================================================================
4. Builtin Functions *functions*

See |function-list| for a list grouped by what the function is used for.

(Use CTRL-] on the function name to jump to the full explanation)

USAGE RESULT DESCRIPTION ~

add( {list}, {item}) List append {item} to List {list}
append( {lnum}, {string}) Number append {string} below line {lnum}
argc() Number number of files in the argument list
argidx() Number current index in the argument list
argv( {nr}) String {nr} entry of the argument list
browse( {save}, {title}, {initdir}, {default})
String put up a file requester
browsedir( {title}, {initdir}) String put up a directory requester
bufexists( {expr}) Number TRUE if buffer {expr} exists
buflisted( {expr}) Number TRUE if buffer {expr} is listed
bufloaded( {expr}) Number TRUE if buffer {expr} is loaded
bufname( {expr}) String Name of the buffer {expr}
bufnr( {expr}) Number Number of the buffer {expr}
bufwinnr( {expr}) Number window number of buffer {expr}
byte2line( {byte}) Number line number at byte count {byte}
byteidx( {expr}, {nr}) Number byte index of {nr}'th char in {expr}
call( {func}, {arglist} [, {dict}])
any call {func} with arguments {arglist}
char2nr( {expr}) Number ASCII value of first char in {expr}
cindent( {lnum}) Number C indent for line {lnum}
col( {expr}) Number column nr of cursor or mark
confirm( {msg} [, {choices} [, {default} [, {type}]]])
Number number of choice picked by user
copy( {expr}) any make a shallow copy of {expr}
count( {list}, {expr} [, {start} [, {ic}]])
Number count how many {expr} are in {list}
cscope_connection( [{num} , {dbpath} [, {prepend}]])
Number checks existence of cscope connection
cursor( {lnum}, {col}) Number position cursor at {lnum}, {col}
deepcopy( {expr}) any make a full copy of {expr}
delete( {fname}) Number delete file {fname}
did_filetype() Number TRUE if FileType autocommand event used
diff_filler( {lnum}) Number diff filler lines about {lnum}
diff_hlID( {lnum}, {col}) Number diff highlighting at {lnum}/{col}
empty( {expr}) Number TRUE if {expr} is empty
escape( {string}, {chars}) String escape {chars} in {string} with '\'
eval( {string}) any evaluate {string} into its value
eventhandler( ) Number TRUE if inside an event handler
executable( {expr}) Number 1 if executable {expr} exists
exists( {expr}) Number TRUE if {expr} exists
expand( {expr}) String expand special keywords in {expr}
filereadable( {file}) Number TRUE if {file} is a readable file
filter( {expr}, {string}) List/Dict remove items from {expr} where
{string} is 0
finddir( {name}[, {path}[, {count}]])
String Find directory {name} in {path}
findfile( {name}[, {path}[, {count}]])
String Find file {name} in {path}
filewritable( {file}) Number TRUE if {file} is a writable file
fnamemodify( {fname}, {mods}) String modify file name
foldclosed( {lnum}) Number first line of fold at {lnum} if closed
foldclosedend( {lnum}) Number last line of fold at {lnum} if closed
foldlevel( {lnum}) Number fold level at {lnum}
foldtext( ) String line displayed for closed fold
foreground( ) Number bring the Vim window to the foreground
function( {name}) Funcref reference to function {name}
get( {list}, {idx} [, {def}]) any get item {idx} from {list} or {def}
get( {dict}, {key} [, {def}]) any get item {key} from {dict} or {def}
getchar( [expr]) Number get one character from the user
getcharmod( ) Number modifiers for the last typed character
getbufvar( {expr}, {varname}) variable {varname} in buffer {expr}
getcmdline() String return the current command-line
getcmdpos() Number return cursor position in command-line
getcwd() String the current working directory
getfperm( {fname}) String file permissions of file {fname}
getfsize( {fname}) Number size in bytes of file {fname}
getfontname( [{name}]) String name of font being used
getftime( {fname}) Number last modification time of file
getftype( {fname}) String description of type of file {fname}
getline( {lnum}) String line {lnum} from current buffer
getreg( [{regname}]) String contents of register
getregtype( [{regname}]) String type of register
getwinposx() Number X coord in pixels of GUI Vim window
getwinposy() Number Y coord in pixels of GUI Vim window
getwinvar( {nr}, {varname}) variable {varname} in window {nr}
glob( {expr}) String expand file wildcards in {expr}
globpath( {path}, {expr}) String do glob({expr}) for all dirs in {path}
has( {feature}) Number TRUE if feature {feature} supported
has_key( {dict}, {key}) Number TRUE if {dict} has entry {key}
hasmapto( {what} [, {mode}]) Number TRUE if mapping to {what} exists
histadd( {history},{item}) String add an item to a history
histdel( {history} [, {item}]) String remove an item from a history
histget( {history} [, {index}]) String get the item {index} from a history
histnr( {history}) Number highest index of a history
hlexists( {name}) Number TRUE if highlight group {name} exists
hlID( {name}) Number syntax ID of highlight group {name}
hostname() String name of the machine Vim is running on
iconv( {expr}, {from}, {to}) String convert encoding of {expr}
indent( {lnum}) Number indent of line {lnum}
index( {list}, {expr} [, {start} [, {ic}]])
Number index in {list} where {expr} appears
input( {prompt} [, {text}]) String get input from the user
inputdialog( {p} [, {t} [, {c}]]) String like input() but in a GUI dialog
inputrestore() Number restore typeahead
inputsave() Number save and clear typeahead
inputsecret( {prompt} [, {text}]) String like input() but hiding the text
insert( {list}, {item} [, {idx}]) List insert {item} in {list} [before {idx}]
isdirectory( {directory}) Number TRUE if {directory} is a directory
islocked( {expr}) Number TRUE if {expr} is locked
items( {dict}) List List of key-value pairs in {dict}
join( {list} [, {sep}]) String join {list} items into one String
keys( {dict}) List List of keys in {dict}
len( {expr}) Number the length of {expr}
libcall( {lib}, {func}, {arg}) String call {func} in library {lib} with {arg}
libcallnr( {lib}, {func}, {arg}) Number idem, but return a Number
line( {expr}) Number line nr of cursor, last line or mark
line2byte( {lnum}) Number byte count of line {lnum}
lispindent( {lnum}) Number Lisp indent for line {lnum}
localtime() Number current time
map( {expr}, {string}) List/Dict change each item in {expr} to {expr}
maparg( {name}[, {mode}]) String rhs of mapping {name} in mode {mode}
mapcheck( {name}[, {mode}]) String check for mappings matching {name}
match( {expr}, {pat}[, {start}[, {count}]])
Number position where {pat} matches in {expr}
matchend( {expr}, {pat}[, {start}[, {count}]])
Number position where {pat} ends in {expr}
matchstr( {expr}, {pat}[, {start}[, {count}]])
String {count}'th match of {pat} in {expr}
max({list}) Number maximum value of items in {list}
min({list}) Number minumum value of items in {list}
mode() String current editing mode
nextnonblank( {lnum}) Number line nr of non-blank line >= {lnum}
nr2char( {expr}) String single char with ASCII value {expr}
prevnonblank( {lnum}) Number line nr of non-blank line <= {lnum}
range( {expr} [, {max} [, {stride}]])
List items from {expr} to {max}
remote_expr( {server}, {string} [, {idvar}])
String send expression
remote_foreground( {server}) Number bring Vim server to the foreground
remote_peek( {serverid} [, {retvar}])
Number check for reply string
remote_read( {serverid}) String read reply string
remote_send( {server}, {string} [, {idvar}])
String send key sequence
remove( {list}, {idx} [, {end}]) any remove items {idx}-{end} from {list}
remove( {dict}, {key}) any remove entry {key} from {dict}
rename( {from}, {to}) Number rename (move) file from {from} to {to}
repeat( {expr}, {count}) String repeat {expr} {count} times
resolve( {filename}) String get filename a shortcut points to
reverse( {list}) List reverse {list} in-place
search( {pattern} [, {flags}]) Number search for {pattern}
searchpair( {start}, {middle}, {end} [, {flags} [, {skip}]])
Number search for other end of start/end pair
server2client( {clientid}, {string})
Number send reply string
serverlist() String get a list of available servers
setbufvar( {expr}, {varname}, {val}) set {varname} in buffer {expr} to {val}
setcmdpos( {pos}) Number set cursor position in command-line
setline( {lnum}, {line}) Number set line {lnum} to {line}
setreg( {n}, {v}[, {opt}]) Number set register to value and type
setwinvar( {nr}, {varname}, {val}) set {varname} in window {nr} to {val}
simplify( {filename}) String simplify filename as much as possible
sort( {list} [, {func}]) List sort {list}, using {func} to compare
split( {expr} [, {pat}]) List make List from {pat} separated {expr}
strftime( {format}[, {time}]) String time in specified format
stridx( {haystack}, {needle}[, {start}])
Number index of {needle} in {haystack}
string( {expr}) String String representation of {expr} value
strlen( {expr}) Number length of the String {expr}
strpart( {src}, {start}[, {len}])
String {len} characters of {src} at {start}
strridx( {haystack}, {needle} [, {start}])
Number last index of {needle} in {haystack}
strtrans( {expr}) String translate string to make it printable
submatch( {nr}) String specific match in ":substitute"
substitute( {expr}, {pat}, {sub}, {flags})
String all {pat} in {expr} replaced with {sub}
synID( {lnum}, {col}, {trans}) Number syntax ID at {lnum} and {col}
synIDattr( {synID}, {what} [, {mode}])
String attribute {what} of syntax ID {synID}
synIDtrans( {synID}) Number translated syntax ID of {synID}
system( {expr} [, {input}]) String output of shell command/filter {expr}
tempname() String name for a temporary file
tolower( {expr}) String the String {expr} switched to lowercase
toupper( {expr}) String the String {expr} switched to uppercase
tr( {src}, {fromstr}, {tostr}) String translate chars of {src} in {fromstr}
to chars in {tostr}
type( {name}) Number type of variable {name}
values( {dict}) List List of values in {dict}
virtcol( {expr}) Number screen column of cursor or mark
visualmode( [expr]) String last visual mode used
winbufnr( {nr}) Number buffer number of window {nr}
wincol() Number window column of the cursor
winheight( {nr}) Number height of window {nr}
winline() Number window line of the cursor
winnr() Number number of current window
winrestcmd() String returns command to restore window sizes
winwidth( {nr}) Number width of window {nr}

add({list}, {expr}) *add()*
Append the item {expr} to List {list}. Returns the resulting
List. Examples: >
:let alist = add([1, 2, 3], item)
:call add(mylist, "woodstock")
< Note that when {expr} is a List it is appended as a single
item. Use |extend()| to concatenate Lists.
Use |insert()| to add an item at another position.


append({lnum}, {expr}) *append()*
When {expr} is a List: Append each item of the list as a text
line below line {lnum} in the current buffer.
Otherwise append the text line {expr} below line {lnum} in the
current buffer.
{lnum} can be zero, to insert a line before the first one.
Returns 1 for failure ({lnum} out of range or out of memory),
0 for success. Example: >
:let failed = append(line('$'), "# THE END")
:let failed = append(0, ["Chapter 1", "the beginning"])
<
*argc()*
argc() The result is the number of files in the argument list of the
current window. See |arglist|.

*argidx()*
argidx() The result is the current index in the argument list. 0 is
the first file. argc() - 1 is the last one. See |arglist|.

*argv()*
argv({nr}) The result is the {nr}th file in the argument list of the
current window. See |arglist|. "argv(0)" is the first one.
Example: >
:let i = 0
:while i < argc()
: let f = escape(argv(i), '. ')
: exe 'amenu Arg.' . f . ' :e ' . f . '<CR>'
: let i = i + 1
:endwhile
<
*browse()*
browse({save}, {title}, {initdir}, {default})
Put up a file requester. This only works when "has("browse")"
returns non-zero (only in some GUI versions).
The input fields are:
{save} when non-zero, select file to write
{title} title for the requester
{initdir} directory to start browsing in
{default} default file name
When the "Cancel" button is hit, something went wrong, or
browsing is not possible, an empty string is returned.

*browsedir()*
browsedir({title}, {initdir})
Put up a directory requester. This only works when
"has("browse")" returns non-zero (only in some GUI versions).
On systems where a directory browser is not supported a file
browser is used. In that case: select a file in the directory
to be used.
The input fields are:
{title} title for the requester
{initdir} directory to start browsing in
When the "Cancel" button is hit, something went wrong, or
browsing is not possible, an empty string is returned.

bufexists({expr}) *bufexists()*
The result is a Number, which is non-zero if a buffer called
{expr} exists.
If the {expr} argument is a number, buffer numbers are used.
If the {expr} argument is a string it must match a buffer name
exactly. The name can be:
- Relative to the current directory.
- A full path.
- The name of a buffer with 'filetype' set to "nofile".
- A URL name.
Unlisted buffers will be found.
Note that help files are listed by their short name in the
output of |:buffers|, but bufexists() requires using their
long name to be able to find them.
Use "bufexists(0)" to test for the existence of an alternate
file name.
*buffer_exists()*
Obsolete name: buffer_exists().

buflisted({expr}) *buflisted()*
The result is a Number, which is non-zero if a buffer called
{expr} exists and is listed (has the 'buflisted' option set).
The {expr} argument is used like with |bufexists()|.

bufloaded({expr}) *bufloaded()*
The result is a Number, which is non-zero if a buffer called
{expr} exists and is loaded (shown in a window or hidden).
The {expr} argument is used like with |bufexists()|.

bufname({expr}) *bufname()*
The result is the name of a buffer, as it is displayed by the
":ls" command.
If {expr} is a Number, that buffer number's name is given.
Number zero is the alternate buffer for the current window.
If {expr} is a String, it is used as a |file-pattern| to match
with the buffer names. This is always done like 'magic' is
set and 'cpoptions' is empty. When there is more than one
match an empty string is returned.
"" or "%" can be used for the current buffer, "#" for the
alternate buffer.
A full match is preferred, otherwise a match at the start, end
or middle of the buffer name is accepted.
Listed buffers are found first. If there is a single match
with a listed buffer, that one is returned. Next unlisted
buffers are searched for.
If the {expr} is a String, but you want to use it as a buffer
number, force it to be a Number by adding zero to it: >
:echo bufname("3" + 0)
< If the buffer doesn't exist, or doesn't have a name, an empty
string is returned. >
bufname("#") alternate buffer name
bufname(3) name of buffer 3
bufname("%") name of current buffer
bufname("file2") name of buffer where "file2" matches.
< *buffer_name()*
Obsolete name: buffer_name().

*bufnr()*
bufnr({expr}) The result is the number of a buffer, as it is displayed by
the ":ls" command. For the use of {expr}, see |bufname()|
above. If the buffer doesn't exist, -1 is returned.
bufnr("$") is the last buffer: >
:let last_buffer = bufnr("$")
< The result is a Number, which is the highest buffer number
of existing buffers. Note that not all buffers with a smaller
number necessarily exist, because ":bwipeout" may have removed
them. Use bufexists() to test for the existence of a buffer.
*buffer_number()*
Obsolete name: buffer_number().
*last_buffer_nr()*
Obsolete name for bufnr("$"): last_buffer_nr().

bufwinnr({expr}) *bufwinnr()*
The result is a Number, which is the number of the first
window associated with buffer {expr}. For the use of {expr},
see |bufname()| above. If buffer {expr} doesn't exist or
there is no such window, -1 is returned. Example: >

echo "A window containing buffer 1 is " . (bufwinnr(1))

< The number can be used with |CTRL-W_w| and ":wincmd w"
|:wincmd|.


byte2line({byte}) *byte2line()*
Return the line number that contains the character at byte
count {byte} in the current buffer. This includes the
end-of-line character, depending on the 'fileformat' option
for the current buffer. The first character has byte count
one.
Also see |line2byte()|, |go| and |:goto|.
{not available when compiled without the |+byte_offset|
feature}

byteidx({expr}, {nr}) *byteidx()*
Return byte index of the {nr}'th character in the string
{expr}. Use zero for the first character, it returns zero.
This function is only useful when there are multibyte
characters, otherwise the returned value is equal to {nr}.
Composing characters are counted as a separate character.
Example : >
echo matchstr(str, ".", byteidx(str, 3))
< will display the fourth character. Another way to do the
same: >
let s = strpart(str, byteidx(str, 3))
echo strpart(s, 0, byteidx(s, 1))
< If there are less than {nr} characters -1 is returned.
If there are exactly {nr} characters the length of the string
is returned.

call({func}, {arglist} [, {dict}]) *call()* *E699*
Call function {func} with the items in List {arglist} as
arguments.
{func} can either be a Funcref or the name of a function.
a:firstline and a:lastline are set to the cursor line.
Returns the return value of the called function.
{dict} is for functions with the "dict" attribute. It will be
used to set the local variable "self". |Dictionary-function|

char2nr({expr}) *char2nr()*
Return number value of the first char in {expr}. Examples: >
char2nr(" ") returns 32
char2nr("ABC") returns 65
< The current 'encoding' is used. Example for "utf-8": >
char2nr("á") returns 225
char2nr("á"[0]) returns 195

cindent({lnum}) *cindent()*
Get the amount of indent for line {lnum} according the C
indenting rules, as with 'cindent'.
The indent is counted in spaces, the value of 'tabstop' is
relevant. {lnum} is used just like in |getline()|.
When {lnum} is invalid or Vim was not compiled the |+cindent|
feature, -1 is returned.

*col()*
col({expr}) The result is a Number, which is the byte index of the column
position given with {expr}. The accepted positions are:
. the cursor position
$ the end of the cursor line (the result is the
number of characters in the cursor line plus one)
'x position of mark x (if the mark is not set, 0 is
returned)
For the screen column position use |virtcol()|.
Note that only marks in the current file can be used.
Examples: >
col(".") column of cursor
col("$") length of cursor line plus one
col("'t") column of mark t
col("'" . markname) column of mark markname
< The first column is 1. 0 is returned for an error.
For the cursor position, when 'virtualedit' is active, the
column is one higher if the cursor is after the end of the
line. This can be used to obtain the column in Insert mode: >
:imap <F2> <C-O>:let save_ve = &ve<CR>
\<C-O>:set ve=all<CR>
\<C-O>:echo col(".") . "\n" <Bar>
\let &ve = save_ve<CR>
<
*confirm()*
confirm({msg} [, {choices} [, {default} [, {type}]]])
Confirm() offers the user a dialog, from which a choice can be
made. It returns the number of the choice. For the first
choice this is 1.
Note: confirm() is only supported when compiled with dialog
support, see |+dialog_con| and |+dialog_gui|.
{msg} is displayed in a |dialog| with {choices} as the
alternatives. When {choices} is missing or empty, "&OK" is
used (and translated).
{msg} is a String, use '\n' to include a newline. Only on
some systems the string is wrapped when it doesn't fit.
{choices} is a String, with the individual choices separated
by '\n', e.g. >
confirm("Save changes?", "&Yes\n&No\n&Cancel")
< The letter after the '&' is the shortcut key for that choice.
Thus you can type 'c' to select "Cancel". The shortcut does
not need to be the first letter: >
confirm("file has been modified", "&Save\nSave &All")
< For the console, the first letter of each choice is used as
the default shortcut key.
The optional {default} argument is the number of the choice
that is made if the user hits <CR>. Use 1 to make the first
choice the default one. Use 0 to not set a default. If
{default} is omitted, 1 is used.
The optional {type} argument gives the type of dialog. This
is only used for the icon of the Win32 GUI. It can be one of
these values: "Error", "Question", "Info", "Warning" or
"Generic". Only the first character is relevant. When {type}
is omitted, "Generic" is used.
If the user aborts the dialog by pressing <Esc>, CTRL-C,
or another valid interrupt key, confirm() returns 0.

An example: >
   :let choice = confirm("What do you want?", "&Apples\n&Oranges\n&Bananas", 2)
   :if choice == 0
   : echo "make up your mind!"
   :elseif choice == 3
   : echo "tasteful"
   :else
   : echo "I prefer bananas myself."
   :endif
< In a GUI dialog, buttons are used. The layout of the buttons
depends on the 'v' flag in 'guioptions'. If it is included,
the buttons are always put vertically. Otherwise, confirm()
tries to put the buttons in one horizontal line. If they
don't fit, a vertical layout is used anyway. For some systems
the horizontal layout is always used.

*copy()*
copy({expr}) Make a copy of {expr}. For Numbers and Strings this isn't
different from using {expr} directly.
When {expr} is a List a shallow copy is created. This means
that the original List can be changed without changing the
copy, and vise versa. But the items are identical, thus
changing an item changes the contents of both Lists. Also see
|deepcopy()|.

count({comp}, {expr} [, {ic} [, {start}]]) *count()*
Return the number of times an item with value {expr} appears
in List or Dictionary {comp}.
If {start} is given then start with the item with this index.
{start} can only be used with a List.
When {ic} is given and it's non-zero then case is ignored.


*cscope_connection()*
cscope_connection([{num} , {dbpath} [, {prepend}]])
Checks for the existence of a |cscope| connection. If no
parameters are specified, then the function returns:
0, if cscope was not available (not compiled in), or
if there are no cscope connections;
1, if there is at least one cscope connection.

If parameters are specified, then the value of {num}
determines how existence of a cscope connection is checked:

{num} Description of existence check
----- ------------------------------
0 Same as no parameters (e.g., "cscope_connection()").
1 Ignore {prepend}, and use partial string matches for
{dbpath}.
2 Ignore {prepend}, and use exact string matches for
{dbpath}.
3 Use {prepend}, use partial string matches for both
{dbpath} and {prepend}.
4 Use {prepend}, use exact string matches for both
{dbpath} and {prepend}.

Note: All string comparisons are case sensitive!

Examples. Suppose we had the following (from ":cs show"): >

  # pid database name prepend path
  0 27664 cscope.out /usr/local
<
Invocation Return Val ~
---------- ---------- >
cscope_connection() 1
cscope_connection(1, "out") 1
cscope_connection(2, "out") 0
cscope_connection(3, "out") 0
cscope_connection(3, "out", "local") 1
cscope_connection(4, "out") 0
cscope_connection(4, "out", "local") 0
cscope_connection(4, "cscope.out", "/usr/local") 1
<
cursor({lnum}, {col}) *cursor()*
Positions the cursor at the column {col} in the line {lnum}.
Does not change the jumplist.
If {lnum} is greater than the number of lines in the buffer,
the cursor will be positioned at the last line in the buffer.
If {lnum} is zero, the cursor will stay in the current line.
If {col} is greater than the number of characters in the line,
the cursor will be positioned at the last character in the
line.
If {col} is zero, the cursor will stay in the current column.


deepcopy({expr}) *deepcopy()* *E698*
Make a copy of {expr}. For Numbers and Strings this isn't
different from using {expr} directly.
When {expr} is a List a full copy is created. This means
that the original List can be changed without changing the
copy, and vise versa. When an item is a List, a copy for it
is made, recursively. Thus changing an item in the copy does
not change the contents of the original List.
*E724*
Nesting is possible up to 100 levels. When there is an item
that refers back to a higher level making a deep copy will
fail.
Also see |copy()|.

delete({fname}) *delete()*
Deletes the file by the name {fname}. The result is a Number,
which is 0 if the file was deleted successfully, and non-zero
when the deletion failed.
Use |remove()| to delete an item from a List.

*did_filetype()*
did_filetype() Returns non-zero when autocommands are being executed and the
FileType event has been triggered at least once. Can be used
to avoid triggering the FileType event again in the scripts
that detect the file type. |FileType|
When editing another file, the counter is reset, thus this
really checks if the FileType event has been triggered for the
current buffer. This allows an autocommand that starts
editing another buffer to set 'filetype' and load a syntax
file.

diff_filler({lnum}) *diff_filler()*
Returns the number of filler lines above line {lnum}.
These are the lines that were inserted at this point in
another diff'ed window. These filler lines are shown in the
display but don't exist in the buffer.
{lnum} is used like with |getline()|. Thus "." is the current
line, "'m" mark m, etc.
Returns 0 if the current window is not in diff mode.

diff_hlID({lnum}, {col}) *diff_hlID()*
Returns the highlight ID for diff mode at line {lnum} column
{col} (byte index). When the current line does not have a
diff change zero is returned.
{lnum} is used like with |getline()|. Thus "." is the current
line, "'m" mark m, etc.
{col} is 1 for the leftmost column, {lnum} is 1 for the first
line.
The highlight ID can be used with |synIDattr()| to obtain
syntax information about the highlighting.

empty({expr}) *empty()*
Return the Number 1 if {expr} is empty, zero otherwise.
A List or Dictionary is empty when it does not have any items.
A Number is empty when its value is zero.
For a long List this is much faster then comparing the length
with zero.

escape({string}, {chars}) *escape()*
Escape the characters in {chars} that occur in {string} with a
backslash. Example: >
:echo escape('c:\program files\vim', ' \')
< results in: >
c:\\program\ files\\vim

< *eval()*
eval({string}) Evaluate {string} and return the result. Especially useful to
turn the result of |string()| back into the original value.
This works for Numbers, Strings and composites of them.
Also works for Funcrefs that refer to existing functions.

eventhandler() *eventhandler()*
Returns 1 when inside an event handler. That is that Vim got
interrupted while waiting for the user to type a character,
e.g., when dropping a file on Vim. This means interactive
commands cannot be used. Otherwise zero is returned.

executable({expr}) *executable()*
This function checks if an executable with the name {expr}
exists. {expr} must be the name of the program without any
arguments.
executable() uses the value of $PATH and/or the normal
searchpath for programs. *PATHEXT*
On MS-DOS and MS-Windows the ".exe", ".bat", etc. can
optionally be included. Then the extensions in $PATHEXT are
tried. Thus if "foo.exe" does not exist, "foo.exe.bat" can be
found. If $PATHEXT is not set then ".exe;.com;.bat;.cmd" is
used. A dot by itself can be used in $PATHEXT to try using
the name without an extension. When 'shell' looks like a
Unix shell, then the name is also tried without adding an
extension.
On MS-DOS and MS-Windows it only checks if the file exists and
is not a directory, not if it's really executable.
The result is a Number:
1 exists
0 does not exist
-1 not implemented on this system

*exists()*
exists({expr}) The result is a Number, which is non-zero if {expr} is
defined, zero otherwise. The {expr} argument is a string,
which contains one of these:
&option-name Vim option (only checks if it exists,
not if it really works)
+option-name Vim option that works.
$ENVNAME environment variable (could also be
done by comparing with an empty
string)
*funcname built-in function (see |functions|)
or user defined function (see
|user-functions|).
varname internal variable (see
|internal-variables|). Does not work
for |curly-braces-names|.
:cmdname Ex command: built-in command, user
command or command modifier |:command|.
Returns:
1 for match with start of a command
2 full match with a command
3 matches several user commands
To check for a supported command
always check the return value to be 2.
#event autocommand defined for this event
#event#pattern autocommand defined for this event and
pattern (the pattern is taken
literally and compared to the
autocommand patterns character by
character)
For checking for a supported feature use |has()|.

Examples: >
exists("&shortname")
exists("$HOSTNAME")
exists("*strftime")
exists("*s:MyFunc")
exists("bufcount")
exists(":Make")
exists("#CursorHold");
exists("#BufReadPre#*.gz")
< There must be no space between the symbol (&/$/*/#) and the
name.
Note that the argument must be a string, not the name of the
variable itself! For example: >
exists(bufcount)
< This doesn't check for existence of the "bufcount" variable,
but gets the contents of "bufcount", and checks if that
exists.

expand({expr} [, {flag}]) *expand()*
Expand wildcards and the following special keywords in {expr}.
The result is a String.

When there are several matches, they are separated by <NL>
characters. [Note: in version 5.0 a space was used, which
caused problems when a file name contains a space]

If the expansion fails, the result is an empty string. A name
for a non-existing file is not included.

When {expr} starts with '%', '#' or '<', the expansion is done
like for the |cmdline-special| variables with their associated
modifiers. Here is a short overview:

% current file name
# alternate file name
#n alternate file name n
<cfile> file name under the cursor
<afile> autocmd file name
<abuf> autocmd buffer number (as a String!)
<amatch> autocmd matched name
<sfile> sourced script file name
<cword> word under the cursor
<cWORD> WORD under the cursor
<client> the {clientid} of the last received
message |server2client()|
Modifiers:
:p expand to full path
:h head (last path component removed)
:t tail (last path component only)
:r root (one extension removed)
:e extension only

Example: >
:let &tags = expand("%:p:h") . "/tags"
< Note that when expanding a string that starts with '%', '#' or
'<', any following text is ignored. This does NOT work: >
:let doesntwork = expand("%:h.bak")
< Use this: >
:let doeswork = expand("%:h") . ".bak"
< Also note that expanding "<cfile>" and others only returns the
referenced file name without further expansion. If "<cfile>"
is "~/.cshrc", you need to do another expand() to have the
"~/" expanded into the path of the home directory: >
:echo expand(expand("<cfile>"))
<
There cannot be white space between the variables and the
following modifier. The |fnamemodify()| function can be used
to modify normal file names.

When using '%' or '#', and the current or alternate file name
is not defined, an empty string is used. Using "%:p" in a
buffer with no name, results in the current directory, with a
'/' added.

When {expr} does not start with '%', '#' or '<', it is
expanded like a file name is expanded on the command line.
'suffixes' and 'wildignore' are used, unless the optional
{flag} argument is given and it is non-zero. Names for
non-existing files are included.

Expand() can also be used to expand variables and environment
variables that are only known in a shell. But this can be
slow, because a shell must be started. See |expr-env-expand|.
The expanded variable is still handled like a list of file
names. When an environment variable cannot be expanded, it is
left unchanged. Thus ":echo expand('$FOOBAR')" results in
"$FOOBAR".

See |glob()| for finding existing files. See |system()| for
getting the raw output of an external command.

extend({expr1}, {expr2} [, {expr3}]) *extend()*
{expr1} and {expr2} must be both Lists or both Dictionaries.

If they are Lists: Append {expr2} to {expr1}.
If {expr3} is given insert the items of {expr2} before item
{expr3} in {expr1}. When {expr3} is zero insert before the
first item. When {expr3} is equal to len({expr1}) then
{expr2} is appended.
Examples: >
:echo sort(extend(mylist, [7, 5]))
:call extend(mylist, [2, 3], 1)
< Use |add()| to concatenate one item to a list. To concatenate
two lists into a new list use the + operator: >
:let newlist = [1, 2, 3] + [4, 5]
<
If they are Dictionaries:
Add all entries from {expr2} to {expr1}.
If a key exists in both {expr1} and {expr2} then {expr3} is
used to decide what to do:
{expr3} = "keep": keep the value of {expr1}
{expr3} = "force": use the value of {expr2}
{expr3} = "error": give an error message *E737*
When {expr3} is omitted then "force" is assumed.

{expr1} is changed when {expr2} is not empty. If necessary
make a copy of {expr1} first.
{expr2} remains unchanged.
Returns {expr1}.


filereadable({file}) *filereadable()*
The result is a Number, which is TRUE when a file with the
name {file} exists, and can be read. If {file} doesn't exist,
or is a directory, the result is FALSE. {file} is any
expression, which is used as a String.
*file_readable()*
Obsolete name: file_readable().


filter({expr}, {string}) *filter()*
{expr} must be a List or a Dictionary.
For each item in {expr} evaluate {string} and when the result
is zero remove the item from the List or Dictionary.
Inside {string} |v:val| has the value of the current item.
For a Dictionary |v:key| has the key of the current item.
Examples: >
:call filter(mylist, 'v:val !~ "OLD"')
< Removes the items where "OLD" appears. >
:call filter(mydict, 'v:key >= 8')
< Removes the items with a key below 8. >
:call filter(var, 0)
< Removes all the items, thus clears the List or Dictionary.

Note that {string} is the result of expression and is then
used as an expression again. Often it is good to use a
|literal-string| to avoid having to double backslashes.

The operation is done in-place. If you want a List or
Dictionary to remain unmodified make a copy first: >
:let l = filter(copy(mylist), '& =~ "KEEP"')

< Returns {expr}, the List or Dictionary that was filtered.


finddir({name}[, {path}[, {count}]]) *finddir()*
Find directory {name} in {path}.
If {path} is omitted or empty then 'path' is used.
If the optional {count} is given, find {count}'s occurrence of
{name} in {path}.
This is quite similar to the ex-command |:find|.
When the found directory is below the current directory a
relative path is returned. Otherwise a full path is returned.
Example: >
:echo findfile("tags.vim", ".;")
< Searches from the current directory upwards until it finds
the file "tags.vim".
{only available when compiled with the +file_in_path feature}

findfile({name}[, {path}[, {count}]]) *findfile()*
Just like |finddir()|, but find a file instead of a directory.

filewritable({file}) *filewritable()*
The result is a Number, which is 1 when a file with the
name {file} exists, and can be written. If {file} doesn't
exist, or is not writable, the result is 0. If (file) is a
directory, and we can write to it, the result is 2.

fnamemodify({fname}, {mods}) *fnamemodify()*
Modify file name {fname} according to {mods}. {mods} is a
string of characters like it is used for file names on the
command line. See |filename-modifiers|.
Example: >
:echo fnamemodify("main.c", ":p:h")
< results in: >
/home/mool/vim/vim/src
< Note: Environment variables and "~" don't work in {fname}, use
|expand()| first then.

foldclosed({lnum}) *foldclosed()*
The result is a Number. If the line {lnum} is in a closed
fold, the result is the number of the first line in that fold.
If the line {lnum} is not in a closed fold, -1 is returned.

foldclosedend({lnum}) *foldclosedend()*
The result is a Number. If the line {lnum} is in a closed
fold, the result is the number of the last line in that fold.
If the line {lnum} is not in a closed fold, -1 is returned.

foldlevel({lnum}) *foldlevel()*
The result is a Number, which is the foldlevel of line {lnum}
in the current buffer. For nested folds the deepest level is
returned. If there is no fold at line {lnum}, zero is
returned. It doesn't matter if the folds are open or closed.
When used while updating folds (from 'foldexpr') -1 is
returned for lines where folds are still to be updated and the
foldlevel is unknown. As a special case the level of the
previous line is usually available.

*foldtext()*
foldtext() Returns a String, to be displayed for a closed fold. This is
the default function used for the 'foldtext' option and should
only be called from evaluating 'foldtext'. It uses the
|v:foldstart|, |v:foldend| and |v:folddashes| variables.
The returned string looks like this: >
+-- 45 lines: abcdef
< The number of dashes depends on the foldlevel. The "45" is
the number of lines in the fold. "abcdef" is the text in the
first non-blank line of the fold. Leading white space, "//"
or "/*" and the text from the 'foldmarker' and 'commentstring'
options is removed.
{not available when compiled without the |+folding| feature}

foldtextresult({lnum}) *foldtextresult()*
Returns the text that is displayed for the closed fold at line
{lnum}. Evaluates 'foldtext' in the appropriate context.
When there is no closed fold at {lnum} an empty string is
returned.
{lnum} is used like with |getline()|. Thus "." is the current
line, "'m" mark m, etc.
Useful when exporting folded text, e.g., to HTML.
{not available when compiled without the |+folding| feature}

*foreground()*
foreground() Move the Vim window to the foreground. Useful when sent from
a client to a Vim server. |remote_send()|
On Win32 systems this might not work, the OS does not always
allow a window to bring itself to the foreground. Use
|remote_foreground()| instead.
{only in the Win32, Athena, Motif and GTK GUI versions and the
Win32 console version}


function({name}) *function()* *E700*
Return a Funcref variable that refers to function {name}.
{name} can be a user defined function or an internal function.


get({list}, {idx} [, {default}]) *get()*
Get item {idx} from List {list}. When this item is not
available return {default}. Return zero when {default} is
omitted.
get({dict}, {key} [, {default}])
Get item with key {key} from Dictionary {dict}. When this
item is not available return {default}. Return zero when
{default} is omitted.


getbufvar({expr}, {varname}) *getbufvar()*
The result is the value of option or local buffer variable
{varname} in buffer {expr}. Note that the name without "b:"
must be used.
This also works for a global or local window option, but it
doesn't work for a global or local window variable.
For the use of {expr}, see |bufname()| above.
When the buffer or variable doesn't exist an empty string is
returned, there is no error message.
Examples: >
:let bufmodified = getbufvar(1, "&mod")
:echo "todo myvar = " . getbufvar("todo", "myvar")
<
getchar([expr]) *getchar()*
Get a single character from the user. If it is an 8-bit
character, the result is a number. Otherwise a String is
returned with the encoded character. For a special key it's a
sequence of bytes starting with 0x80 (decimal: 128).
If [expr] is omitted, wait until a character is available.
If [expr] is 0, only get a character when one is available.
If [expr] is 1, only check if a character is available, it is
not consumed. If a normal character is
available, it is returned, otherwise a
non-zero value is returned.
If a normal character available, it is returned as a Number.
Use nr2char() to convert it to a String.
The returned value is zero if no character is available.
The returned value is a string of characters for special keys
and when a modifier (shift, control, alt) was used.
There is no prompt, you will somehow have to make clear to the
user that a character has to be typed.
There is no mapping for the character.
Key codes are replaced, thus when the user presses the <Del>
key you get the code for the <Del> key, not the raw character
sequence. Examples: >
getchar() == "\<Del>"
getchar() == "\<S-Left>"
< This example redefines "f" to ignore case: >
:nmap f :call FindChar()<CR>
:function FindChar()
: let c = nr2char(getchar())
: while col('.') < col('$') - 1
: normal l
: if getline('.')[col('.') - 1] ==? c
: break
: endif
: endwhile
:endfunction

getcharmod() *getcharmod()*
The result is a Number which is the state of the modifiers for
the last obtained character with getchar() or in another way.
These values are added together:
2 shift
4 control
8 alt (meta)
16 mouse double click
32 mouse triple click
64 mouse quadruple click
128 Macintosh only: command
Only the modifiers that have not been included in the
character itself are obtained. Thus Shift-a results in "A"
with no modifier.

getcmdline() *getcmdline()*
Return the current command-line. Only works when the command
line is being edited, thus requires use of |c_CTRL-\_e| or
|c_CTRL-R_=|.
Example: >
:cmap <F7> <C-\>eescape(getcmdline(), ' \')<CR>
< Also see |getcmdpos()| and |setcmdpos()|.

getcmdpos() *getcmdpos()*
Return the position of the cursor in the command line as a
byte count. The first column is 1.
Only works when editing the command line, thus requires use of
|c_CTRL-\_e| or |c_CTRL-R_=|. Returns 0 otherwise.
Also see |setcmdpos()| and |getcmdline()|.

*getcwd()*
getcwd() The result is a String, which is the name of the current
working directory.

getfsize({fname}) *getfsize()*
The result is a Number, which is the size in bytes of the
given file {fname}.
If {fname} is a directory, 0 is returned.
If the file {fname} can't be found, -1 is returned.

getfontname([{name}]) *getfontname()*
Without an argument returns the name of the normal font being
used. Like what is used for the Normal highlight group
|hl-Normal|.
With an argument a check is done whether {name} is a valid
font name. If not then an empty string is returned.
Otherwise the actual font name is returned, or {name} if the
GUI does not support obtaining the real name.
Only works when the GUI is running, thus not you your vimrc or
Note that the GTK 2 GUI accepts any font name, thus checking
for a valid name does not work.
gvimrc file. Use the |GUIEnter| autocommand to use this
function just after the GUI has started.

getfperm({fname}) *getfperm()*
The result is a String, which is the read, write, and execute
permissions of the given file {fname}.
If {fname} does not exist or its directory cannot be read, an
empty string is returned.
The result is of the form "rwxrwxrwx", where each group of
"rwx" flags represent, in turn, the permissions of the owner
of the file, the group the file belongs to, and other users.
If a user does not have a given permission the flag for this
is replaced with the string "-". Example: >
:echo getfperm("/etc/passwd")
< This will hopefully (from a security point of view) display
the string "rw-r--r--" or even "rw-------".
  
getftime({fname}) *getftime()*
The result is a Number, which is the last modification time of
the given file {fname}. The value is measured as seconds
since 1st Jan 1970, and may be passed to strftime(). See also
|localtime()| and |strftime()|.
If the file {fname} can't be found -1 is returned.

getftype({fname}) *getftype()*
The result is a String, which is a description of the kind of
file of the given file {fname}.
If {fname} does not exist an empty string is returned.
Here is a table over different kinds of files and their
results:
Normal file "file"
Directory "dir"
Symbolic link "link"
Block device "bdev"
Character device "cdev"
Socket "socket"
FIFO "fifo"
All other "other"
Example: >
getftype("/home")
< Note that a type such as "link" will only be returned on
systems that support it. On some systems only "dir" and
"file" are returned.

*getline()*
getline({lnum} [, {end}])
Without {end} the result is a String, which is line {lnum}
from the current buffer. Example: >
getline(1)
< When {lnum} is a String that doesn't start with a
digit, line() is called to translate the String into a Number.
To get the line under the cursor: >
getline(".")
< When {lnum} is smaller than 1 or bigger than the number of
lines in the buffer, an empty string is returned.

When {end} is given the result is a List where each item is a
line from the current buffer in the range {lnum} to {end},
including line {end}.
{end} is used in the same way as {lnum}.
Non-existing lines are silently omitted.
When {end} is before {lnum} an error is given.
Example: >
:let start = line('.')
:let end = search("^$") - 1
:let lines = getline(start, end)


getreg([{regname}]) *getreg()*
The result is a String, which is the contents of register
{regname}. Example: >
:let cliptext = getreg('*')
< getreg('=') returns the last evaluated value of the expression
register. (For use in maps).
If {regname} is not specified, |v:register| is used.


getregtype([{regname}]) *getregtype()*
The result is a String, which is type of register {regname}.
The value will be one of:
"v" for |characterwise| text
"V" for |linewise| text
"<CTRL-V>{width}" for |blockwise-visual| text
0 for an empty or unknown register
<CTRL-V> is one character with value 0x16.
If {regname} is not specified, |v:register| is used.


*getwinposx()*
getwinposx() The result is a Number, which is the X coordinate in pixels of
the left hand side of the GUI Vim window. The result will be
-1 if the information is not available.

*getwinposy()*
getwinposy() The result is a Number, which is the Y coordinate in pixels of
the top of the GUI Vim window. The result will be -1 if the
information is not available.

getwinvar({nr}, {varname}) *getwinvar()*
The result is the value of option or local window variable
{varname} in window {nr}.
This also works for a global or local buffer option, but it
doesn't work for a global or local buffer variable.
Note that the name without "w:" must be used.
Examples: >
:let list_is_on = getwinvar(2, '&list')
:echo "myvar = " . getwinvar(1, 'myvar')
<
*glob()*
glob({expr}) Expand the file wildcards in {expr}. The result is a String.
When there are several matches, they are separated by <NL>
characters.
If the expansion fails, the result is an empty string.
A name for a non-existing file is not included.

For most systems backticks can be used to get files names from
any external command. Example: >
:let tagfiles = glob("`find . -name tags -print`")
:let &tags = substitute(tagfiles, "\n", ",", "g")
< The result of the program inside the backticks should be one
item per line. Spaces inside an item are allowed.

See |expand()| for expanding special Vim variables. See
|system()| for getting the raw output of an external command.

globpath({path}, {expr}) *globpath()*
Perform glob() on all directories in {path} and concatenate
the results. Example: >
:echo globpath(&rtp, "syntax/c.vim")
< {path} is a comma-separated list of directory names. Each
directory name is prepended to {expr} and expanded like with
glob(). A path separator is inserted when needed.
To add a comma inside a directory name escape it with a
backslash. Note that on MS-Windows a directory may have a
trailing backslash, remove it if you put a comma after it.
If the expansion fails for one of the directories, there is no
error message.
The 'wildignore' option applies: Names matching one of the
patterns in 'wildignore' will be skipped.

*has()*
has({feature}) The result is a Number, which is 1 if the feature {feature} is
supported, zero otherwise. The {feature} argument is a
string. See |feature-list| below.
Also see |exists()|.


has_key({dict}, {key}) *has_key()*
The result is a Number, which is 1 if Dictionary {dict} has an
entry with key {key}. Zero otherwise.


hasmapto({what} [, {mode}]) *hasmapto()*
The result is a Number, which is 1 if there is a mapping that
contains {what} in somewhere in the rhs (what it is mapped to)
and this mapping exists in one of the modes indicated by
{mode}.
Both the global mappings and the mappings local to the current
buffer are checked for a match.
If no matching mapping is found 0 is returned.
The following characters are recognized in {mode}:
n Normal mode
v Visual mode
o Operator-pending mode
i Insert mode
l Language-Argument ("r", "f", "t", etc.)
c Command-line mode
When {mode} is omitted, "nvo" is used.

This function is useful to check if a mapping already exists
to a function in a Vim script. Example: >
:if !hasmapto('\ABCdoit')
: map <Leader>d \ABCdoit
:endif
< This installs the mapping to "\ABCdoit" only if there isn't
already a mapping to "\ABCdoit".

histadd({history}, {item}) *histadd()*
Add the String {item} to the history {history} which can be
one of: *hist-names*
"cmd" or ":" command line history
"search" or "/" search pattern history
"expr" or "=" typed expression history
"input" or "@" input line history
If {item} does already exist in the history, it will be
shifted to become the newest entry.
The result is a Number: 1 if the operation was successful,
otherwise 0 is returned.

Example: >
:call histadd("input", strftime("%Y %b %d"))
:let date=input("Enter date: ")
< This function is not available in the |sandbox|.

histdel({history} [, {item}]) *histdel()*
Clear {history}, ie. delete all its entries. See |hist-names|
for the possible values of {history}.

If the parameter {item} is given as String, this is seen
as regular expression. All entries matching that expression
will be removed from the history (if there are any).
Upper/lowercase must match, unless "\c" is used |/\c|.
If {item} is a Number, it will be interpreted as index, see
|:history-indexing|. The respective entry will be removed
if it exists.

The result is a Number: 1 for a successful operation,
otherwise 0 is returned.

Examples:
Clear expression register history: >
:call histdel("expr")
<
Remove all entries starting with "*" from the search history: >
:call histdel("/", '^\*')
<
The following three are equivalent: >
:call histdel("search", histnr("search"))
:call histdel("search", -1)
:call histdel("search", '^'.histget("search", -1).'$')
<
To delete the last search pattern and use the last-but-one for
the "n" command and 'hlsearch': >
:call histdel("search", -1)
:let @/ = histget("search", -1)

histget({history} [, {index}]) *histget()*
The result is a String, the entry with Number {index} from
{history}. See |hist-names| for the possible values of
{history}, and |:history-indexing| for {index}. If there is
no such entry, an empty String is returned. When {index} is
omitted, the most recent item from the history is used.

Examples:
Redo the second last search from history. >
:execute '/' . histget("search", -2)

< Define an Ex command ":H {num}" that supports re-execution of
the {num}th entry from the output of |:history|. >
:command -nargs=1 H execute histget("cmd", 0+<args>)
<
histnr({history}) *histnr()*
The result is the Number of the current entry in {history}.
See |hist-names| for the possible values of {history}.
If an error occurred, -1 is returned.

Example: >
:let inp_index = histnr("expr")
<
hlexists({name}) *hlexists()*
The result is a Number, which is non-zero if a highlight group
called {name} exists. This is when the group has been
defined in some way. Not necessarily when highlighting has
been defined for it, it may also have been used for a syntax
item.
*highlight_exists()*
Obsolete name: highlight_exists().

*hlID()*
hlID({name}) The result is a Number, which is the ID of the highlight group
with name {name}. When the highlight group doesn't exist,
zero is returned.
This can be used to retrieve information about the highlight
group. For example, to get the background color of the
"Comment" group: >
:echo synIDattr(synIDtrans(hlID("Comment")), "bg")
< *highlightID()*
Obsolete name: highlightID().

hostname() *hostname()*
The result is a String, which is the name of the machine on
which Vim is currently running. Machine names greater than
256 characters long are truncated.

iconv({expr}, {from}, {to}) *iconv()*
The result is a String, which is the text {expr} converted
from encoding {from} to encoding {to}.
When the conversion fails an empty string is returned.
The encoding names are whatever the iconv() library function
can accept, see ":!man 3 iconv".
Most conversions require Vim to be compiled with the |+iconv|
feature. Otherwise only UTF-8 to latin1 conversion and back
can be done.
This can be used to display messages with special characters,
no matter what 'encoding' is set to. Write the message in
UTF-8 and use: >
echo iconv(utf8_str, "utf-8", &enc)
< Note that Vim uses UTF-8 for all Unicode encodings, conversion
from/to UCS-2 is automatically changed to use UTF-8. You
cannot use UCS-2 in a string anyway, because of the NUL bytes.
{only available when compiled with the +multi_byte feature}

*indent()*
indent({lnum}) The result is a Number, which is indent of line {lnum} in the
current buffer. The indent is counted in spaces, the value
of 'tabstop' is relevant. {lnum} is used just like in
|getline()|.
When {lnum} is invalid -1 is returned.


index({list}, {expr} [, {start} [, {ic}]]) *index()*
Return the lowest index in List {list} where the item has a
value equal to {expr}.
If {start} is given then skip items with a lower index.
When {ic} is given and it is non-zero, ignore case. Otherwise
case must match.
-1 is returned when {expr} is not found in {list}.
Example: >
:let idx = index(words, "the")
:if index(numbers, 123) >= 0


input({prompt} [, {text}]) *input()*
The result is a String, which is whatever the user typed on
the command-line. The parameter is either a prompt string, or
a blank string (for no prompt). A '\n' can be used in the
prompt to start a new line. The highlighting set with
|:echohl| is used for the prompt. The input is entered just
like a command-line, with the same editing commands and
mappings. There is a separate history for lines typed for
input().
If the optional {text} is present, this is used for the
default reply, as if the user typed this.
NOTE: This must not be used in a startup file, for the
versions that only run in GUI mode (e.g., the Win32 GUI).
Note: When input() is called from within a mapping it will
consume remaining characters from that mapping, because a
mapping is handled like the characters were typed.
Use |inputsave()| before input() and |inputrestore()|
after input() to avoid that. Another solution is to avoid
that further characters follow in the mapping, e.g., by using
|:execute| or |:normal|.

Example: >
:if input("Coffee or beer? ") == "beer"
: echo "Cheers!"
:endif
< Example with default text: >
:let color = input("Color? ", "white")
< Example with a mapping: >
:nmap \x :call GetFoo()<CR>:exe "/" . Foo<CR>
:function GetFoo()
: call inputsave()
: let g:Foo = input("enter search pattern: ")
: call inputrestore()
:endfunction

inputdialog({prompt} [, {text} [, {cancelreturn}]]) *inputdialog()*
Like input(), but when the GUI is running and text dialogs are
supported, a dialog window pops up to input the text.
Example: >
:let n = inputdialog("value for shiftwidth", &sw)
:if n != ""
: let &sw = n
:endif
< When the dialog is cancelled {cancelreturn} is returned. When
omitted an empty string is returned.
Hitting <Enter> works like pressing the OK button. Hitting
<Esc> works like pressing the Cancel button.

inputrestore() *inputrestore()*
Restore typeahead that was saved with a previous inputsave().
Should be called the same number of times inputsave() is
called. Calling it more often is harmless though.
Returns 1 when there is nothing to restore, 0 otherwise.

inputsave() *inputsave()*
Preserve typeahead (also from mappings) and clear it, so that
a following prompt gets input from the user. Should be
followed by a matching inputrestore() after the prompt. Can
be used several times, in which case there must be just as
many inputrestore() calls.
Returns 1 when out of memory, 0 otherwise.

inputsecret({prompt} [, {text}]) *inputsecret()*
This function acts much like the |input()| function with but
two exceptions:
a) the user's response will be displayed as a sequence of
asterisks ("*") thereby keeping the entry secret, and
b) the user's response will not be recorded on the input
|history| stack.
The result is a String, which is whatever the user actually
typed on the command-line in response to the issued prompt.

insert({list}, {item} [, {idx}]) *insert()*
Insert {item} at the start of List {list}.
If {idx} is specified insert {item} before the item with index
{idx}. If {idx} is zero it goes before the first item, just
like omitting {idx}. A negative {idx} is also possible, see
|list-index|. -1 inserts just before the last item.
Returns the resulting List. Examples: >
:let mylist = insert([2, 3, 5], 1)
:call insert(mylist, 4, -1)
:call insert(mylist, 6, len(mylist))
< The last example can be done simpler with |add()|.
Note that when {item} is a List it is inserted as a single
item. Use |extend()| to concatenate Lists.

isdirectory({directory}) *isdirectory()*
The result is a Number, which is non-zero when a directory
with the name {directory} exists. If {directory} doesn't
exist, or isn't a directory, the result is FALSE. {directory}
is any expression, which is used as a String.

islocked({expr}) *islocked()*
The result is a Number, which is non-zero when {expr} is the
name of a locked variable.
{expr} must be the name of a variable, List item or Dictionary
entry, not the variable itself! Example: >
:let alist = [0, ['a', 'b'], 2, 3]
:lockvar 1 alist
:echo islocked('alist') " 1
:echo islocked('alist[1]') " 0

< When {expr} is a variable that does not exist you get an error
message. Use |exists()| to check for existance.

items({dict}) *items()*
Return a List with all the key-value pairs of {dict}. Each
List item is a list with two items: the key of a {dict} entry
and the value of this entry. The List is in arbitrary order.


join({list} [, {sep}]) *join()*
Join the items in {list} together into one String.
When {sep} is specified it is put in between the items. If
{sep} is omitted a single space is used.
Note that {sep} is not added at the end. You might want to
add it there too: >
let lines = join(mylist, "\n") . "\n"
< String items are used as-is. Lists and Dictionaries are
converted into a string like with |string()|.
The opposite function is |split()|.

keys({dict}) *keys()*
Return a List with all the keys of {dict}. The List is in
arbitrary order.

*len()* *E701*
len({expr}) The result is a Number, which is the length of the argument.
When {expr} is a String or a Number the length in bytes is
used, as with |strlen()|.
When {expr} is a List the number of items in the List is
returned.
When {expr} is a Dictionary the number of entries in the
Dictionary is returned.
Otherwise an error is given.

*libcall()* *E364* *E368*
libcall({libname}, {funcname}, {argument})
Call function {funcname} in the run-time library {libname}
with single argument {argument}.
This is useful to call functions in a library that you
especially made to be used with Vim. Since only one argument
is possible, calling standard library functions is rather
limited.
The result is the String returned by the function. If the
function returns NULL, this will appear as an empty string ""
to Vim.
If the function returns a number, use libcallnr()!
If {argument} is a number, it is passed to the function as an
int; if {argument} is a string, it is passed as a
null-terminated string.
This function will fail in |restricted-mode|.

libcall() allows you to write your own 'plug-in' extensions to
Vim without having to recompile the program. It is NOT a
means to call system functions! If you try to do so Vim will
very probably crash.

For Win32, the functions you write must be placed in a DLL
and use the normal C calling convention (NOT Pascal which is
used in Windows System DLLs). The function must take exactly
one parameter, either a character pointer or a long integer,
and must return a character pointer or NULL. The character
pointer returned must point to memory that will remain valid
after the function has returned (e.g. in static data in the
DLL). If it points to allocated memory, that memory will
leak away. Using a static buffer in the function should work,
it's then freed when the DLL is unloaded.

WARNING: If the function returns a non-valid pointer, Vim may
crash! This also happens if the function returns a number,
because Vim thinks it's a pointer.
For Win32 systems, {libname} should be the filename of the DLL
without the ".DLL" suffix. A full path is only required if
the DLL is not in the usual places.
For Unix: When compiling your own plugins, remember that the
object code must be compiled as position-independent ('PIC').
{only in Win32 on some Unix versions, when the |+libcall|
feature is present}
Examples: >
:echo libcall("libc.so", "getenv", "HOME")
:echo libcallnr("/usr/lib/libc.so", "getpid", "")
<
*libcallnr()*
libcallnr({libname}, {funcname}, {argument})
Just like libcall(), but used for a function that returns an
int instead of a string.
{only in Win32 on some Unix versions, when the |+libcall|
feature is present}
Example (not very useful...): >
:call libcallnr("libc.so", "printf", "Hello World!\n")
:call libcallnr("libc.so", "sleep", 10)
<
*line()*
line({expr}) The result is a Number, which is the line number of the file
position given with {expr}. The accepted positions are:
. the cursor position
$ the last line in the current buffer
'x position of mark x (if the mark is not set, 0 is
returned)
Note that only marks in the current file can be used.
Examples: >
line(".") line number of the cursor
line("'t") line number of mark t
line("'" . marker) line number of mark marker
< *last-position-jump*
This autocommand jumps to the last known position in a file
just after opening it, if the '" mark is set: >
:au BufReadPost * if line("'\"") > 0 && line("'\"") <= line("$") | exe "normal g'\"" | endif

line2byte({lnum}) *line2byte()*
Return the byte count from the start of the buffer for line
{lnum}. This includes the end-of-line character, depending on
the 'fileformat' option for the current buffer. The first
line returns 1.
This can also be used to get the byte count for the line just
below the last line: >
line2byte(line("$") + 1)
< This is the file size plus one.
When {lnum} is invalid, or the |+byte_offset| feature has been
disabled at compile time, -1 is returned.
Also see |byte2line()|, |go| and |:goto|.

lispindent({lnum}) *lispindent()*
Get the amount of indent for line {lnum} according the lisp
indenting rules, as with 'lisp'.
The indent is counted in spaces, the value of 'tabstop' is
relevant. {lnum} is used just like in |getline()|.
When {lnum} is invalid or Vim was not compiled the
|+lispindent| feature, -1 is returned.

localtime() *localtime()*
Return the current time, measured as seconds since 1st Jan
1970. See also |strftime()| and |getftime()|.


map({expr}, {string}) *map()*
{expr} must be a List or a Dictionary.
Replace each item in {expr} with the result of evaluating
{string}.
Inside {string} |v:val| has the value of the current item.
For a Dictionary |v:key| has the key of the current item.
Example: >
:call map(mylist, '"> " . v:val . " <"')
< This puts "> " before and " <" after each item in "mylist".

Note that {string} is the result of expression and is then
used as an expression again. Often it is good to use a
|literal-string| to avoid having to double backslashes.

The operation is done in-place. If you want a List or
Dictionary to remain unmodified make a copy first: >
:let tlist = map(copy(mylist), ' & . "\t"')

< Returns {expr}, the List or Dictionary that was filtered.


maparg({name}[, {mode}]) *maparg()*
Return the rhs of mapping {name} in mode {mode}. When there
is no mapping for {name}, an empty String is returned.
These characters can be used for {mode}:
"n" Normal
"v" Visual
"o" Operator-pending
"i" Insert
"c" Cmd-line
"l" langmap |language-mapping|
"" Normal, Visual and Operator-pending
When {mode} is omitted, the modes from "" are used.
The {name} can have special key names, like in the ":map"
command. The returned String has special characters
translated like in the output of the ":map" command listing.
The mappings local to the current buffer are checked first,
then the global mappings.

mapcheck({name}[, {mode}]) *mapcheck()*
Check if there is a mapping that matches with {name} in mode
{mode}. See |maparg()| for {mode} and special names in
{name}.
A match happens with a mapping that starts with {name} and
with a mapping which is equal to the start of {name}.

matches mapping "a" "ab" "abc" ~
mapcheck("a") yes yes yes
mapcheck("abc") yes yes yes
mapcheck("ax") yes no no
mapcheck("b") no no no

The difference with maparg() is that mapcheck() finds a
mapping that matches with {name}, while maparg() only finds a
mapping for {name} exactly.
When there is no mapping that starts with {name}, an empty
String is returned. If there is one, the rhs of that mapping
is returned. If there are several mappings that start with
{name}, the rhs of one of them is returned.
The mappings local to the current buffer are checked first,
then the global mappings.
This function can be used to check if a mapping can be added
without being ambiguous. Example: >
:if mapcheck("_vv") == ""
: map _vv :set guifont=7x13<CR>
:endif
< This avoids adding the "_vv" mapping when there already is a
mapping for "_v" or for "_vvv".

match({expr}, {pat}[, {start}[, {count}]]) *match()*
When {expr} is a List then this returns the index of the first
item where {pat} matches. Each item is used as a String,
Lists and Dictionaries are used as echoed.
Otherwise, {expr} is used as a String. The result is a
Number, which gives the index (byte offset) in {expr} where
{pat} matches.
A match at the first character or List item returns zero.
If there is no match -1 is returned.
Example: >
:echo match("testing", "ing") " results in 4
:echo match([1, 'x'], '\a') " results in 2
< See |string-match| for how {pat} is used.

When {count} is given use the {count}'th match. When a match
is found in a String the search for the next one starts on
character further. Thus this example results in 1: >
echo match("testing", "..", 0, 2)
< In a List the search continues in the next item.

If {start} is given, the search starts from byte index
{start} in a String or item {start} in a List.
The result, however, is still the index counted from the
first character/item. Example: >
:echo match("testing", "ing", 2)
< result is again "4". >
:echo match("testing", "ing", 4)
< result is again "4". >
:echo match("testing", "t", 2)
< result is "3".
For a String, if {start} < 0, it will be set to 0. For a list
the index is counted from the end.
If {start} is out of range (> strlen({expr} for a String or
> len({expr} for a List) -1 is returned.

See |pattern| for the patterns that are accepted.
The 'ignorecase' option is used to set the ignore-caseness of
the pattern. 'smartcase' is NOT used. The matching is always
done like 'magic' is set and 'cpoptions' is empty.

matchend({expr}, {pat}[, {start}[, {count}]]) *matchend()*
Same as match(), but return the index of first character after
the match. Example: >
:echo matchend("testing", "ing")
< results in "7".
The {start}, if given, has the same meaning as for match(). >
:echo matchend("testing", "ing", 2)
< results in "7". >
:echo matchend("testing", "ing", 5)
< result is "-1".
When {expr} is a List the result is equal to match().

matchstr({expr}, {pat}[, {start}[, {count}]]) *matchstr()*
Same as match(), but return the matched string. Example: >
:echo matchstr("testing", "ing")
< results in "ing".
When there is no match "" is returned.
The {start}, if given, has the same meaning as for match(). >
:echo matchstr("testing", "ing", 2)
< results in "ing". >
:echo matchstr("testing", "ing", 5)
< result is "".
When {expr} is a List then the matching item is returned.
The type isn't changed, it's not necessarily a String.

*max()*
max({list}) Return the maximum value of all items in {list}.
If {list} is not a list or one of the items in {list} cannot
be used as a Number this results in an error.
An empty List results in zero.

*min()*
min({list}) Return the minumum value of all items in {list}.
If {list} is not a list or one of the items in {list} cannot
be used as a Number this results in an error.
An empty List results in zero.

*mode()*
mode() Return a string that indicates the current mode:
n Normal
v Visual by character
V Visual by line
CTRL-V Visual blockwise
s Select by character
S Select by line
CTRL-S Select blockwise
i Insert
R Replace
c Command-line
r Hit-enter prompt
This is useful in the 'statusline' option. In most other
places it always returns "c" or "n".

nextnonblank({lnum}) *nextnonblank()*
Return the line number of the first line at or below {lnum}
that is not blank. Example: >
if getline(nextnonblank(1)) =~ "Java"
< When {lnum} is invalid or there is no non-blank line at or
below it, zero is returned.
See also |prevnonblank()|.

nr2char({expr}) *nr2char()*
Return a string with a single character, which has the number
value {expr}. Examples: >
nr2char(64) returns "@"
nr2char(32) returns " "
< The current 'encoding' is used. Example for "utf-8": >
nr2char(300) returns I with bow character
< Note that a NUL character in the file is specified with
nr2char(10), because NULs are represented with newline
characters. nr2char(0) is a real NUL and terminates the
string, thus results in an empty string.

prevnonblank({lnum}) *prevnonblank()*
Return the line number of the first line at or above {lnum}
that is not blank. Example: >
let ind = indent(prevnonblank(v:lnum - 1))
< When {lnum} is invalid or there is no non-blank line at or
above it, zero is returned.
Also see |nextnonblank()|.

*E726* *E727*
range({expr} [, {max} [, {stride}]]) *range()*
Returns a List with Numbers:
- If only {expr} is specified: [0, 1, ..., {expr} - 1]
- If {max} is specified: [{expr}, {expr} + 1, ..., {max}]
- If {stride} is specified: [{expr}, {expr} + {stride}, ...,
{max}] (increasing {expr} with {stride} each time, not
producing a value past {max}).
Examples: >
range(4) " [0, 1, 2, 3]
range(2, 4) " [2, 3, 4]
range(2, 9, 3) " [2, 5, 8]
range(2, -2, -1) " [2, 1, 0, -1, -2]
<
*remote_expr()* *E449*
remote_expr({server}, {string} [, {idvar}])
Send the {string} to {server}. The string is sent as an
expression and the result is returned after evaluation.
If {idvar} is present, it is taken as the name of a
variable and a {serverid} for later use with
remote_read() is stored there.
See also |clientserver| |RemoteReply|.
This function is not available in the |sandbox|.
{only available when compiled with the |+clientserver| feature}
Note: Any errors will cause a local error message to be issued
and the result will be the empty string.
Examples: >
:echo remote_expr("gvim", "2+2")
:echo remote_expr("gvim1", "b:current_syntax")
<

remote_foreground({server}) *remote_foreground()*
Move the Vim server with the name {server} to the foreground.
This works like: >
remote_expr({server}, "foreground()")
< Except that on Win32 systems the client does the work, to work
around the problem that the OS doesn't always allow the server
to bring itself to the foreground.
This function is not available in the |sandbox|.
{only in the Win32, Athena, Motif and GTK GUI versions and the
Win32 console version}


remote_peek({serverid} [, {retvar}]) *remote_peek()*
Returns a positive number if there are available strings
from {serverid}. Copies any reply string into the variable
{retvar} if specified. {retvar} must be a string with the
name of a variable.
Returns zero if none are available.
Returns -1 if something is wrong.
See also |clientserver|.
This function is not available in the |sandbox|.
{only available when compiled with the |+clientserver| feature}
Examples: >
:let repl = ""
:echo "PEEK: ".remote_peek(id, "repl").": ".repl

remote_read({serverid}) *remote_read()*
Return the oldest available reply from {serverid} and consume
it. It blocks until a reply is available.
See also |clientserver|.
This function is not available in the |sandbox|.
{only available when compiled with the |+clientserver| feature}
Example: >
:echo remote_read(id)
<
*remote_send()* *E241*
remote_send({server}, {string} [, {idvar}])
Send the {string} to {server}. The string is sent as input
keys and the function returns immediately. At the Vim server
the keys are not mapped |:map|.
If {idvar} is present, it is taken as the name of a
variable and a {serverid} for later use with
remote_read() is stored there.
See also |clientserver| |RemoteReply|.
This function is not available in the |sandbox|.
{only available when compiled with the |+clientserver| feature}
Note: Any errors will be reported in the server and may mess
up the display.
Examples: >
:echo remote_send("gvim", ":DropAndReply ".file, "serverid").
\ remote_read(serverid)

:autocmd NONE RemoteReply *
\ echo remote_read(expand("<amatch>"))
:echo remote_send("gvim", ":sleep 10 | echo ".
\ 'server2client(expand("<client>"), "HELLO")<CR>')
<
remove({list}, {idx} [, {end}]) *remove()*
Without {end}: Remove the item at {idx} from List {list} and
return it.
With {end}: Remove items from {idx} to {end} (inclusive) and
return a list with these items. When {idx} points to the same
item as {end} a list with one item is returned. When {end}
points to an item before {idx} this is an error.
See |list-index| for possible values of {idx} and {end}.
Example: >
:echo "last item: " . remove(mylist, -1)
:call remove(mylist, 0, 9)
remove({dict}, {key})
Remove the entry from {dict} with key {key}. Example: >
:echo "removed " . remove(dict, "one")
< If there is no {key} in {dict} this is an error.

Use |delete()| to remove a file.

rename({from}, {to}) *rename()*
Rename the file by the name {from} to the name {to}. This
should also work to move files across file systems. The
result is a Number, which is 0 if the file was renamed
successfully, and non-zero when the renaming failed.
This function is not available in the |sandbox|.

repeat({expr}, {count}) *repeat()*
Repeat {expr} {count} times and return the concatenated
result. Example: >
:let seperator = repeat('-', 80)
< When {count} is zero or negative the result is empty.
When {expr} is a List the result is {expr} concatenated
{count} times. Example: >
:let longlist = repeat(['a', 'b'], 3)
< Results in ['a', 'b', 'a', 'b', 'a', 'b'].


resolve({filename}) *resolve()* *E655*
On MS-Windows, when {filename} is a shortcut (a .lnk file),
returns the path the shortcut points to in a simplified form.
On Unix, repeat resolving symbolic links in all path
components of {filename} and return the simplified result.
To cope with link cycles, resolving of symbolic links is
stopped after 100 iterations.
On other systems, return the simplified {filename}.
The simplification step is done as by |simplify()|.
resolve() keeps a leading path component specifying the
current directory (provided the result is still a relative
path name) and also keeps a trailing path separator.

*reverse()*
reverse({list}) Reverse the order of items in {list} in-place. Returns
{list}.
If you want a list to remain unmodified make a copy first: >
:let revlist = reverse(copy(mylist))

search({pattern} [, {flags}]) *search()*
Search for regexp pattern {pattern}. The search starts at the
cursor position (you can use |cursor()| to set it).
{flags} is a String, which can contain these character flags:
'b' search backward instead of forward
'n' do Not move the cursor
'w' wrap around the end of the file
'W' don't wrap around the end of the file
If neither 'w' or 'W' is given, the 'wrapscan' option applies.

When a match has been found its line number is returned.
The cursor will be positioned at the match, unless the 'n'
flag is used).
If there is no match a 0 is returned and the cursor doesn't
move. No error message is given.

Example (goes over all files in the argument list): >
:let n = 1
:while n <= argc() " loop over all files in arglist
: exe "argument " . n
: " start at the last char in the file and wrap for the
: " first search to find match at start of file
: normal G$
: let flags = "w"
: while search("foo", flags) > 0
: s/foo/bar/g
: let flags = "W"
: endwhile
: update " write the file if modified
: let n = n + 1
:endwhile
<
*searchpair()*
searchpair({start}, {middle}, {end} [, {flags} [, {skip}]])
Search for the match of a nested start-end pair. This can be
used to find the "endif" that matches an "if", while other
if/endif pairs in between are ignored.
The search starts at the cursor. If a match is found, the
cursor is positioned at it and the line number is returned.
If no match is found 0 or -1 is returned and the cursor
doesn't move. No error message is given.

{start}, {middle} and {end} are patterns, see |pattern|. They
must not contain \( \) pairs. Use of \%( \) is allowed. When
{middle} is not empty, it is found when searching from either
direction, but only when not in a nested start-end pair. A
typical use is: >
searchpair('\<if\>', '\<else\>', '\<endif\>')
< By leaving {middle} empty the "else" is skipped.

{flags} are used like with |search()|. Additionally:
'n' do Not move the cursor
'r' Repeat until no more matches found; will find the
outer pair
'm' return number of Matches instead of line number with
the match; will only be > 1 when 'r' is used.

When a match for {start}, {middle} or {end} is found, the
{skip} expression is evaluated with the cursor positioned on
the start of the match. It should return non-zero if this
match is to be skipped. E.g., because it is inside a comment
or a string.
When {skip} is omitted or empty, every match is accepted.
When evaluating {skip} causes an error the search is aborted
and -1 returned.

The value of 'ignorecase' is used. 'magic' is ignored, the
patterns are used like it's on.

The search starts exactly at the cursor. A match with
{start}, {middle} or {end} at the next character, in the
direction of searching, is the first one found. Example: >
if 1
if 2
endif 2
endif 1
< When starting at the "if 2", with the cursor on the "i", and
searching forwards, the "endif 2" is found. When starting on
the character just before the "if 2", the "endif 1" will be
found. That's because the "if 2" will be found first, and
then this is considered to be a nested if/endif from "if 2" to
"endif 2".
When searching backwards and {end} is more than one character,
it may be useful to put "\zs" at the end of the pattern, so
that when the cursor is inside a match with the end it finds
the matching start.

Example, to find the "endif" command in a Vim script: >

:echo searchpair('\<if\>', '\<el\%[seif]\>', '\<en\%[dif]\>', 'W',
\ 'getline(".") =~ "^\\s*\""')

< The cursor must be at or after the "if" for which a match is
to be found. Note that single-quote strings are used to avoid
having to double the backslashes. The skip expression only
catches comments at the start of a line, not after a command.
Also, a word "en" or "if" halfway a line is considered a
match.
Another example, to search for the matching "{" of a "}": >

:echo searchpair('{', '', '}', 'bW')

< This works when the cursor is at or before the "}" for which a
match is to be found. To reject matches that syntax
highlighting recognized as strings: >

:echo searchpair('{', '', '}', 'bW',
\ 'synIDattr(synID(line("."), col("."), 0), "name") =~? "string"')
<
server2client( {clientid}, {string}) *server2client()*
Send a reply string to {clientid}. The most recent {clientid}
that sent a string can be retrieved with expand("<client>").
{only available when compiled with the |+clientserver| feature}
Note:
This id has to be stored before the next command can be
received. Ie. before returning from the received command and
before calling any commands that waits for input.
See also |clientserver|.
Example: >
:echo server2client(expand("<client>"), "HELLO")
<
serverlist() *serverlist()*
Return a list of available server names, one per line.
When there are no servers or the information is not available
an empty string is returned. See also |clientserver|.
{only available when compiled with the |+clientserver| feature}
Example: >
:echo serverlist()
<
setbufvar({expr}, {varname}, {val}) *setbufvar()*
Set option or local variable {varname} in buffer {expr} to
{val}.
This also works for a global or local window option, but it
doesn't work for a global or local window variable.
For a local window option the global value is unchanged.
For the use of {expr}, see |bufname()| above.
Note that the variable name without "b:" must be used.
Examples: >
:call setbufvar(1, "&mod", 1)
:call setbufvar("todo", "myvar", "foobar")
< This function is not available in the |sandbox|.

setcmdpos({pos}) *setcmdpos()*
Set the cursor position in the command line to byte position
{pos}. The first position is 1.
Use |getcmdpos()| to obtain the current position.
Only works while editing the command line, thus you must use
|c_CTRL-\_e|, |c_CTRL-R_=| or |c_CTRL-R_CTRL-R| with '='. For
|c_CTRL-\_e| and |c_CTRL-R_CTRL-R| with '=' the position is
set after the command line is set to the expression. For
|c_CTRL-R_=| it is set after evaluating the expression but
before inserting the resulting text.
When the number is too big the cursor is put at the end of the
line. A number smaller than one has undefined results.
Returns 0 when successful, 1 when not editing the command
line.

setline({lnum}, {line}) *setline()*
Set line {lnum} of the current buffer to {line}. If this
succeeds, 0 is returned. If this fails (most likely because
{lnum} is invalid) 1 is returned. Example: >
:call setline(5, strftime("%c"))
< Note: The '[ and '] marks are not set.

*setreg()*
setreg({regname}, {value} [,{options}])
Set the register {regname} to {value}.
If {options} contains "a" or {regname} is upper case,
then the value is appended.
{options} can also contains a register type specification:
"c" or "v" |characterwise| mode
"l" or "V" |linewise| mode
"b" or "<CTRL-V>" |blockwise-visual| mode
If a number immediately follows "b" or "<CTRL-V>" then this is
used as the width of the selection - if it is not specified
then the width of the block is set to the number of characters
in the longest line (counting a <TAB> as 1 character).

If {options} contains no register settings, then the default
is to use character mode unless {value} ends in a <NL>.
Setting the '=' register is not possible.
Returns zero for success, non-zero for failure.

Examples: >
:call setreg(v:register, @*)
:call setreg('*', @%, 'ac')
:call setreg('a', "1\n2\n3", 'b5')

< This example shows using the functions to save and restore a
register. >
:let var_a = getreg('a')
:let var_amode = getregtype('a')
....
:call setreg('a', var_a, var_amode)

< You can also change the type of a register by appending
nothing: >
:call setreg('a', '', 'al')

setwinvar({nr}, {varname}, {val}) *setwinvar()*
Set option or local variable {varname} in window {nr} to
{val}.
This also works for a global or local buffer option, but it
doesn't work for a global or local buffer variable.
For a local buffer option the global value is unchanged.
Note that the variable name without "w:" must be used.
Examples: >
:call setwinvar(1, "&list", 0)
:call setwinvar(2, "myvar", "foobar")
< This function is not available in the |sandbox|.

simplify({filename}) *simplify()*
Simplify the file name as much as possible without changing
the meaning. Shortcuts (on MS-Windows) or symbolic links (on
Unix) are not resolved. If the first path component in
{filename} designates the current directory, this will be
valid for the result as well. A trailing path separator is
not removed either.
Example: >
simplify("./dir/.././/file/") == "./file/"
< Note: The combination "dir/.." is only removed if "dir" is
a searchable directory or does not exist. On Unix, it is also
removed when "dir" is a symbolic link within the same
directory. In order to resolve all the involved symbolic
links before simplifying the path name, use |resolve()|.


sort({list} [, {func}]) *sort()* *E702*
Sort the items in {list} in-place. Returns {list}. If you
want a list to remain unmodified make a copy first: >
:let sortedlist = sort(copy(mylist))
< Uses the string representation of each item to sort on.
Numbers sort after Strings, Lists after Numbers.
When {func} is given and it is one then case is ignored.
When {func} is a Funcref or a function name, this function is
called to compare items. The function is invoked with two
items as argument and must return zero if they are equal, 1 if
the first one sorts after the second one, -1 if the first one
sorts before the second one. Example: >
func MyCompare(i1, i2)
return a:i1 == a:i2 ? 0 : a:i1 > a:i2 ? 1 : -1
endfunc
let sortedlist = sort(mylist, "MyCompare")

split({expr} [, {pattern}]) *split()*
Make a List out of {expr}. When {pattern} is omitted each
white-separated sequence of characters becomes an item.
Otherwise the string is split where {pattern} matches,
removing the matched characters. Empty strings are omitted.
Example: >
:let words = split(getline('.'), '\W\+')
< Since empty strings are not added the "\+" isn't required but
it makes the function work a bit faster.
The opposite function is |join()|.


strftime({format} [, {time}]) *strftime()*
The result is a String, which is a formatted date and time, as
specified by the {format} string. The given {time} is used,
or the current time if no time is given. The accepted
{format} depends on your system, thus this is not portable!
See the manual page of the C function strftime() for the
format. The maximum length of the result is 80 characters.
See also |localtime()| and |getftime()|.
The language can be changed with the |:language| command.
Examples: >
:echo strftime("%c") Sun Apr 27 11:49:23 1997
:echo strftime("%Y %b %d %X") 1997 Apr 27 11:53:25
:echo strftime("%y%m%d %T") 970427 11:53:55
:echo strftime("%H:%M") 11:55
:echo strftime("%c", getftime("file.c"))
Show mod time of file.c.
< Not available on all systems. To check use: >
:if exists("*strftime")

stridx({haystack}, {needle} [, {start}]) *stridx()*
The result is a Number, which gives the byte index in
{haystack} of the first occurrence of the String {needle}.
If {start} is specified, the search starts at index {start}.
This can be used to find a second match: >
:let comma1 = stridx(line, ",")
:let comma2 = stridx(line, ",", comma1 + 1)
< The search is done case-sensitive.
For pattern searches use |match()|.
-1 is returned if the {needle} does not occur in {haystack}.
See also |strridx()|.
Examples: >
:echo stridx("An Example", "Example") 3
:echo stridx("Starting point", "Start") 0
:echo stridx("Starting point", "start") -1
<
*string()*
string({expr}) Return {expr} converted to a String. If {expr} is a Number,
String or a composition of them, then the result can be parsed
back with |eval()|.
{expr} type result ~
String 'string'
Number 123
Funcref function('name')
List [item, item]
Note that in String values the ' character is doubled.

*strlen()*
strlen({expr}) The result is a Number, which is the length of the String
{expr} in bytes. If you want to count the number of
multi-byte characters use something like this: >

:let len = strlen(substitute(str, ".", "x", "g"))

< Composing characters are not counted.
If the argument is a Number it is first converted to a String.
For other types an error is given.
Also see |len()|.

strpart({src}, {start}[, {len}]) *strpart()*
The result is a String, which is part of {src}, starting from
byte {start}, with the length {len}.
When non-existing bytes are included, this doesn't result in
an error, the bytes are simply omitted.
If {len} is missing, the copy continues from {start} till the
end of the {src}. >
strpart("abcdefg", 3, 2) == "de"
strpart("abcdefg", -2, 4) == "ab"
strpart("abcdefg", 5, 4) == "fg"
strpart("abcdefg", 3) == "defg"
< Note: To get the first character, {start} must be 0. For
example, to get three bytes under and after the cursor: >
strpart(getline(line(".")), col(".") - 1, 3)
<
strridx({haystack}, {needle} [, {start}]) *strridx()*
The result is a Number, which gives the byte index in
{haystack} of the last occurrence of the String {needle}.
When {start} is specified, matches beyond this index are
ignored. This can be used to find a match before a previous
match: >
:let lastcomma = strridx(line, ",")
:let comma2 = strridx(line, ",", lastcomma - 1)
< The search is done case-sensitive.
For pattern searches use |match()|.
-1 is returned if the {needle} does not occur in {haystack}.
If the {needle} is empty the length of {haystack} is returned.
See also |stridx()|. Examples: >
:echo strridx("an angry armadillo", "an") 3
<
strtrans({expr}) *strtrans()*
The result is a String, which is {expr} with all unprintable
characters translated into printable characters |'isprint'|.
Like they are shown in a window. Example: >
echo strtrans(@a)
< This displays a newline in register a as "^@" instead of
starting a new line.

submatch({nr}) *submatch()*
Only for an expression in a |:substitute| command. Returns
the {nr}'th submatch of the matched text. When {nr} is 0
the whole matched text is returned.
Example: >
:s/\d\+/\=submatch(0) + 1/
< This finds the first number in the line and adds one to it.
A line break is included as a newline character.

substitute({expr}, {pat}, {sub}, {flags}) *substitute()*
The result is a String, which is a copy of {expr}, in which
the first match of {pat} is replaced with {sub}. This works
like the ":substitute" command (without any flags). But the
matching with {pat} is always done like the 'magic' option is
set and 'cpoptions' is empty (to make scripts portable).
See |string-match| for how {pat} is used.
And a "~" in {sub} is not replaced with the previous {sub}.
Note that some codes in {sub} have a special meaning
|sub-replace-special|. For example, to replace something with
"\n" (two characters), use "\\\\n" or '\\n'.
When {pat} does not match in {expr}, {expr} is returned
unmodified.
When {flags} is "g", all matches of {pat} in {expr} are
replaced. Otherwise {flags} should be "".
Example: >
:let &path = substitute(&path, ",\\=[^,]*$", "", "")
< This removes the last component of the 'path' option. >
:echo substitute("testing", ".*", "\\U\\0", "")
< results in "TESTING".

synID({lnum}, {col}, {trans}) *synID()*
The result is a Number, which is the syntax ID at the position
{lnum} and {col} in the current window.
The syntax ID can be used with |synIDattr()| and
|synIDtrans()| to obtain syntax information about text.
{col} is 1 for the leftmost column, {lnum} is 1 for the first
line.
When {trans} is non-zero, transparent items are reduced to the
item that they reveal. This is useful when wanting to know
the effective color. When {trans} is zero, the transparent
item is returned. This is useful when wanting to know which
syntax item is effective (e.g. inside parens).
Warning: This function can be very slow. Best speed is
obtained by going through the file in forward direction.

Example (echoes the name of the syntax item under the cursor): >
:echo synIDattr(synID(line("."), col("."), 1), "name")
<
synIDattr({synID}, {what} [, {mode}]) *synIDattr()*
The result is a String, which is the {what} attribute of
syntax ID {synID}. This can be used to obtain information
about a syntax item.
{mode} can be "gui", "cterm" or "term", to get the attributes
for that mode. When {mode} is omitted, or an invalid value is
used, the attributes for the currently active highlighting are
used (GUI, cterm or term).
Use synIDtrans() to follow linked highlight groups.
{what} result
"name" the name of the syntax item
"fg" foreground color (GUI: color name used to set
the color, cterm: color number as a string,
term: empty string)
"bg" background color (like "fg")
"fg#" like "fg", but for the GUI and the GUI is
running the name in "#RRGGBB" form
"bg#" like "fg#" for "bg"
"bold" "1" if bold
"italic" "1" if italic
"reverse" "1" if reverse
"inverse" "1" if inverse (= reverse)
"underline" "1" if underlined

Example (echoes the color of the syntax item under the
cursor): >
:echo synIDattr(synIDtrans(synID(line("."), col("."), 1)), "fg")
<
synIDtrans({synID}) *synIDtrans()*
The result is a Number, which is the translated syntax ID of
{synID}. This is the syntax group ID of what is being used to
highlight the character. Highlight links given with
":highlight link" are followed.

system({expr} [, {input}]) *system()* *E677*
Get the output of the shell command {expr}.
When {input} is given, this string is written to a file and
passed as stdin to the command. The string is written as-is,
you need to take care of using the correct line separators
yourself.
Note: newlines in {expr} may cause the command to fail. The
characters in 'shellquote' and 'shellxquote' may also cause
trouble.
This is not to be used for interactive commands.
The result is a String. Example: >

:let files = system("ls")

< To make the result more system-independent, the shell output
is filtered to replace <CR> with <NL> for Macintosh, and
<CR><NL> with <NL> for DOS-like systems.
The command executed is constructed using several options:
'shell' 'shellcmdflag' 'shellxquote' {expr} 'shellredir' {tmp} 'shellxquote'
({tmp} is an automatically generated file name).
For Unix and OS/2 braces are put around {expr} to allow for
concatenated commands.

The resulting error code can be found in |v:shell_error|.
This function will fail in |restricted-mode|.
Unlike ":!cmd" there is no automatic check for changed files.
Use |:checktime| to force a check.

tempname() *tempname()* *temp-file-name*
The result is a String, which is the name of a file that
doesn't exist. It can be used for a temporary file. The name
is different for at least 26 consecutive calls. Example: >
:let tmpfile = tempname()
:exe "redir > " . tmpfile
< For Unix, the file will be in a private directory (only
accessible by the current user) to avoid security problems
(e.g., a symlink attack or other people reading your file).
When Vim exits the directory and all files in it are deleted.
For MS-Windows forward slashes are used when the 'shellslash'
option is set or when 'shellcmdflag' starts with '-'.

tolower({expr}) *tolower()*
The result is a copy of the String given, with all uppercase
characters turned into lowercase (just like applying |gu| to
the string).

toupper({expr}) *toupper()*
The result is a copy of the String given, with all lowercase
characters turned into uppercase (just like applying |gU| to
the string).

tr({src}, {fromstr}, {tostr}) *tr()*
The result is a copy of the {src} string with all characters
which appear in {fromstr} replaced by the character in that
position in the {tostr} string. Thus the first character in
{fromstr} is translated into the first character in {tostr}
and so on. Exactly like the unix "tr" command.
This code also deals with multibyte characters properly.

Examples: >
echo tr("hello there", "ht", "HT")
< returns "Hello THere" >
echo tr("<blob>", "<>", "{}")
< returns "{blob}"

*type()*
type({expr}) The result is a Number, depending on the type of {expr}:
Number: 0
String: 1
Funcref: 2
List: 3
To avoid the magic numbers it can be used this way: >
:if type(myvar) == type(0)
:if type(myvar) == type("")
:if type(myvar) == type(function("tr"))
:if type(myvar) == type([])

values({dict}) *values()*
Return a List with all the values of {dict}. The List is in
arbitrary order.


virtcol({expr}) *virtcol()*
The result is a Number, which is the screen column of the file
position given with {expr}. That is, the last screen position
occupied by the character at that position, when the screen
would be of unlimited width. When there is a <Tab> at the
position, the returned Number will be the column at the end of
the <Tab>. For example, for a <Tab> in column 1, with 'ts'
set to 8, it returns 8.
For the byte position use |col()|.
When Virtual editing is active in the current mode, a position
beyond the end of the line can be returned. |'virtualedit'|
The accepted positions are:
. the cursor position
$ the end of the cursor line (the result is the
number of displayed characters in the cursor line
plus one)
'x position of mark x (if the mark is not set, 0 is
returned)
Note that only marks in the current file can be used.
Examples: >
  virtcol(".") with text "foo^Lbar", with cursor on the "^L", returns 5
  virtcol("$") with text "foo^Lbar", returns 9
  virtcol("'t") with text " there", with 't at 'h', returns 6
< The first column is 1. 0 is returned for an error.

visualmode([expr]) *visualmode()*
The result is a String, which describes the last Visual mode
used. Initially it returns an empty string, but once Visual
mode has been used, it returns "v", "V", or "<CTRL-V>" (a
single CTRL-V character) for character-wise, line-wise, or
block-wise Visual mode respectively.
Example: >
:exe "normal " . visualmode()
< This enters the same Visual mode as before. It is also useful
in scripts if you wish to act differently depending on the
Visual mode that was used.

If an expression is supplied that results in a non-zero number
or a non-empty string, then the Visual mode will be cleared
and the old value is returned. Note that " " and "0" are also
non-empty strings, thus cause the mode to be cleared.

*winbufnr()*
winbufnr({nr}) The result is a Number, which is the number of the buffer
associated with window {nr}. When {nr} is zero, the number of
the buffer in the current window is returned. When window
{nr} doesn't exist, -1 is returned.
Example: >
  :echo "The file in the current window is " . bufname(winbufnr(0))
<
*wincol()*
wincol() The result is a Number, which is the virtual column of the
cursor in the window. This is counting screen cells from the
left side of the window. The leftmost column is one.

winheight({nr}) *winheight()*
The result is a Number, which is the height of window {nr}.
When {nr} is zero, the height of the current window is
returned. When window {nr} doesn't exist, -1 is returned.
An existing window always has a height of zero or more.
Examples: >
  :echo "The current window has " . winheight(0) . " lines."
<
*winline()*
winline() The result is a Number, which is the screen line of the cursor
in the window. This is counting screen lines from the top of
the window. The first line is one.

*winnr()*
winnr([{arg}]) The result is a Number, which is the number of the current
window. The top window has number 1.
When the optional argument is "$", the number of the
last window is returnd (the window count).
When the optional argument is "#", the number of the last
accessed window is returned (where |CTRL-W_p| goes to).
If there is no previous window 0 is returned.
The number can be used with |CTRL-W_w| and ":wincmd w"
|:wincmd|.

*winrestcmd()*
winrestcmd() Returns a sequence of |:resize| commands that should restore
the current window sizes. Only works properly when no windows
are opened or closed and the current window is unchanged.
Example: >
:let cmd = winrestcmd()
:call MessWithWindowSizes()
:exe cmd

winwidth({nr}) *winwidth()*
The result is a Number, which is the width of window {nr}.
When {nr} is zero, the width of the current window is
returned. When window {nr} doesn't exist, -1 is returned.
An existing window always has a width of zero or more.
Examples: >
  :echo "The current window has " . winwidth(0) . " columns."
  :if winwidth(0) <= 50
  : exe "normal 50\<C-W>|"
  :endif
<

*feature-list*
There are three types of features:
1. Features that are only supported when they have been enabled when Vim
    was compiled |+feature-list|. Example: >
:if has("cindent")
2. Features that are only supported when certain conditions have been met.
    Example: >
:if has("gui_running")
< *has-patch*
3. Included patches. First check |v:version| for the version of Vim.
    Then the "patch123" feature means that patch 123 has been included for
    this version. Example (checking version 6.2.148 or later): >
:if v:version > 602 || v:version == 602 && has("patch148")

all_builtin_terms Compiled with all builtin terminals enabled.
amiga Amiga version of Vim.
arabic Compiled with Arabic support |Arabic|.
arp Compiled with ARP support (Amiga).
autocmd Compiled with autocommands support.
balloon_eval Compiled with |balloon-eval| support.
beos BeOS version of Vim.
browse Compiled with |:browse| support, and browse() will
work.
builtin_terms Compiled with some builtin terminals.
byte_offset Compiled with support for 'o' in 'statusline'
cindent Compiled with 'cindent' support.
clientserver Compiled with remote invocation support |clientserver|.
clipboard Compiled with 'clipboard' support.
cmdline_compl Compiled with |cmdline-completion| support.
cmdline_hist Compiled with |cmdline-history| support.
cmdline_info Compiled with 'showcmd' and 'ruler' support.
comments Compiled with |'comments'| support.
cryptv Compiled with encryption support |encryption|.
cscope Compiled with |cscope| support.
compatible Compiled to be very Vi compatible.
debug Compiled with "DEBUG" defined.
dialog_con Compiled with console dialog support.
dialog_gui Compiled with GUI dialog support.
diff Compiled with |vimdiff| and 'diff' support.
digraphs Compiled with support for digraphs.
dnd Compiled with support for the "~ register |quote_~|.
dos32 32 bits DOS (DJGPP) version of Vim.
dos16 16 bits DOS version of Vim.
ebcdic Compiled on a machine with ebcdic character set.
emacs_tags Compiled with support for Emacs tags.
eval Compiled with expression evaluation support. Always
true, of course!
ex_extra Compiled with extra Ex commands |+ex_extra|.
extra_search Compiled with support for |'incsearch'| and
|'hlsearch'|
farsi Compiled with Farsi support |farsi|.
file_in_path Compiled with support for |gf| and |<cfile>|
find_in_path Compiled with support for include file searches
|+find_in_path|.
fname_case Case in file names matters (for Amiga, MS-DOS, and
Windows this is not present).
folding Compiled with |folding| support.
footer Compiled with GUI footer support. |gui-footer|
fork Compiled to use fork()/exec() instead of system().
gettext Compiled with message translation |multi-lang|
gui Compiled with GUI enabled.
gui_athena Compiled with Athena GUI.
gui_beos Compiled with BeOS GUI.
gui_gtk Compiled with GTK+ GUI (any version).
gui_gtk2 Compiled with GTK+ 2 GUI (gui_gtk is also defined).
gui_kde Compiled with KDE GUI |KVim|
gui_mac Compiled with Macintosh GUI.
gui_motif Compiled with Motif GUI.
gui_photon Compiled with Photon GUI.
gui_win32 Compiled with MS Windows Win32 GUI.
gui_win32s idem, and Win32s system being used (Windows 3.1)
gui_running Vim is running in the GUI, or it will start soon.
hangul_input Compiled with Hangul input support. |hangul|
iconv Can use iconv() for conversion.
insert_expand Compiled with support for CTRL-X expansion commands in
Insert mode.
jumplist Compiled with |jumplist| support.
keymap Compiled with 'keymap' support.
langmap Compiled with 'langmap' support.
libcall Compiled with |libcall()| support.
linebreak Compiled with 'linebreak', 'breakat' and 'showbreak'
support.
lispindent Compiled with support for lisp indenting.
listcmds Compiled with commands for the buffer list |:files|
and the argument list |arglist|.
localmap Compiled with local mappings and abbr. |:map-local|
mac Macintosh version of Vim.
macunix Macintosh version of Vim, using Unix files (OS-X).
menu Compiled with support for |:menu|.
mksession Compiled with support for |:mksession|.
modify_fname Compiled with file name modifiers. |filename-modifiers|
mouse Compiled with support mouse.
mouseshape Compiled with support for 'mouseshape'.
mouse_dec Compiled with support for Dec terminal mouse.
mouse_gpm Compiled with support for gpm (Linux console mouse)
mouse_netterm Compiled with support for netterm mouse.
mouse_pterm Compiled with support for qnx pterm mouse.
mouse_xterm Compiled with support for xterm mouse.
multi_byte Compiled with support for editing Korean et al.
multi_byte_ime Compiled with support for IME input method.
multi_lang Compiled with support for multiple languages.
mzscheme Compiled with MzScheme interface |mzscheme|.
netbeans_intg Compiled with support for |netbeans|.
netbeans_enabled Compiled with support for |netbeans| and it's used.
ole Compiled with OLE automation support for Win32.
os2 OS/2 version of Vim.
osfiletype Compiled with support for osfiletypes |+osfiletype|
path_extra Compiled with up/downwards search in 'path' and 'tags'
perl Compiled with Perl interface.
postscript Compiled with PostScript file printing.
printer Compiled with |:hardcopy| support.
python Compiled with Python interface.
qnx QNX version of Vim.
quickfix Compiled with |quickfix| support.
rightleft Compiled with 'rightleft' support.
ruby Compiled with Ruby interface |ruby|.
scrollbind Compiled with 'scrollbind' support.
showcmd Compiled with 'showcmd' support.
signs Compiled with |:sign| support.
smartindent Compiled with 'smartindent' support.
sniff Compiled with SNiFF interface support.
statusline Compiled with support for 'statusline', 'rulerformat'
and special formats of 'titlestring' and 'iconstring'.
sun_workshop Compiled with support for Sun |workshop|.
syntax Compiled with syntax highlighting support.
syntax_items There are active syntax highlighting items for the
current buffer.
system Compiled to use system() instead of fork()/exec().
tag_binary Compiled with binary searching in tags files
|tag-binary-search|.
tag_old_static Compiled with support for old static tags
|tag-old-static|.
tag_any_white Compiled with support for any white characters in tags
files |tag-any-white|.
tcl Compiled with Tcl interface.
terminfo Compiled with terminfo instead of termcap.
termresponse Compiled with support for |t_RV| and |v:termresponse|.
textobjects Compiled with support for |text-objects|.
tgetent Compiled with tgetent support, able to use a termcap
or terminfo file.
title Compiled with window title support |'title'|.
toolbar Compiled with support for |gui-toolbar|.
unix Unix version of Vim.
user_commands User-defined commands.
viminfo Compiled with viminfo support.
vim_starting True while initial source'ing takes place.
vertsplit Compiled with vertically split windows |:vsplit|.
virtualedit Compiled with 'virtualedit' option.
visual Compiled with Visual mode.
visualextra Compiled with extra Visual mode commands.
|blockwise-operators|.
vms VMS version of Vim.
vreplace Compiled with |gR| and |gr| commands.
wildignore Compiled with 'wildignore' option.
wildmenu Compiled with 'wildmenu' option.
windows Compiled with support for more than one window.
winaltkeys Compiled with 'winaltkeys' option.
win16 Win16 version of Vim (MS-Windows 3.1).
win32 Win32 version of Vim (MS-Windows 95/98/ME/NT/2000/XP).
win64 Win64 version of Vim (MS-Windows 64 bit).
win32unix Win32 version of Vim, using Unix files (Cygwin)
win95 Win32 version for MS-Windows 95/98/ME.
writebackup Compiled with 'writebackup' default on.
xfontset Compiled with X fontset support |xfontset|.
xim Compiled with X input method support |xim|.
xsmp Compiled with X session management support.
xsmp_interact Compiled with interactive X session management support.
xterm_clipboard Compiled with support for xterm clipboard.
xterm_save Compiled with support for saving and restoring the
xterm screen.
x11 Compiled with X11 support.

*string-match*
Matching a pattern in a String

A regexp pattern as explained at |pattern| is normally used to find a match in
the buffer lines. When a pattern is used to find a match in a String, almost
everything works in the same way. The difference is that a String is handled
like it is one line. When it contains a "\n" character, this is not seen as a
line break for the pattern. It can be matched with a "\n" in the pattern, or
with ".". Example: >
:let a = "aaaa\nxxxx"
:echo matchstr(a, "..\n..")
aa
xx
:echo matchstr(a, "a.x")
a
x

Don't forget that "^" will only match at the first character of the String and
"$" at the last character of the string. They don't match after or before a
"\n".

==============================================================================
5. Defining functions *user-functions*

New functions can be defined. These can be called just like builtin
functions. The function executes a sequence of Ex commands. Normal mode
commands can be executed with the |:normal| command.

The function name must start with an uppercase letter, to avoid confusion with
builtin functions. To prevent from using the same name in different scripts
avoid obvious, short names. A good habit is to start the function name with
the name of the script, e.g., "HTMLcolor()".

It's also possible to use curly braces, see |curly-braces-names|.

*local-function*
A function local to a script must start with "s:". A local script function
can only be called from within the script and from functions, user commands
and autocommands defined in the script. It is also possible to call the
function from a mappings defined in the script, but then |<SID>| must be used
instead of "s:" when the mapping is expanded outside of the script.

*:fu* *:function* *E128* *E129* *E123*
:fu[nction] List all functions and their arguments.

:fu[nction] {name} List function {name}.
{name} can also be a Dictionary entry that is a
Funcref: >
:function dict.init
< *E124* *E125*
:fu[nction][!] {name}([arguments]) [range] [abort] [dict]
Define a new function by the name {name}. The name
must be made of alphanumeric characters and '_', and
must start with a capital or "s:" (see above).

{name} can also be a Dictionary entry that is a
Funcref: >
:function dict.init(arg)
< "dict" must be an existing dictionary. The entry
"init" is added if it didn't exist yet. Otherwise [!]
is required to overwrite an existing function. The
result is a |Funcref| to a numbered function. The
function can only be used with a |Funcref| and will be
deleted if there are no more references to it.
*E127* *E122*
When a function by this name already exists and [!] is
not used an error message is given. When [!] is used,
an existing function is silently replaced. Unless it
is currently being executed, that is an error.

For the {arguments} see |function-argument|.

*a:firstline* *a:lastline*
When the [range] argument is added, the function is
expected to take care of a range itself. The range is
passed as "a:firstline" and "a:lastline". If [range]
is excluded, ":{range}call" will call the function for
each line in the range, with the cursor on the start
of each line. See |function-range-example|.

When the [abort] argument is added, the function will
abort as soon as an error is detected.
The last used search pattern and the redo command "."
will not be changed by the function.

When the [dict] argument is added, the function must
be invoked through an entry in a Dictionary. The
local variable "self" will then be set to the
dictionary. See |Dictionary-function|.

*:endf* *:endfunction* *E126* *E193*
:endf[unction] The end of a function definition. Must be on a line
by its own, without other commands.

*:delf* *:delfunction* *E130* *E131*
:delf[unction] {name} Delete function {name}.
{name} can also be a Dictionary entry that is a
Funcref: >
:delfunc dict.init
< This will remove the "init" entry from "dict". The
function is deleted if there are no more references to
it.
*:retu* *:return* *E133*
:retu[rn] [expr] Return from a function. When "[expr]" is given, it is
evaluated and returned as the result of the function.
If "[expr]" is not given, the number 0 is returned.
When a function ends without an explicit ":return",
the number 0 is returned.
Note that there is no check for unreachable lines,
thus there is no warning if commands follow ":return".

If the ":return" is used after a |:try| but before the
matching |:finally| (if present), the commands
following the ":finally" up to the matching |:endtry|
are executed first. This process applies to all
nested ":try"s inside the function. The function
returns at the outermost ":endtry".

*function-argument* *a:var*
An argument can be defined by giving its name. In the function this can then
be used as "a:name" ("a:" for argument).
*a:0* *a:1* *a:000* *E740*
Up to 20 arguments can be given, separated by commas. After the named
arguments an argument "..." can be specified, which means that more arguments
may optionally be following. In the function the extra arguments can be used
as "a:1", "a:2", etc. "a:0" is set to the number of extra arguments (which
can be 0). "a:000" is set to a List that contains these arguments. Note that
"a:1" is the same as "a:000[0]".
*E742*
The a: scope and the variables in it cannot be changed, they are fixed.
However, if a List or Dictionary is used, you can changes their contents.
Thus you can pass a List to a function and have the function add an item to
it. If you want to make sure the function cannot change a List or Dictionary
use |:lockvar|.

When not using "...", the number of arguments in a function call must be equal
to the number of named arguments. When using "...", the number of arguments
may be larger.

It is also possible to define a function without any arguments. You must
still supply the () then. The body of the function follows in the next lines,
until the matching |:endfunction|. It is allowed to define another function
inside a function body.

*local-variables*
Inside a function variables can be used. These are local variables, which
will disappear when the function returns. Global variables need to be
accessed with "g:".

Example: >
  :function Table(title, ...)
  : echohl Title
  : echo a:title
  : echohl None
  : echo a:0 . " items:"
  : for s in a:000
  : echon ' ' . s
  : endfor
  :endfunction

This function can then be called with: >
  call Table("Table", "line1", "line2")
  call Table("Empty Table")

To return more than one value, pass the name of a global variable: >
  :function Compute(n1, n2, divname)
  : if a:n2 == 0
  : return "fail"
  : endif
  : let g:{a:divname} = a:n1 / a:n2
  : return "ok"
  :endfunction

This function can then be called with: >
  :let success = Compute(13, 1324, "div")
  :if success == "ok"
  : echo div
  :endif

An alternative is to return a command that can be executed. This also works
with local variables in a calling function. Example: >
  :function Foo()
  : execute Bar()
  : echo "line " . lnum . " column " . col
  :endfunction

  :function Bar()
  : return "let lnum = " . line(".") . " | let col = " . col(".")
  :endfunction

The names "lnum" and "col" could also be passed as argument to Bar(), to allow
the caller to set the names.

*:cal* *:call* *E107*
:[range]cal[l] {name}([arguments])
Call a function. The name of the function and its arguments
are as specified with |:function|. Up to 20 arguments can be
used.
Without a range and for functions that accept a range, the
function is called once. When a range is given the cursor is
positioned at the start of the first line before executing the
function.
When a range is given and the function doesn't handle it
itself, the function is executed for each line in the range,
with the cursor in the first column of that line. The cursor
is left at the last line (possibly moved by the last function
call). The arguments are re-evaluated for each line. Thus
this works:
*function-range-example* >
:function Mynumber(arg)
: echo line(".") . " " . a:arg
:endfunction
:1,5call Mynumber(getline("."))
<
The "a:firstline" and "a:lastline" are defined anyway, they
can be used to do something different at the start or end of
the range.

Example of a function that handles the range itself: >

:function Cont() range
: execute (a:firstline + 1) . "," . a:lastline . 's/^/\t\\ '
:endfunction
:4,8call Cont()
<
This function inserts the continuation character "\" in front
of all the lines in the range, except the first one.

*E132*
The recursiveness of user functions is restricted with the |'maxfuncdepth'|
option.

*autoload-functions*
When using many or large functions, it's possible to automatically define them
only when they are used. Use the FuncUndefined autocommand event with a
pattern that matches the function(s) to be defined. Example: >

:au FuncUndefined BufNet* source ~/vim/bufnetfuncs.vim

The file "~/vim/bufnetfuncs.vim" should then define functions that start with
"BufNet". Also see |FuncUndefined|.

==============================================================================
6. Curly braces names *curly-braces-names*

Wherever you can use a variable, you can use a "curly braces name" variable.
This is a regular variable name with one or more expressions wrapped in braces
{} like this: >
my_{adjective}_variable

When Vim encounters this, it evaluates the expression inside the braces, puts
that in place of the expression, and re-interprets the whole as a variable
name. So in the above example, if the variable "adjective" was set to
"noisy", then the reference would be to "my_noisy_variable", whereas if
"adjective" was set to "quiet", then it would be to "my_quiet_variable".

One application for this is to create a set of variables governed by an option
value. For example, the statement >
echo my_{&background}_message

would output the contents of "my_dark_message" or "my_light_message" depending
on the current value of 'background'.

You can use multiple brace pairs: >
echo my_{adverb}_{adjective}_message
..or even nest them: >
echo my_{ad{end_of_word}}_message
where "end_of_word" is either "verb" or "jective".

However, the expression inside the braces must evaluate to a valid single
variable name. e.g. this is invalid: >
:let foo='a + b'
:echo c{foo}d
.. since the result of expansion is "ca + bd", which is not a variable name.

*curly-braces-function-names*
You can call and define functions by an evaluated name in a similar way.
Example: >
:let func_end='whizz'
:call my_func_{func_end}(parameter)

This would call the function "my_func_whizz(parameter)".

==============================================================================
7. Commands *expression-commands*

:let {var-name} = {expr1} *:let* *E18*
Set internal variable {var-name} to the result of the
expression {expr1}. The variable will get the type
from the {expr}. If {var-name} didn't exist yet, it
is created.

:let {var-name}[{idx}] = {expr1} *E689*
Set a list item to the result of the expression
{expr1}. {var-name} must refer to a list and {idx}
must be a valid index in that list. For nested list
the index can be repeated.
This cannot be used to add an item to a list.

*E711* *E719*
:let {var-name}[{idx1}:{idx2}] = {expr1} *E708* *E709* *E710*
Set a sequence of items in a List to the result of the
expression {expr1}, which must be a list with the
correct number of items.
{idx1} can be omitted, zero is used instead.
{idx2} can be omitted, meaning the end of the list.
When the selected range of items is partly past the
end of the list, items will be added.

*:let+=* *:let-=* *:let.=*
:let {var} += {expr1} Like ":let {var} = {var} + {expr1}".
:let {var} -= {expr1} Like ":let {var} = {var} - {expr1}".
:let {var} .= {expr1} Like ":let {var} = {var} . {expr1}".
These fail if {var} was not set yet and when the type
of {var} and {expr1} don't fit the operator.


:let ${env-name} = {expr1} *:let-environment* *:let-$*
Set environment variable {env-name} to the result of
the expression {expr1}. The type is always String.
:let ${env-name} .= {expr1}
Append {expr1} to the environment variable {env-name}.
If the environment variable didn't exist yet this
works like "=".

:let @{reg-name} = {expr1} *:let-register* *:let-@*
Write the result of the expression {expr1} in register
{reg-name}. {reg-name} must be a single letter, and
must be the name of a writable register (see
|registers|). "@@" can be used for the unnamed
register, "@/" for the search pattern.
If the result of {expr1} ends in a <CR> or <NL>, the
register will be linewise, otherwise it will be set to
characterwise.
This can be used to clear the last search pattern: >
:let @/ = ""
< This is different from searching for an empty string,
that would match everywhere.

:let @{reg-name} .= {expr1}
Append {expr1} to register {reg-name}. If the
register was empty it's like setting it to {expr1}.

:let &{option-name} = {expr1} *:let-option* *:let-star*
Set option {option-name} to the result of the
expression {expr1}. A String or Number value is
always converted to the type of the option.
For an option local to a window or buffer the effect
is just like using the |:set| command: both the local
value and the global value is changed.
Example: >
:let &path = &path . ',/usr/local/include'

:let &{option-name} .= {expr1}
For a string option: Append {expr1} to the value.
Does not insert a comma like |:set+=|.

:let &{option-name} += {expr1}
:let &{option-name} -= {expr1}
For a number or boolean option: Add or subtract
{expr1}.

:let &l:{option-name} = {expr1}
:let &l:{option-name} .= {expr1}
:let &l:{option-name} += {expr1}
:let &l:{option-name} -= {expr1}
Like above, but only set the local value of an option
(if there is one). Works like |:setlocal|.

:let &g:{option-name} = {expr1}
:let &g:{option-name} .= {expr1}
:let &g:{option-name} += {expr1}
:let &g:{option-name} -= {expr1}
Like above, but only set the global value of an option
(if there is one). Works like |:setglobal|.

:let [{name1}, {name2}, ...] = {expr1} *:let-unpack* *E687* *E688*
{expr1} must evaluate to a List. The first item in
the list is assigned to {name1}, the second item to
{name2}, etc.
The number of names must match the number of items in
the List.
Each name can be one of the items of the ":let"
command as mentioned above.
Example: >
:let [s, item] = GetItem(s)
< Detail: {expr1} is evaluated first, then the
assignments are done in sequence. This matters if
{name2} depends on {name1}. Example: >
:let x = [0, 1]
:let i = 0
:let [i, x[i]] = [1, 2]
:echo x
< The result is [0, 2].

:let [{name1}, {name2}, ...] .= {expr1}
:let [{name1}, {name2}, ...] += {expr1}
:let [{name1}, {name2}, ...] -= {expr1}
Like above, but append/add/subtract the value for each
List item.

:let [{name}, ..., ; {lastname}] = {expr1}
Like |:let-unpack| above, but the List may have more
items than there are names. A list of the remaining
items is assigned to {lastname}. If there are no
remaining items {lastname} is set to an empty list.
Example: >
:let [a, b; rest] = ["aval", "bval", 3, 4]
<
:let [{name}, ..., ; {lastname}] .= {expr1}
:let [{name}, ..., ; {lastname}] += {expr1}
:let [{name}, ..., ; {lastname}] -= {expr1}
Like above, but append/add/subtract the value for each
List item.
*E106*
:let {var-name} .. List the value of variable {var-name}. Multiple
variable names may be given. Special names recognized
here: *E738*
g: global variables.
b: local buffer variables.
w: local window variables.
v: Vim variables.

:let List the values of all variables. The type of the
variable is indicated before the value:
<nothing> String
# Number
* Funcref


:unl[et][!] {name} ... *:unlet* *:unl* *E108*
Remove the internal variable {name}. Several variable
names can be given, they are all removed. The name
may also be a List or Dictionary item.
With [!] no error message is given for non-existing
variables.
One or more items from a List can be removed: >
:unlet list[3] " remove fourth item
:unlet list[3:] " remove fourth item to last
< One item from a Dictionary can be removed at a time: >
:unlet dict['two']
:unlet dict.two

:lockv[ar][!] [depth] {name} ... *:lockvar* *:lockv*
Lock the internal variable {name}. Locking means that
it can no longer be changed (until it is unlocked).
A locked variable can be deleted: >
:lockvar v
:let v = 'asdf' " fails!
:unlet v
< *E741*
If you try to change a locked variable you get an
error message: "E741: Value of {name} is locked"

[depth] is relevant when locking a List or Dictionary.
It specifies how deep the locking goes:
1 Lock the List or Dictionary itself,
cannot add or remove items, but can
still change their values.
2 Also lock the values, cannot change
the items. If an item is a List or
Dictionary, cannot add or remove
items, but can still change the
values.
3 Like 2 but for the List/Dictionary in
the List/Dictionary, one level deeper.
The default [depth] is 2, thus when {name} is a List
or Dictionary the values cannot be changed.
*E743*
For unlimited depth use [!] and omit [depth].
However, there is a maximum depth of 100 to catch
loops.

Note that when two variables refer to the same List
and you lock one of them, the List will also be locked
when used through the other variable. Example: >
:let l = [0, 1, 2, 3]
:let cl = l
:lockvar l
:let cl[1] = 99 " won't work!
< You may want to make a copy of a list to avoid this.
See |deepcopy()|.


:unlo[ckvar][!] [depth] {name} ... *:unlockvar* *:unlo*
Unlock the internal variable {name}. Does the
opposite of |:lockvar|.


:if {expr1} *:if* *:endif* *:en* *E171* *E579* *E580*
:en[dif] Execute the commands until the next matching ":else"
or ":endif" if {expr1} evaluates to non-zero.

From Vim version 4.5 until 5.0, every Ex command in
between the ":if" and ":endif" is ignored. These two
commands were just to allow for future expansions in a
backwards compatible way. Nesting was allowed. Note
that any ":else" or ":elseif" was ignored, the "else"
part was not executed either.

You can use this to remain compatible with older
versions: >
:if version >= 500
: version-5-specific-commands
:endif
< The commands still need to be parsed to find the
"endif". Sometimes an older Vim has a problem with a
new command. For example, ":silent" is recognized as
a ":substitute" command. In that case ":execute" can
avoid problems: >
:if version >= 600
: execute "silent 1,$delete"
:endif
<
NOTE: The ":append" and ":insert" commands don't work
properly in between ":if" and ":endif".

*:else* *:el* *E581* *E583*
:el[se] Execute the commands until the next matching ":else"
or ":endif" if they previously were not being
executed.

*:elseif* *:elsei* *E582* *E584*
:elsei[f] {expr1} Short for ":else" ":if", with the addition that there
is no extra ":endif".

:wh[ile] {expr1} *:while* *:endwhile* *:wh* *:endw*
*E170* *E585* *E588* *E733*
:endw[hile] Repeat the commands between ":while" and ":endwhile",
as long as {expr1} evaluates to non-zero.
When an error is detected from a command inside the
loop, execution continues after the "endwhile".
Example: >
:let lnum = 1
:while lnum <= line("$")
:call FixLine(lnum)
:let lnum = lnum + 1
:endwhile
<
NOTE: The ":append" and ":insert" commands don't work
properly inside a ":while" and ":for" loop.

:for {var} in {list} *:for* *E690* *E732*
:endfo[r] *:endfo* *:endfor*
Repeat the commands between ":for" and ":endfor" for
each item in {list}. variable {var} is set to the
value of each item.
When an error is detected for a command inside the
loop, execution continues after the "endfor".
Changing {list} affects what items are used. Make a
copy if this is unwanted: >
:for item in copy(mylist)
< When not making a copy, Vim stores a reference to the
next item in the list, before executing the commands
with the current item. Thus the current item can be
removed without effect. Removing any later item means
it will not be found. Thus the following example
works (an inefficient way to make a list empty): >
:for item in mylist
:call remove(mylist, 0)
:endfor
< Note that reordering the list (e.g., with sort() or
reverse()) may have unexpected effects.
Note that the type of each list item should be
identical to avoid errors for the type of {var}
changing. Unlet the variable at the end of the loop
to allow multiple item types.

:for {var} in {string}
:endfo[r] Like ":for" above, but use each character in {string}
as a list item.
Composing characters are used as separate characters.
A Number is first converted to a String.

:for [{var1}, {var2}, ...] in {listlist}
:endfo[r]
Like ":for" above, but each item in {listlist} must be
a list, of which each item is assigned to {var1},
{var2}, etc. Example: >
:for [lnum, col] in [[1, 3], [2, 5], [3, 8]]
:echo getline(lnum)[col]
:endfor
<
*:continue* *:con* *E586*
:con[tinue] When used inside a ":while" or ":for" loop, jumps back
to the start of the loop.
If it is used after a |:try| inside the loop but
before the matching |:finally| (if present), the
commands following the ":finally" up to the matching
|:endtry| are executed first. This process applies to
all nested ":try"s inside the loop. The outermost
":endtry" then jumps back to the start of the loop.

*:break* *:brea* *E587*
:brea[k] When used inside a ":while" or ":for" loop, skips to
the command after the matching ":endwhile" or
":endfor".
If it is used after a |:try| inside the loop but
before the matching |:finally| (if present), the
commands following the ":finally" up to the matching
|:endtry| are executed first. This process applies to
all nested ":try"s inside the loop. The outermost
":endtry" then jumps to the command after the loop.

:try *:try* *:endt* *:endtry* *E600* *E601* *E602*
:endt[ry] Change the error handling for the commands between
":try" and ":endtry" including everything being
executed across ":source" commands, function calls,
or autocommand invocations.

When an error or interrupt is detected and there is
a |:finally| command following, execution continues
after the ":finally". Otherwise, or when the
":endtry" is reached thereafter, the next
(dynamically) surrounding ":try" is checked for
a corresponding ":finally" etc. Then the script
processing is terminated. (Whether a function
definition has an "abort" argument does not matter.)
Example: >
:try | edit too much | finally | echo "cleanup" | endtry
:echo "impossible" " not reached, script terminated above
<
Moreover, an error or interrupt (dynamically) inside
":try" and ":endtry" is converted to an exception. It
can be caught as if it were thrown by a |:throw|
command (see |:catch|). In this case, the script
processing is not terminated.

The value "Vim:Interrupt" is used for an interrupt
exception. An error in a Vim command is converted
to a value of the form "Vim({command}):{errmsg}",
other errors are converted to a value of the form
"Vim:{errmsg}". {command} is the full command name,
and {errmsg} is the message that is displayed if the
error exception is not caught, always beginning with
the error number.
Examples: >
:try | sleep 100 | catch /^Vim:Interrupt$/ | endtry
:try | edit | catch /^Vim(edit):E\d\+/ | echo "error" | endtry
<
*:cat* *:catch* *E603* *E604* *E605*
:cat[ch] /{pattern}/ The following commands until the next ":catch",
|:finally|, or |:endtry| that belongs to the same
|:try| as the ":catch" are executed when an exception
matching {pattern} is being thrown and has not yet
been caught by a previous ":catch". Otherwise, these
commands are skipped.
When {pattern} is omitted all errors are caught.
Examples: >
:catch /^Vim:Interrupt$/ " catch interrupts (CTRL-C)
:catch /^Vim\%((\a\+)\)\=:E/ " catch all Vim errors
:catch /^Vim\%((\a\+)\)\=:/ " catch errors and interrupts
:catch /^Vim(write):/ " catch all errors in :write
:catch /^Vim\%((\a\+)\)\=:E123/ " catch error E123
:catch /my-exception/ " catch user exception
:catch /.*/ " catch everything
:catch " same as /.*/
<
Another character can be used instead of / around the
{pattern}, so long as it does not have a special
meaning (e.g., '|' or '"') and doesn't occur inside
{pattern}.
NOTE: It is not reliable to ":catch" the TEXT of
an error message because it may vary in different
locales.

*:fina* *:finally* *E606* *E607*
:fina[lly] The following commands until the matching |:endtry|
are executed whenever the part between the matching
|:try| and the ":finally" is left: either by falling
through to the ":finally" or by a |:continue|,
|:break|, |:finish|, or |:return|, or by an error or
interrupt or exception (see |:throw|).

*:th* *:throw* *E608*
:th[row] {expr1} The {expr1} is evaluated and thrown as an exception.
If the ":throw" is used after a |:try| but before the
first corresponding |:catch|, commands are skipped
until the first ":catch" matching {expr1} is reached.
If there is no such ":catch" or if the ":throw" is
used after a ":catch" but before the |:finally|, the
commands following the ":finally" (if present) up to
the matching |:endtry| are executed. If the ":throw"
is after the ":finally", commands up to the ":endtry"
are skipped. At the ":endtry", this process applies
again for the next dynamically surrounding ":try"
(which may be found in a calling function or sourcing
script), until a matching ":catch" has been found.
If the exception is not caught, the command processing
is terminated.
Example: >
:try | throw "oops" | catch /^oo/ | echo "caught" | endtry
<

*:ec* *:echo*
:ec[ho] {expr1} .. Echoes each {expr1}, with a space in between. The
first {expr1} starts on a new line.
Also see |:comment|.
Use "\n" to start a new line. Use "\r" to move the
cursor to the first column.
Uses the highlighting set by the |:echohl| command.
Cannot be followed by a comment.
Example: >
:echo "the value of 'shell' is" &shell
< A later redraw may make the message disappear again.
To avoid that a command from before the ":echo" causes
a redraw afterwards (redraws are often postponed until
you type something), force a redraw with the |:redraw|
command. Example: >
:new | redraw | echo "there is a new window"
<
*:echon*
:echon {expr1} .. Echoes each {expr1}, without anything added. Also see
|:comment|.
Uses the highlighting set by the |:echohl| command.
Cannot be followed by a comment.
Example: >
:echon "the value of 'shell' is " &shell
<
Note the difference between using ":echo", which is a
Vim command, and ":!echo", which is an external shell
command: >
:!echo % --> filename
< The arguments of ":!" are expanded, see |:_%|. >
:!echo "%" --> filename or "filename"
< Like the previous example. Whether you see the double
quotes or not depends on your 'shell'. >
:echo % --> nothing
< The '%' is an illegal character in an expression. >
:echo "%" --> %
< This just echoes the '%' character. >
:echo expand("%") --> filename
< This calls the expand() function to expand the '%'.

*:echoh* *:echohl*
:echoh[l] {name} Use the highlight group {name} for the following
|:echo|, |:echon| and |:echomsg| commands. Also used
for the |input()| prompt. Example: >
:echohl WarningMsg | echo "Don't panic!" | echohl None
< Don't forget to set the group back to "None",
otherwise all following echo's will be highlighted.

*:echom* *:echomsg*
:echom[sg] {expr1} .. Echo the expression(s) as a true message, saving the
message in the |message-history|.
Spaces are placed between the arguments as with the
|:echo| command. But unprintable characters are
displayed, not interpreted.
Uses the highlighting set by the |:echohl| command.
Example: >
:echomsg "It's a Zizzer Zazzer Zuzz, as you can plainly see."
<
*:echoe* *:echoerr*
:echoe[rr] {expr1} .. Echo the expression(s) as an error message, saving the
message in the |message-history|. When used in a
script or function the line number will be added.
Spaces are placed between the arguments as with the
:echo command. When used inside a try conditional,
the message is raised as an error exception instead
(see |try-echoerr|).
Example: >
:echoerr "This script just failed!"
< If you just want a highlighted message use |:echohl|.
And to get a beep: >
:exe "normal \<Esc>"
<
*:exe* *:execute*
:exe[cute] {expr1} .. Executes the string that results from the evaluation
of {expr1} as an Ex command. Multiple arguments are
concatenated, with a space in between. {expr1} is
used as the processed command, command line editing
keys are not recognized.
Cannot be followed by a comment.
Examples: >
:execute "buffer " nextbuf
:execute "normal " count . "w"
<
":execute" can be used to append a command to commands
that don't accept a '|'. Example: >
:execute '!ls' | echo "theend"

< ":execute" is also a nice way to avoid having to type
control characters in a Vim script for a ":normal"
command: >
:execute "normal ixxx\<Esc>"
< This has an <Esc> character, see |expr-string|.

Note: The executed string may be any command-line, but
you cannot start or end a "while", "for" or "if"
command. Thus this is illegal: >
:execute 'while i > 5'
:execute 'echo "test" | break'
<
It is allowed to have a "while" or "if" command
completely in the executed string: >
:execute 'while i < 5 | echo i | let i = i + 1 | endwhile'
<

*:comment*
":execute", ":echo" and ":echon" cannot be followed by
a comment directly, because they see the '"' as the
start of a string. But, you can use '|' followed by a
comment. Example: >
:echo "foo" | "this is a comment

==============================================================================
8. Exception handling *exception-handling*

The Vim script language comprises an exception handling feature. This section
explains how it can be used in a Vim script.

Exceptions may be raised by Vim on an error or on interrupt, see
|catch-errors| and |catch-interrupt|. You can also explicitly throw an
exception by using the ":throw" command, see |throw-catch|.


TRY CONDITIONALS *try-conditionals*

Exceptions can be caught or can cause cleanup code to be executed. You can
use a try conditional to specify catch clauses (that catch exceptions) and/or
a finally clause (to be executed for cleanup).
   A try conditional begins with a |:try| command and ends at the matching
|:endtry| command. In between, you can use a |:catch| command to start
a catch clause, or a |:finally| command to start a finally clause. There may
be none or multiple catch clauses, but there is at most one finally clause,
which must not be followed by any catch clauses. The lines before the catch
clauses and the finally clause is called a try block. >

     :try
     : ...
     : ... TRY BLOCK
     : ...
     :catch /{pattern}/
     : ...
     : ... CATCH CLAUSE
     : ...
     :catch /{pattern}/
     : ...
     : ... CATCH CLAUSE
     : ...
     :finally
     : ...
     : ... FINALLY CLAUSE
     : ...
     :endtry

The try conditional allows to watch code for exceptions and to take the
appropriate actions. Exceptions from the try block may be caught. Exceptions
from the try block and also the catch clauses may cause cleanup actions.
   When no exception is thrown during execution of the try block, the control
is transferred to the finally clause, if present. After its execution, the
script continues with the line following the ":endtry".
   When an exception occurs during execution of the try block, the remaining
lines in the try block are skipped. The exception is matched against the
patterns specified as arguments to the ":catch" commands. The catch clause
after the first matching ":catch" is taken, other catch clauses are not
executed. The catch clause ends when the next ":catch", ":finally", or
":endtry" command is reached - whatever is first. Then, the finally clause
(if present) is executed. When the ":endtry" is reached, the script execution
continues in the following line as usual.
   When an exception that does not match any of the patterns specified by the
":catch" commands is thrown in the try block, the exception is not caught by
that try conditional and none of the catch clauses is executed. Only the
finally clause, if present, is taken. The exception pends during execution of
the finally clause. It is resumed at the ":endtry", so that commands after
the ":endtry" are not executed and the exception might be caught elsewhere,
see |try-nesting|.
   When during execution of a catch clause another exception is thrown, the
remaining lines in that catch clause are not executed. The new exception is
not matched against the patterns in any of the ":catch" commands of the same
try conditional and none of its catch clauses is taken. If there is, however,
a finally clause, it is executed, and the exception pends during its
execution. The commands following the ":endtry" are not executed. The new
exception might, however, be caught elsewhere, see |try-nesting|.
   When during execution of the finally clause (if present) an exception is
thrown, the remaining lines in the finally clause are skipped. If the finally
clause has been taken because of an exception from the try block or one of the
catch clauses, the original (pending) exception is discarded. The commands
following the ":endtry" are not executed, and the exception from the finally
clause is propagated and can be caught elsewhere, see |try-nesting|.

The finally clause is also executed, when a ":break" or ":continue" for
a ":while" loop enclosing the complete try conditional is executed from the
try block or a catch clause. Or when a ":return" or ":finish" is executed
from the try block or a catch clause of a try conditional in a function or
sourced script, respectively. The ":break", ":continue", ":return", or
":finish" pends during execution of the finally clause and is resumed when the
":endtry" is reached. It is, however, discarded when an exception is thrown
from the finally clause.
   When a ":break" or ":continue" for a ":while" loop enclosing the complete
try conditional or when a ":return" or ":finish" is encountered in the finally
clause, the rest of the finally clause is skipped, and the ":break",
":continue", ":return" or ":finish" is executed as usual. If the finally
clause has been taken because of an exception or an earlier ":break",
":continue", ":return", or ":finish" from the try block or a catch clause,
this pending exception or command is discarded.

For examples see |throw-catch| and |try-finally|.


NESTING OF TRY CONDITIONALS *try-nesting*

Try conditionals can be nested arbitrarily. That is, a complete try
conditional can be put into the try block, a catch clause, or the finally
clause of another try conditional. If the inner try conditional does not
catch an exception thrown in its try block or throws a new exception from one
of its catch clauses or its finally clause, the outer try conditional is
checked according to the rules above. If the inner try conditional is in the
try block of the outer try conditional, its catch clauses are checked, but
otherwise only the finally clause is executed. It does not matter for
nesting, whether the inner try conditional is directly contained in the outer
one, or whether the outer one sources a script or calls a function containing
the inner try conditional.

When none of the active try conditionals catches an exception, just their
finally clauses are executed. Thereafter, the script processing terminates.
An error message is displayed in case of an uncaught exception explicitly
thrown by a ":throw" command. For uncaught error and interrupt exceptions
implicitly raised by Vim, the error message(s) or interrupt message are shown
as usual.

For examples see |throw-catch|.


EXAMINING EXCEPTION HANDLING CODE *except-examine*

Exception handling code can get tricky. If you are in doubt what happens, set
'verbose' to 13 or use the ":13verbose" command modifier when sourcing your
script file. Then you see when an exception is thrown, discarded, caught, or
finished. When using a verbosity level of at least 14, things pending in
a finally clause are also shown. This information is also given in debug mode
(see |debug-scripts|).


THROWING AND CATCHING EXCEPTIONS *throw-catch*

You can throw any number or string as an exception. Use the |:throw| command
and pass the value to be thrown as argument: >
:throw 4711
:throw "string"
< *throw-expression*
You can also specify an expression argument. The expression is then evaluated
first, and the result is thrown: >
:throw 4705 + strlen("string")
:throw strpart("strings", 0, 6)

An exception might be thrown during evaluation of the argument of the ":throw"
command. Unless it is caught there, the expression evaluation is abandoned.
The ":throw" command then does not throw a new exception.
   Example: >

:function! Foo(arg)
: try
: throw a:arg
: catch /foo/
: endtry
: return 1
:endfunction
:
:function! Bar()
: echo "in Bar"
: return 4710
:endfunction
:
:throw Foo("arrgh") + Bar()

This throws "arrgh", and "in Bar" is not displayed since Bar() is not
executed. >
:throw Foo("foo") + Bar()
however displays "in Bar" and throws 4711.

Any other command that takes an expression as argument might also be
abandoned by an (uncaught) exception during the expression evaluation. The
exception is then propagated to the caller of the command.
   Example: >

:if Foo("arrgh")
: echo "then"
:else
: echo "else"
:endif

Here neither of "then" or "else" is displayed.

*catch-order*
Exceptions can be caught by a try conditional with one or more |:catch|
commands, see |try-conditionals|. The values to be caught by each ":catch"
command can be specified as a pattern argument. The subsequent catch clause
gets executed when a matching exception is caught.
   Example: >

:function! Foo(value)
: try
: throw a:value
: catch /^\d\+$/
: echo "Number thrown"
: catch /.*/
: echo "String thrown"
: endtry
:endfunction
:
:call Foo(0x1267)
:call Foo('string')

The first call to Foo() displays "Number thrown", the second "String thrown".
An exception is matched against the ":catch" commands in the order they are
specified. Only the first match counts. So you should place the more
specific ":catch" first. The following order does not make sense: >

: catch /.*/
: echo "String thrown"
: catch /^\d\+$/
: echo "Number thrown"

The first ":catch" here matches always, so that the second catch clause is
never taken.

*throw-variables*
If you catch an exception by a general pattern, you may access the exact value
in the variable |v:exception|: >

: catch /^\d\+$/
: echo "Number thrown. Value is" v:exception

You may also be interested where an exception was thrown. This is stored in
|v:throwpoint|. Note that "v:exception" and "v:throwpoint" are valid for the
exception most recently caught as long it is not finished.
   Example: >

:function! Caught()
: if v:exception != ""
: echo 'Caught "' . v:exception . '" in ' . v:throwpoint
: else
: echo 'Nothing caught'
: endif
:endfunction
:
:function! Foo()
: try
: try
: try
: throw 4711
: finally
: call Caught()
: endtry
: catch /.*/
: call Caught()
: throw "oops"
: endtry
: catch /.*/
: call Caught()
: finally
: call Caught()
: endtry
:endfunction
:
:call Foo()

This displays >

Nothing caught
Caught "4711" in function Foo, line 4
Caught "oops" in function Foo, line 10
Nothing caught

A practical example: The following command ":LineNumber" displays the line
number in the script or function where it has been used: >

:function! LineNumber()
: return substitute(v:throwpoint, '.*\D\(\d\+\).*', '\1', "")
:endfunction
:command! LineNumber try | throw "" | catch | echo LineNumber() | endtry
<
*try-nested*
An exception that is not caught by a try conditional can be caught by
a surrounding try conditional: >

:try
: try
: throw "foo"
: catch /foobar/
: echo "foobar"
: finally
: echo "inner finally"
: endtry
:catch /foo/
: echo "foo"
:endtry

The inner try conditional does not catch the exception, just its finally
clause is executed. The exception is then caught by the outer try
conditional. The example displays "inner finally" and then "foo".

*throw-from-catch*
You can catch an exception and throw a new one to be caught elsewhere from the
catch clause: >

:function! Foo()
: throw "foo"
:endfunction
:
:function! Bar()
: try
: call Foo()
: catch /foo/
: echo "Caught foo, throw bar"
: throw "bar"
: endtry
:endfunction
:
:try
: call Bar()
:catch /.*/
: echo "Caught" v:exception
:endtry

This displays "Caught foo, throw bar" and then "Caught bar".

*rethrow*
There is no real rethrow in the Vim script language, but you may throw
"v:exception" instead: >

:function! Bar()
: try
: call Foo()
: catch /.*/
: echo "Rethrow" v:exception
: throw v:exception
: endtry
:endfunction
< *try-echoerr*
Note that this method cannot be used to "rethrow" Vim error or interrupt
exceptions, because it is not possible to fake Vim internal exceptions.
Trying so causes an error exception. You should throw your own exception
denoting the situation. If you want to cause a Vim error exception containing
the original error exception value, you can use the |:echoerr| command: >

:try
: try
: asdf
: catch /.*/
: echoerr v:exception
: endtry
:catch /.*/
: echo v:exception
:endtry

This code displays

Vim(echoerr):Vim:E492: Not an editor command: asdf ~


CLEANUP CODE *try-finally*

Scripts often change global settings and restore them at their end. If the
user however interrupts the script by pressing CTRL-C, the settings remain in
an inconsistent state. The same may happen to you in the development phase of
a script when an error occurs or you explicitly throw an exception without
catching it. You can solve these problems by using a try conditional with
a finally clause for restoring the settings. Its execution is guaranteed on
normal control flow, on error, on an explicit ":throw", and on interrupt.
(Note that errors and interrupts from inside the try conditional are converted
to exceptions. When not caught, they terminate the script after the finally
clause has been executed.)
Example: >

:try
: let s:saved_ts = &ts
: set ts=17
:
: " Do the hard work here.
:
:finally
: let &ts = s:saved_ts
: unlet s:saved_ts
:endtry

This method should be used locally whenever a function or part of a script
changes global settings which need to be restored on failure or normal exit of
that function or script part.

*break-finally*
Cleanup code works also when the try block or a catch clause is left by
a ":continue", ":break", ":return", or ":finish".
   Example: >

:let first = 1
:while 1
: try
: if first
: echo "first"
: let first = 0
: continue
: else
: throw "second"
: endif
: catch /.*/
: echo v:exception
: break
: finally
: echo "cleanup"
: endtry
: echo "still in while"
:endwhile
:echo "end"

This displays "first", "cleanup", "second", "cleanup", and "end". >

:function! Foo()
: try
: return 4711
: finally
: echo "cleanup\n"
: endtry
: echo "Foo still active"
:endfunction
:
:echo Foo() "returned by Foo"

This displays "cleanup" and "4711 returned by Foo". You don't need to add an
extra ":return" in the finally clause. (Above all, this would override the
return value.)

*except-from-finally*
Using either of ":continue", ":break", ":return", ":finish", or ":throw" in
a finally clause is possible, but not recommended since it abandons the
cleanup actions for the try conditional. But, of course, interrupt and error
exceptions might get raised from a finally clause.
   Example where an error in the finally clause stops an interrupt from
working correctly: >

:try
: try
: echo "Press CTRL-C for interrupt"
: while 1
: endwhile
: finally
: unlet novar
: endtry
:catch /novar/
:endtry
:echo "Script still running"
:sleep 1

If you need to put commands that could fail into a finally clause, you should
think about catching or ignoring the errors in these commands, see
|catch-errors| and |ignore-errors|.


CATCHING ERRORS *catch-errors*

If you want to catch specific errors, you just have to put the code to be
watched in a try block and add a catch clause for the error message. The
presence of the try conditional causes all errors to be converted to an
exception. No message is displayed and |v:errmsg| is not set then. To find
the right pattern for the ":catch" command, you have to know how the format of
the error exception is.
   Error exceptions have the following format: >

Vim({cmdname}):{errmsg}
or >
Vim:{errmsg}

{cmdname} is the name of the command that failed; the second form is used when
the command name is not known. {errmsg} is the error message usually produced
when the error occurs outside try conditionals. It always begins with
a capital "E", followed by a two or three-digit error number, a colon, and
a space.

Examples:

The command >
:unlet novar
normally produces the error message >
E108: No such variable: "novar"
which is converted inside try conditionals to an exception >
Vim(unlet):E108: No such variable: "novar"

The command >
:dwim
normally produces the error message >
E492: Not an editor command: dwim
which is converted inside try conditionals to an exception >
Vim:E492: Not an editor command: dwim

You can catch all ":unlet" errors by a >
:catch /^Vim(unlet):/
or all errors for misspelled command names by a >
:catch /^Vim:E492:/

Some error messages may be produced by different commands: >
:function nofunc
and >
:delfunction nofunc
both produce the error message >
E128: Function name must start with a capital: nofunc
which is converted inside try conditionals to an exception >
Vim(function):E128: Function name must start with a capital: nofunc
or >
Vim(delfunction):E128: Function name must start with a capital: nofunc
respectively. You can catch the error by its number independently on the
command that caused it if you use the following pattern: >
:catch /^Vim(\a\+):E128:/

Some commands like >
:let x = novar
produce multiple error messages, here: >
E121: Undefined variable: novar
E15: Invalid expression: novar
Only the first is used for the exception value, since it is the most specific
one (see |except-several-errors|). So you can catch it by >
:catch /^Vim(\a\+):E121:/

You can catch all errors related to the name "nofunc" by >
:catch /\<nofunc\>/

You can catch all Vim errors in the ":write" and ":read" commands by >
:catch /^Vim(\(write\|read\)):E\d\+:/

You can catch all Vim errors by the pattern >
:catch /^Vim\((\a\+)\)\=:E\d\+:/
<
*catch-text*
NOTE: You should never catch the error message text itself: >
:catch /No such variable/
only works in the english locale, but not when the user has selected
a different language by the |:language| command. It is however helpful to
cite the message text in a comment: >
:catch /^Vim(\a\+):E108:/ " No such variable


IGNORING ERRORS *ignore-errors*

You can ignore errors in a specific Vim command by catching them locally: >

:try
: write
:catch
:endtry

But you are strongly recommended NOT to use this simple form, since it could
catch more than you want. With the ":write" command, some autocommands could
be executed and cause errors not related to writing, for instance: >

:au BufWritePre * unlet novar

There could even be such errors you are not responsible for as a script
writer: a user of your script might have defined such autocommands. You would
then hide the error from the user.
   It is much better to use >

:try
: write
:catch /^Vim(write):/
:endtry

which only catches real write errors. So catch only what you'd like to ignore
intentionally.

For a single command that does not cause execution of autocommands, you could
even suppress the conversion of errors to exceptions by the ":silent!"
command: >
:silent! nunmap k
This works also when a try conditional is active.


CATCHING INTERRUPTS *catch-interrupt*

When there are active try conditionals, an interrupt (CTRL-C) is converted to
the exception "Vim:Interrupt". You can catch it like every exception. The
script is not terminated, then.
   Example: >

:function! TASK1()
: sleep 10
:endfunction

:function! TASK2()
: sleep 20
:endfunction

:while 1
: let command = input("Type a command: ")
: try
: if command == ""
: continue
: elseif command == "END"
: break
: elseif command == "TASK1"
: call TASK1()
: elseif command == "TASK2"
: call TASK2()
: else
: echo "\nIllegal command:" command
: continue
: endif
: catch /^Vim:Interrupt$/
: echo "\nCommand interrupted"
: " Caught the interrupt. Continue with next prompt.
: endtry
:endwhile

You can interrupt a task here by pressing CTRL-C; the script then asks for
a new command. If you press CTRL-C at the prompt, the script is terminated.

For testing what happens when CTRL-C would be pressed on a specific line in
your script, use the debug mode and execute the |>quit| or |>interrupt|
command on that line. See |debug-scripts|.


CATCHING ALL *catch-all*

The commands >

:catch /.*/
:catch //
:catch

catch everything, error exceptions, interrupt exceptions and exceptions
explicitly thrown by the |:throw| command. This is useful at the top level of
a script in order to catch unexpected things.
   Example: >

:try
:
: " do the hard work here
:
:catch /MyException/
:
: " handle known problem
:
:catch /^Vim:Interrupt$/
: echo "Script interrupted"
:catch /.*/
: echo "Internal error (" . v:exception . ")"
: echo " - occurred at " . v:throwpoint
:endtry
:" end of script

Note: Catching all might catch more things than you want. Thus, you are
strongly encouraged to catch only for problems that you can really handle by
specifying a pattern argument to the ":catch".
   Example: Catching all could make it nearly impossible to interrupt a script
by pressing CTRL-C: >

:while 1
: try
: sleep 1
: catch
: endtry
:endwhile


EXCEPTIONS AND AUTOCOMMANDS *except-autocmd*

Exceptions may be used during execution of autocommands. Example: >

:autocmd User x try
:autocmd User x throw "Oops!"
:autocmd User x catch
:autocmd User x echo v:exception
:autocmd User x endtry
:autocmd User x throw "Arrgh!"
:autocmd User x echo "Should not be displayed"
:
:try
: doautocmd User x
:catch
: echo v:exception
:endtry

This displays "Oops!" and "Arrgh!".

*except-autocmd-Pre*
For some commands, autocommands get executed before the main action of the
command takes place. If an exception is thrown and not caught in the sequence
of autocommands, the sequence and the command that caused its execution are
abandoned and the exception is propagated to the caller of the command.
   Example: >

:autocmd BufWritePre * throw "FAIL"
:autocmd BufWritePre * echo "Should not be displayed"
:
:try
: write
:catch
: echo "Caught:" v:exception "from" v:throwpoint
:endtry

Here, the ":write" command does not write the file currently being edited (as
you can see by checking 'modified'), since the exception from the BufWritePre
autocommand abandons the ":write". The exception is then caught and the
script displays: >

Caught: FAIL from BufWrite Auto commands for "*"
<
*except-autocmd-Post*
For some commands, autocommands get executed after the main action of the
command has taken place. If this main action fails and the command is inside
an active try conditional, the autocommands are skipped and an error exception
is thrown that can be caught by the caller of the command.
   Example: >

:autocmd BufWritePost * echo "File successfully written!"
:
:try
: write /i/m/p/o/s/s/i/b/l/e
:catch
: echo v:exception
:endtry

This just displays: >

Vim(write):E212: Can't open file for writing (/i/m/p/o/s/s/i/b/l/e)

If you really need to execute the autocommands even when the main action
fails, trigger the event from the catch clause.
   Example: >

:autocmd BufWritePre * set noreadonly
:autocmd BufWritePost * set readonly
:
:try
: write /i/m/p/o/s/s/i/b/l/e
:catch
: doautocmd BufWritePost /i/m/p/o/s/s/i/b/l/e
:endtry
<
You can also use ":silent!": >

:let x = "ok"
:let v:errmsg = ""
:autocmd BufWritePost * if v:errmsg != ""
:autocmd BufWritePost * let x = "after fail"
:autocmd BufWritePost * endif
:try
: silent! write /i/m/p/o/s/s/i/b/l/e
:catch
:endtry
:echo x

This displays "after fail".

If the main action of the command does not fail, exceptions from the
autocommands will be catchable by the caller of the command: >

:autocmd BufWritePost * throw ":-("
:autocmd BufWritePost * echo "Should not be displayed"
:
:try
: write
:catch
: echo v:exception
:endtry
<
*except-autocmd-Cmd*
For some commands, the normal action can be replaced by a sequence of
autocommands. Exceptions from that sequence will be catchable by the caller
of the command.
   Example: For the ":write" command, the caller cannot know whether the file
had actually been written when the exception occurred. You need to tell it in
some way. >

:if !exists("cnt")
: let cnt = 0
:
: autocmd BufWriteCmd * if &modified
: autocmd BufWriteCmd * let cnt = cnt + 1
: autocmd BufWriteCmd * if cnt % 3 == 2
: autocmd BufWriteCmd * throw "BufWriteCmdError"
: autocmd BufWriteCmd * endif
: autocmd BufWriteCmd * write | set nomodified
: autocmd BufWriteCmd * if cnt % 3 == 0
: autocmd BufWriteCmd * throw "BufWriteCmdError"
: autocmd BufWriteCmd * endif
: autocmd BufWriteCmd * echo "File successfully written!"
: autocmd BufWriteCmd * endif
:endif
:
:try
: write
:catch /^BufWriteCmdError$/
: if &modified
: echo "Error on writing (file contents not changed)"
: else
: echo "Error after writing"
: endif
:catch /^Vim(write):/
: echo "Error on writing"
:endtry

When this script is sourced several times after making changes, it displays
first >
File successfully written!
then >
Error on writing (file contents not changed)
then >
Error after writing
etc.

*except-autocmd-ill*
You cannot spread a try conditional over autocommands for different events.
The following code is ill-formed: >

:autocmd BufWritePre * try
:
:autocmd BufWritePost * catch
:autocmd BufWritePost * echo v:exception
:autocmd BufWritePost * endtry
:
:write


EXCEPTION HIERARCHIES AND PARAMETERIZED EXCEPTIONS *except-hier-param*

Some programming languages allow to use hierarchies of exception classes or to
pass additional information with the object of an exception class. You can do
similar things in Vim.
   In order to throw an exception from a hierarchy, just throw the complete
class name with the components separated by a colon, for instance throw the
string "EXCEPT:MATHERR:OVERFLOW" for an overflow in a mathematical library.
   When you want to pass additional information with your exception class, add
it in parentheses, for instance throw the string "EXCEPT:IO:WRITEERR(myfile)"
for an error when writing "myfile".
   With the appropriate patterns in the ":catch" command, you can catch for
base classes or derived classes of your hierarchy. Additional information in
parentheses can be cut out from |v:exception| with the ":substitute" command.
   Example: >

:function! CheckRange(a, func)
: if a:a < 0
: throw "EXCEPT:MATHERR:RANGE(" . a:func . ")"
: endif
:endfunction
:
:function! Add(a, b)
: call CheckRange(a:a, "Add")
: call CheckRange(a:b, "Add")
: let c = a:a + a:b
: if c < 0
: throw "EXCEPT:MATHERR:OVERFLOW"
: endif
: return c
:endfunction
:
:function! Div(a, b)
: call CheckRange(a:a, "Div")
: call CheckRange(a:b, "Div")
: if (a:b == 0)
: throw "EXCEPT:MATHERR:ZERODIV"
: endif
: return a:a / a:b
:endfunction
:
:function! Write(file)
: try
: execute "write" a:file
: catch /^Vim(write):/
: throw "EXCEPT:IO(" . getcwd() . ", " . a:file . "):WRITEERR"
: endtry
:endfunction
:
:try
:
: " something with arithmetics and I/O
:
:catch /^EXCEPT:MATHERR:RANGE/
: let function = substitute(v:exception, '.*(\(\a\+\)).*', '\1', "")
: echo "Range error in" function
:
:catch /^EXCEPT:MATHERR/ " catches OVERFLOW and ZERODIV
: echo "Math error"
:
:catch /^EXCEPT:IO/
: let dir = substitute(v:exception, '.*(\(.\+\),\s*.\+).*', '\1', "")
: let file = substitute(v:exception, '.*(.\+,\s*\(.\+\)).*', '\1', "")
: if file !~ '^/'
: let file = dir . "/" . file
: endif
: echo 'I/O error for "' . file . '"'
:
:catch /^EXCEPT/
: echo "Unspecified error"
:
:endtry

The exceptions raised by Vim itself (on error or when pressing CTRL-C) use
a flat hierarchy: they are all in the "Vim" class. You cannot throw yourself
exceptions with the "Vim" prefix; they are reserved for Vim.
   Vim error exceptions are parameterized with the name of the command that
failed, if known. See |catch-errors|.


PECULIARITIES
*except-compat*
The exception handling concept requires that the command sequence causing the
exception is aborted immediately and control is transferred to finally clauses
and/or a catch clause.

In the Vim script language there are cases where scripts and functions
continue after an error: in functions without the "abort" flag or in a command
after ":silent!", control flow goes to the following line, and outside
functions, control flow goes to the line following the outermost ":endwhile"
or ":endif". On the other hand, errors should be catchable as exceptions
(thus, requiring the immediate abortion).

This problem has been solved by converting errors to exceptions and using
immediate abortion (if not suppressed by ":silent!") only when a try
conditional is active. This is no restriction since an (error) exception can
be caught only from an active try conditional. If you want an immediate
termination without catching the error, just use a try conditional without
catch clause. (You can cause cleanup code being executed before termination
by specifying a finally clause.)

When no try conditional is active, the usual abortion and continuation
behavior is used instead of immediate abortion. This ensures compatibility of
scripts written for Vim 6.1 and earlier.

However, when sourcing an existing script that does not use exception handling
commands (or when calling one of its functions) from inside an active try
conditional of a new script, you might change the control flow of the existing
script on error. You get the immediate abortion on error and can catch the
error in the new script. If however the sourced script suppresses error
messages by using the ":silent!" command (checking for errors by testing
|v:errmsg| if appropriate), its execution path is not changed. The error is
not converted to an exception. (See |:silent|.) So the only remaining cause
where this happens is for scripts that don't care about errors and produce
error messages. You probably won't want to use such code from your new
scripts.

*except-syntax-err*
Syntax errors in the exception handling commands are never caught by any of
the ":catch" commands of the try conditional they belong to. Its finally
clauses, however, is executed.
   Example: >

:try
: try
: throw 4711
: catch /\(/
: echo "in catch with syntax error"
: catch
: echo "inner catch-all"
: finally
: echo "inner finally"
: endtry
:catch
: echo 'outer catch-all caught "' . v:exception . '"'
: finally
: echo "outer finally"
:endtry

This displays: >
    inner finally
    outer catch-all caught "Vim(catch):E54: Unmatched \("
    outer finally
The original exception is discarded and an error exception is raised, instead.

*except-single-line*
The ":try", ":catch", ":finally", and ":endtry" commands can be put on
a single line, but then syntax errors may make it difficult to recognize the
"catch" line, thus you better avoid this.
   Example: >
:try | unlet! foo # | catch | endtry
raises an error exception for the trailing characters after the ":unlet!"
argument, but does not see the ":catch" and ":endtry" commands, so that the
error exception is discarded and the "E488: Trailing characters" message gets
displayed.

*except-several-errors*
When several errors appear in a single command, the first error message is
usually the most specific one and therefor converted to the error exception.
   Example: >
echo novar
causes >
E121: Undefined variable: novar
E15: Invalid expression: novar
The value of the error exception inside try conditionals is: >
Vim(echo):E121: Undefined variable: novar
< *except-syntax-error*
But when a syntax error is detected after a normal error in the same command,
the syntax error is used for the exception being thrown.
   Example: >
unlet novar #
causes >
E108: No such variable: "novar"
E488: Trailing characters
The value of the error exception inside try conditionals is: >
Vim(unlet):E488: Trailing characters
This is done because the syntax error might change the execution path in a way
not intended by the user. Example: >
try
try | unlet novar # | catch | echo v:exception | endtry
catch /.*/
echo "outer catch:" v:exception
endtry
This displays "outer catch: Vim(unlet):E488: Trailing characters", and then
a "E600: Missing :endtry" error message is given, see |except-single-line|.

==============================================================================
9. Examples *eval-examples*

Printing in Hex ~
>
  :" The function Nr2Hex() returns the Hex string of a number.
  :func Nr2Hex(nr)
  : let n = a:nr
  : let r = ""
  : while n
  : let r = '0123456789ABCDEF'[n % 16] . r
  : let n = n / 16
  : endwhile
  : return r
  :endfunc

  :" The function String2Hex() converts each character in a string to a two
  :" character Hex string.
  :func String2Hex(str)
  : let out = ''
  : let ix = 0
  : while ix < strlen(a:str)
  : let out = out . Nr2Hex(char2nr(a:str[ix]))
  : let ix = ix + 1
  : endwhile
  : return out
  :endfunc

Example of its use: >
  :echo Nr2Hex(32)
result: "20" >
  :echo String2Hex("32")
result: "3332"


Sorting lines (by Robert Webb) ~

Here is a Vim script to sort lines. Highlight the lines in Vim and type
":Sort". This doesn't call any external programs so it'll work on any
platform. The function Sort() actually takes the name of a comparison
function as its argument, like qsort() does in C. So you could supply it
with different comparison functions in order to sort according to date etc.
>
  :" Function for use with Sort(), to compare two strings.
  :func! Strcmp(str1, str2)
  : if (a:str1 < a:str2)
  : return -1
  : elseif (a:str1 > a:str2)
  : return 1
  : else
  : return 0
  : endif
  :endfunction

  :" Sort lines. SortR() is called recursively.
  :func! SortR(start, end, cmp)
  : if (a:start >= a:end)
  : return
  : endif
  : let partition = a:start - 1
  : let middle = partition
  : let partStr = getline((a:start + a:end) / 2)
  : let i = a:start
  : while (i <= a:end)
  : let str = getline(i)
  : exec "let result = " . a:cmp . "(str, partStr)"
  : if (result <= 0)
  : " Need to put it before the partition. Swap lines i and partition.
  : let partition = partition + 1
  : if (result == 0)
  : let middle = partition
  : endif
  : if (i != partition)
  : let str2 = getline(partition)
  : call setline(i, str2)
  : call setline(partition, str)
  : endif
  : endif
  : let i = i + 1
  : endwhile

  : " Now we have a pointer to the "middle" element, as far as partitioning
  : " goes, which could be anywhere before the partition. Make sure it is at
  : " the end of the partition.
  : if (middle != partition)
  : let str = getline(middle)
  : let str2 = getline(partition)
  : call setline(middle, str2)
  : call setline(partition, str)
  : endif
  : call SortR(a:start, partition - 1, a:cmp)
  : call SortR(partition + 1, a:end, a:cmp)
  :endfunc

  :" To Sort a range of lines, pass the range to Sort() along with the name of a
  :" function that will compare two lines.
  :func! Sort(cmp) range
  : call SortR(a:firstline, a:lastline, a:cmp)
  :endfunc

  :" :Sort takes a range of lines and sorts them.
  :command! -nargs=0 -range Sort <line1>,<line2>call Sort("Strcmp")
<
*sscanf*
There is no sscanf() function in Vim. If you need to extract parts from a
line, you can use matchstr() and substitute() to do it. This example shows
how to get the file name, line number and column number out of a line like
"foobar.txt, 123, 45". >
   :" Set up the match bit
   :let mx='\(\f\+\),\s*\(\d\+\),\s*\(\d\+\)'
   :"get the part matching the whole expression
   :let l = matchstr(line, mx)
   :"get each item out of the match
   :let file = substitute(l, mx, '\1', '')
   :let lnum = substitute(l, mx, '\2', '')
   :let col = substitute(l, mx, '\3', '')

The input is in the variable "line", the results in the variables "file",
"lnum" and "col". (idea from Michael Geddes)

==============================================================================
10. No +eval feature *no-eval-feature*

When the |+eval| feature was disabled at compile time, none of the expression
evaluation commands are available. To prevent this from causing Vim scripts
to generate all kinds of errors, the ":if" and ":endif" commands are still
recognized, though the argument of the ":if" and everything between the ":if"
and the matching ":endif" is ignored. Nesting of ":if" blocks is allowed, but
only if the commands are at the start of the line. The ":else" command is not
recognized.

Example of how to avoid executing commands when the |+eval| feature is
missing: >

:if 1
: echo "Expression evaluation is compiled in"
:else
: echo "You will _never_ see this message"
:endif

==============================================================================
11. The sandbox *eval-sandbox* *sandbox* *E48*

The 'foldexpr', 'includeexpr', 'indentexpr', 'statusline' and 'foldtext'
options are evaluated in a sandbox. This means that you are protected from
these expressions having nasty side effects. This gives some safety for when
these options are set from a modeline. It is also used when the command from
a tags file is executed.
The sandbox is also used for the |:sandbox| command.

These items are not allowed in the sandbox:
- changing the buffer text
- defining or changing mapping, autocommands, functions, user commands
- setting certain options (see |option-summary|)
- executing a shell command
- reading or writing a file
- jumping to another buffer or editing a file
This is not guaranteed 100% secure, but it should block most attacks.

*:san* *:sandbox*
:sandbox {cmd} Execute {cmd} in the sandbox. Useful to evaluate an
option that may have been set from a modeline, e.g.
'foldexpr'.


 vim:tw=78:ts=8:ft=help:norl:
Something went wrong with that request. Please try again.