
Minishell
As beautiful as a shell

Staff pedago pedago@42.fr

Summary: The objective of this project is for you to create the simplest start of a shell
script. Shell is beautiful! Isn’t there a famous saying? “As beautiful as Shell?” Thanks
to all the shell projects, you will connect with the infinite power of Mankind Intelligence
(Not even sure that you deserve it, but I have been forced to do so, so here we are. . .).

pedago@42.fr

Contents
I Foreword 2

I.1 The coder. The modern Samurai! . 2
I.2 Ariane 5 Flight 501, or “In praise of a very well made program” . . . 3

I.2.1 Analysis of the failure . 3
I.2.2 Chain of technical events . 4
I.2.3 Conclusion . 5

I.3 A functioning link . 7
I.4 How to facilitate the completion of this project. 7

II Introduction 8

III Objectives 9

IV General Instructions 10

V Mandatory part 12

VI Bonus part 14

VII Submission and peer correction 15

1

Chapter I

Foreword

I.1 The coder. The modern Samurai!

Actually, I have no clue about the times of the Samurai, so perhaps
this comparison might not be totally accurate.

As we work on these shells (and there are quite a few), we will also be looking at the
basics of Kendo. Indeed, knowing about Kendo is important to practice your program-
ming skills.

Kendo is a modern Japanese martial art, which descended from swordsmanship. The
basic idea is that when you lose, You DIE 1 Therefore it is highly recommended that
you train as hard as humanly possible to stand a chance to survive and most importantly
to understand some basics, especially discipline.

Kendo is similar to programming in the way that we are like the Modern Samurai.
We make a mistake and it’s over. I don’t need to remind you that nowadays, surgery does
not happen without using technology and we are the ones responsible to code that system.

So let’s start with the notorious crash of Ariane 5 in 1996. It all happened because
of ONE bit (not a byte. I am really talking about 1 bit).

1And everyone knows that getting killed is a total drag.

2

Minishell As beautiful as a shell

I.2 Ariane 5 Flight 501, or “In praise of a very well
made program”

Below are bits and pieces of the investigation report. I have
preffered to copy paste it for you as clicking on the link could
be confusing.

You’re gonna fail!

Ariane 5’s first test flight (Ariane 5 Flight 501) on 4 June 1996 failed. The rocket self-
destructed 37 seconds after launch because of a malfunction in the control software, which
was arguably one of the most expensive computer bugs in history. A data conversion
from 64-bit floating point value to 16-bit signed integer value to be stored in a variable
representing horizontal bias caused a processor trap (operand error) because the floating
point value was too large to be represented by a 16-bit signed integer. The software
was originally written for the Ariane 4 where efficiency considerations (the computer
running the software had an 80% maximum workload requirement) led to 4 variables
being protected with a handler while 3 others, including the horizontal bias variable,
were left unprotected because it was thought that they were “physically limited or that
there was a large margin of error”. The software, written in Ada, was included in the
Ariane 5 through the reuse of an entire Ariane 4 subsystem despite the fact that the
particular software containing the bug, which was just a part of the subsystem, was not
required by the Ariane 5 because it has a different preparation sequence than the Ariane
4.

I.2.1 Analysis of the failure
In general terms, the Flight Control System of the Ariane 5 is of a standard design. The
attitude of the launcher and its movements in space are measured by an Inertial Refer-
ence System (SRI). It has its own internal computer, in which angles and velocities are
calculated on the basis of information from a “strap-down” inertial platform, with laser
gyros and accelerometers. The data from the SRI are transmitted through the databus
to the On-Board Computer (OBC), which executes the flight program and controls the
nozzles of the solid boosters and the Vulcain cryogenic engine, via servovalves and hy-
draulic actuators. In order to improve reliability there is considerable redundancy at
equipment level. There are two SRIs operating in parallel, with identical hardware and
software. One SRI is active and one is in “hot” stand-by, and if the OBC detects that the
active SRI has failed it immediately switches to the other one, provided that this unit is
functioning properly. Likewise there are two OBCs, and a number of other units in the
Flight Control System are also duplicated. The design of the Ariane 5 SRI is practically
the same as that of an SRI which is presently used on Ariane 4, particularly as regards
the software. Based on the extensive documentation and data on the Ariane 501 failure
made available to the Board, the following chain of events, their inter-relations and causes
have been established, starting with the destruction of the launcher and tracing back in
time towards the primary cause.

3

http://163.5.69.60/tr.html

Minishell As beautiful as a shell

I.2.2 Chain of technical events
• The launcher started to disintegrate at about H0 + 39 seconds because of high

aerodynamic loads due to an angle of attack of more than 20 degrees that led to
separation of the boosters from the main stage, in turn triggering the self-destruct
system of the launcher.

• This angle of attack was caused by full nozzle deflections of the solid boosters and
the Vulcain main engine.

• These nozzle deflections were commanded by the On-Board Computer (OBC) soft-
ware on the basis of data transmitted by the active Inertial Reference System (SRI
2). Part of these data at that time did not contain proper flight data, but showed a
diagnostic bit pattern of the computer of the SRI 2, which was interpreted as flight
data.

• The reason why the active SRI 2 did not send correct attitude data was that the
unit had declared a failure due to a software exception.

• The OBC could not switch to the back-up SRI 1 because that unit had already
ceased to function during the previous data cycle (72 milliseconds period) for the
same reason as SRI 2.

• The internal SRI software exception was caused during execution of a data conver-
sion from 64-bit floating point to 16-bit signed integer value. The floating point
number which was converted had a value greater than what could be represented
by a 16-bit signed integer. This resulted in an Operand Error. The data conver-
sion instructions (in Ada code) were not protected from causing an Operand Error,
although other conversions of comparable variables in the same place in the code
were protected.

• The error occurred in a part of the software that only performs alignment of the
strap-down inertial platform. This software module computes meaningful results
only before lift-off. As soon as the launcher lifts off, this function serves no purpose.

• The alignment function is operative for 50 seconds after starting of the Flight Mode
of the SRIs which occurs at H0 - 3 seconds for Ariane 5. Consequently, when lift-off
occurs, the function continues for approx. 40 seconds of flight. This time sequence
is based on a requirement of Ariane 4 and is not required for Ariane 5.

• The Operand Error occurred due to an unexpected high value of an internal align-
ment function result called BH, Horizontal Bias, related to the horizontal velocity
sensed by the platform. This value is calculated as an indicator for alignment
precision over time.

• The value of BH was much higher than expected because the early part of the
trajectory of Ariane 5 differs from that of Ariane 4 and results in considerably
higher horizontal velocity values.

4

Minishell As beautiful as a shell

I.2.3 Conclusion
The Board reached the following findings:

• During the launch preparation campaign and the count-down no events occurred
which were related to the failure.

• The meteorological conditions at the time of the launch were acceptable and did
not play any part in the failure. No other external factors have been found to be
of relevance.

• Engine ignition and lift-off were essentially nominal and the environmental effects
(noise and vibration) on the launcher and the payload were not found to be relevant
to the failure. Propulsion performance was within specification.

• 22 seconds after H0 (command for main cryogenic engine ignition), variations of
10 Hz frequency started to appear in the hydraulic pressure of the actuators which
control the nozzle of the main engine. This phenomenon is significant and has not
yet been fully explained, but after consideration it has not been found relevant to
the failure.

• At 36.7 seconds after H0 (approx. 30 seconds after lift-off) the computer within
the back-up inertial reference system, which was working on stand-by for guidance
and attitude control, became inoperative. This was caused by an internal variable
related to the horizontal velocity of the launcher exceeding a limit which existed in
the software of this computer.

• Approx. 0.05 seconds later the active inertial reference system, identical to the back-
up system in hardware and software, failed for the same reason. Since the back-up
inertial system was already inoperative, correct guidance and attitude information
could no longer be obtained and loss of the mission was inevitable.

• As a result of its failure, the active inertial reference system transmitted essentially
diagnostic information to the launcher’s main computer, where it was interpreted
as flight data and used for flight control calculations.

• On the basis of those calculations the main computer commanded the booster
nozzles, and somewhat later the main engine nozzle also, to make a large correction
for an attitude deviation that had not occurred.

• A rapid change of attitude occurred which caused the launcher to disintegrate at
39 seconds after H0 due to aerodynamic forces.

• Destruction was automatically initiated upon disintegration, as designed, at an
altitude of 4 km and a distance of 1 km from the launch pad.

• The debris was spread over an area of 5 x 2.5 km2. Amongst the equipment recov-
ered were the two inertial reference systems. They have been used for analysis.

• The post-flight analysis of telemetry data has listed a number of additional anoma-
lies which are being investigated but are not considered significant to the failure.

5

Minishell As beautiful as a shell

• The inertial reference system of Ariane 5 is essentially common to a system which is
presently flying on Ariane 4. The part of the software which caused the interruption
in the inertial system computers is used before launch to align the inertial reference
system and, in Ariane 4, also to enable a rapid realignment of the system in case
of a late hold in the countdown. This realignment function, which does not serve
any purpose on Ariane 5, was nevertheless retained for commonality reasons and
allowed, as in Ariane 4, to operate for approx. 40 seconds after lift-off.

• During design of the software of the inertial reference system used for Ariane 4
and Ariane 5, a decision was taken that it was not necessary to protect the inertial
system computer from being made inoperative by an excessive value of the variable
related to the horizontal velocity, a protection which was provided for several other
variables of the alignment software. When taking this design decision, it was not
analysed or fully understood which values this particular variable might assume
when the alignment software was allowed to operate after lift-off.

• In Ariane 4 flights using the same type of inertial reference system there has been
no such failure because the trajectory during the first 40 seconds of flight is such
that the particular variable related to horizontal velocity cannot reach, with an
adequate operational margin, a value beyond the limit present in the software.

• Ariane 5 has a high initial acceleration and a trajectory which leads to a build-
up of horizontal velocity which is five times more rapid than for Ariane 4. The
higher horizontal velocity of Ariane 5 generated, within the 40-second timeframe,
the excessive value which caused the inertial system computers to cease operation.

• The purpose of the review process, which involves all major partners in the Ariane
5 programme, is to validate design decisions and to obtain flight qualification. In
this process, the limitations of the alignment software were not fully analysed and
the possible implications of allowing it to continue to function during flight were
not realised.

• The specification of the inertial reference system and the tests performed at equip-
ment level did not specifically include the Ariane 5 trajectory data. Consequently
the realignment function was not tested under simulated Ariane 5 flight conditions,
and the design error was not discovered.

• It would have been technically feasible to include almost the entire inertial reference
system in the overall system simulations which were performed. For a number of
reasons it was decided to use the simulated output of the inertial reference system,
not the system itself or its detailed simulation. Had the system been included, the
failure could have been detected.

• Post-flight simulations have been carried out on a computer with software of the
inertial reference system and with a simulated environment, including the actual
trajectory data from the Ariane 501 flight. These simulations have faithfully repro-
duced the chain of events leading to the failure of the inertial reference systems.

The failure of the Ariane 501 was caused by the complete loss of guidance and atti-
tude information 37 seconds after start of the main engine ignition sequence (30 seconds

6

Minishell As beautiful as a shell

after lift- off). This loss of information was due to specification and design errors in the
software of the inertial reference system.

The extensive reviews and tests carried out during the Ariane 5 Development Pro-
gramme did not include adequate analysis and testing of the inertial reference system or
of the complete flight control system, which could have detected the potential failure.

At least try to read this...

Everything came down to one tiny variable: the one allocated to horizontal acceler-
ation. Actually, the maximum acceleration of Ariane 4 was about 64, the variable was
coded to 8 bits. In a computer, the information is coded in a rather special alphabet
called binary language. A bit is equivalent to a letter in the alphabet containing both
letters “0” and “1”; so any word (or variable value) is written by a combination of 8
letters, each of those letters being either “0” or “1”. In binary base, that means 28 = 256
possible values (256 combinations of 8 bits), enough to code the value 64 written 1000000
and needing 8 bits. But Ariane 5 was faster: its acceleration could reach the value 300
(worth 100101100 in binary and needing 9 bits). Therefore, the coded variable on 8 bits
had a capacity limitation since its memory space wasn’t large enough to accept such a
high value, it would have to have been code with one more bit, ie 9, which would have
given 29 = 512 as a highest value, therefore enough to code the 300 value. From this over
capacity resulted an absurd value in the variable that did not match the reality. With a
domino effect, the program decided to self-destruct the rocket from that one data error.

I.3 A functioning link
The complete investigation report

I.4 How to facilitate the completion of this project.

If did not read the foreword, you are a moron.

This project will be easier to complete if you can admit to yourself once and for all
that you can avoid the crash if you run 3 simple tests as you go along!

7

http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

Chapter II

Introduction

The existence of shells is linked to the very existence of IT. At the time, all coders agreed
that communicating with a computer using aligned 1/0 switches was seriously
irritating. It was only logical that they came up with the idea to communicate with
a computer using an interactive lines of commands in a language somewhat close
to english.

With Minishell, you’ll be able to travel through time and come back to problems
people faced when Windows didn’t exist. If this doesn’t make you a better coder, nothing
will.

8

Chapter III

Objectives

Through the Minishell project, you will get to the core of the Unix system and explore
an important part of this system’s API: process creation and synchronisation. Executing
a command inside a shell implies creating a new process, which execution and final state
will be monitored by its parent’s process. This set of functions will be the key to success
for your Minishell, so be sure to code the cleanest, simplest program possible. Other-
wise, you’ll probably have to start from scratch for your 21sh project and that would be
a real shame.

Be rigorous and methodical in your C coding, take the necessary time to read and
understand the mans, but most importantly, test your code!

9

Chapter IV

General Instructions

• This project will only be corrected by actual human beings. You are therefore free
to organize and name your files as you wish, although you need to respect some
requirements listed below.

• The executable file must be named minishell.

• You must submit a Makefile. That Makefile needs to compile the project and
must contain the usual rules. It can only recompile the program if necessary.

• If you are clever, you will use your library for your minishell. Also submit your
folder libft including its own Makefile at the root of your repository. Your
Makefile will have to compile the library, and then compile your project.

• Your project must be written in C in accordance with the Norm.

• You have to handle errors in a sensitive manner. In no way can your program quit
in an unexpected manner (Segmentation fault, bus error, double free, etc).

• Your program cannot have memory leaks.

• You’ll have to submit at the root of your folder, a file called author containing your
username followed by a ’\n’
$>cat -e author
xlogin$

• Within your mandatory part you are allowed to use the following functions:

◦ malloc, free
◦ access
◦ open, close, read, write
◦ opendir, readdir, closedir
◦ getcwd, chdir
◦ stat, lstat, fstat

10

Minishell As beautiful as a shell

◦ fork, execve
◦ wait, waitpid, wait3, wait4
◦ signal, kill
◦ exit

• You are allowed to use other functions to carry out the bonus part as long as their
use is justified during your defence. For example, to use tcgetattr is justified in
certain case, to use printf because you are lazy isn’t. Be smart!

• You can ask questions on the forum & Slack.

11

Chapter V

Mandatory part

• You must program a mini UNIX command interpreter.

• This interpreter must display a prompt (a simple "$> " for example) and wait till
you type a command line, validated by pressing enter.

• The prompt is shown again only once the command has been completely executed.

• The command lines are simple, no pipes, no redirections or any other advanced
functions.

• The executable are those you can find in the paths indicated in the PATH variable.

• In cases where the executable cannot be found, it has to show an error message and
display the prompt again.

• You must manage the errors without using errno, by displaying a message adapted
to the error output.

• You must deal correctly with the PATH and the environment (copy of system char
**environ).

• You must implement a series of builtins: echo, cd, setenv, unsetenv, env, exit.

• You can choose as a reference whatever shell you prefer.

Read the man carefully.

12

Minishell As beautiful as a shell

Here is a use example of your minishell :
$> cd /dev
$> pwd
/dev
$> ls -l
total 0
crw-rw---- 1 root video 10, 175 dec 19 09:50 agpgart
lrwxrwxrwx 1 root root 3 dec 19 09:50 cdrom -> hdc
lrwxrwxrwx 1 root root 3 dec 19 09:50 cdrom0 -> hdc
drwxr-xr-x 2 root root 60 dec 19 09:50 cdroms/
lrwxrwxrwx 1 root root 3 dec 19 09:50 cdrw -> hdc
lrwxrwxrwx 1 root root 11 dec 19 09:50 core -> /proc/kcore
drwxr-xr-x 3 root root 60 dec 19 09:50 cpu/
drwxr-xr-x 3 root root 60 dec 19 09:50 discs/
lrwxrwxrwx 1 root root 3 dec 19 09:50 disk -> hda
lrwxrwxrwx 1 root root 3 dec 19 09:50 dvd -> hdc
lrwxrwxrwx 1 root root 3 dec 19 09:50 dvdrw -> hdc
crw------- 1 root root 29, 0 dec 19 09:50 fb0
lrwxrwxrwx 1 root root 13 dec 19 09:50 fd -> /proc/self/fd/
brw-rw---- 1 root floppy 2, 0 dec 19 09:50 fd0
brw-rw---- 1 root floppy 2, 1 dec 19 09:50 fd1
crw-rw-rw- 1 root root 1, 7 dec 19 09:50 full
brw-rw---- 1 root root 3, 0 dec 19 09:50 hda
brw-rw---- 1 root root 3, 1 dec 19 09:50 hda1
brw-rw---- 1 root root 3, 2 dec 19 09:50 hda2
brw-rw---- 1 root root 3, 3 dec 19 09:50 hda3
brw-rw---- 1 root root 3, 5 dec 19 09:50 hda5
brw-rw---- 1 root root 3, 6 dec 19 09:50 hda6
$> kwame
kwame: command not found
$>

13

Chapter VI

Bonus part

Quite a few features will be on the menu of the 21sh and 42sh projects. Below are some
bonuses that you can start implementing immediately. Only if you wish to do so!

• Management of signals and in particular Ctrl-C. The use of global variables is
allowed as part of this bonus.

• Management of execution rights in the PATH.

• Auto completion.

• The separation of commands with ";".

• Other bonuses that you will think to be useful.

14

Chapter VII

Submission and peer correction

Submit your work on your GiT repository as usual. Only the work on your repository
will be graded.

Good luck to all! And remember to push your author file!

15

	Foreword
	The coder. The modern Samurai!
	Ariane 5 Flight 501, or ``In praise of a very well made program''
	Analysis of the failure
	Chain of technical events
	Conclusion

	A functioning link
	How to facilitate the completion of this project.

	Introduction
	Objectives
	General Instructions
	Mandatory part
	Bonus part
	Submission and peer correction

