
Performing Regression on Complex Data using a
Squeeze-and-Excitation Residual Neural Network,
Chess as a Model System

Gaëtan Serréa

agaetan.serre@universite-paris-saclay.fr

Abstract

As neural networks for image recognition become more and more powerful and AI becomes more and more present in all
fields, it would be very helpful to be able to use these models with non-image data and get good performance. This paper
aims to show that this is possible through an model system very related to artificial intelligence: chess.
We can simplify a chess engine in two main components: an evaluation function, which is a function that takes a chess
position as input and returns a score and a search algorithm which will uses the evaluation function to find the best move
to play in a given position.
I introduce GAiA, a chess engine which uses a Squeeze-and-Excitation residual network as an evaluation function. GAiA’s
neural network try to reproduce the evaluation function of a world reknown chess engine. With only few hours of training,
GAiA’s neural network has an accuracy of 0.93 (using the coefficient of determination).
These results suggest that Squeeze-and-Excitation residual networks, which are the state-of-the-art neural networks for
image recognition, can be used with data that are not images.

Key words: Artificial Intelligence, Deep Learning, Neural Networks, Chess

Introduction

Artificial intelligence for image recognition is becoming

increasingly powerful. Since 2015, thanks to the ResNet[3]

architecture, we achieve astounding performance on the

ImageNet database. Furthermore, in 2017 is introduced

Squeeze-and-Excitation[4] network architecture which significantly

improve the performance of ResNet with almost no additional

computation costs.

The question is: can we use this architecture on data

that are not originally images. If so, we just have to

encode our data in 3-dimensional tensors and look for the

number of Squeeze-and-Excitation residual blocks (Figure 1)

and other hyperparameters that optimizes our results to get

excellent performance. The challenge is to know if Squeeze-and-

Excitation networks are generalizable to any kind of machine

learning problem.

As a chess fan, I have chosen to show that it was possible to

create a high-performance chess engine using this type of neural

network. I have called this chess engine GAiA.

SE-ResNet Module

+

Global pooling

FC

ReLU

+

ResNet Module

X

෩X

X

෩X

Sigmoid

1 × 1 × C

1 × 1 ×
C
𝑟

1 × 1 × C

1 × 1 × C

Scale

𝐻 ×W× C

𝐻 ×W× C

𝐻 ×W× C

Residual Residual

FC

1 × 1 ×
C
𝑟

Fig. 1. The schema of the original Residual block (left) and the SE-

ResNet block (right)

Data

GAiA’s neural network tries to recreate the evaluation function

of Stockfish 14[7], a open-source world reknown chess engine. It

uses heuristics function written by human experts to evaluate

position. Stockfish also uses a classical alpha-beta game tree

search with plenty optimizations to find the best move. GAiA

is a combination of the Stockfish game tree search algorithm

and a Squeeze-and-Excitation residual network as evaluation

function.

In order to train GAiA’s neural network, I needed tons of

different chess position. Lichess.org[2] is a popular, free and

mailto:gaetan.serre@universite-paris-saclay.fr


2 Gaëtan Serré

open-source chess platform which provides millions of games

played by humans every month. From these games, I extracted

millions of different positions along with their Stockfish 14

evaluation. If we look at the distribution of the evaluations

(Figure 2), we can see that the overwhelming majority is close

to 0 i.e draw game. Each position is encoded as a 8 × 8 image

with 15 channels: 12 representing each chess pieces, 1 for the

actual player, 1 for the en-passant square and 1 for the castling

rights.

10000 5000 0 5000 10000
Evalution (centipawn)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Distribution of evaluations

count 1,389,333

mean 30.14

std 942.35

min 9873

25% -254.0

50% 28.0

75% 320.0

max 13,678.0

Fig. 2. Distribution of the evaluations

Neural Network Structure

GAiA’s model architecture is composed of 4 SE-ResNet blocks

of 2 convolutional layers each with 64 filters and a kernel

shape of 1 × 1 using ReLU activation function. To find these

hyperparameters, I tried several values and these ones seemed

to be the best compromise between computation costs and

accuracy. (Figure 3 & 4) The output is a fully connected

layer using Linear readout function (Figure 5). This model

architecture is designed based on Maia[5]. The loss is the

MAE[9] and the accuracy is the coefficient of determination[8].

I used the framework Pytorch[6] to create and train the neural

network. You can see an overview of the model in Figure 5 and

Table 1.

2 4 6 8 10 12 14
Epoch

150

200

250

300

350

(M
ea

n 
Ab

so
lu

te
 E

rro
r)

Training loss
3 SE-ResNet blocks 64 filters
4 SE-ResNet blocks 64 filters
5 SE-ResNet blocks 64 filters
6 SE-ResNet blocks 64 filters
7 SE-ResNet blocks 64 filters
8 SE-ResNet blocks 128 filters
9 SE-ResNet blocks 128 filters
10 SE-ResNet blocks 128 filters
11 SE-ResNet blocks 128 filters
12 SE-ResNet blocks 128 filters

2 4 6 8 10 12 14
Epoch

0.4

0.5

0.6

0.7

0.8

(R
2 )

Training score

3 SE-ResNet blocks 64 filters
4 SE-ResNet blocks 64 filters
5 SE-ResNet blocks 64 filters
6 SE-ResNet blocks 64 filters
7 SE-ResNet blocks 64 filters
8 SE-ResNet blocks 128 filters
9 SE-ResNet blocks 128 filters
10 SE-ResNet blocks 128 filters
11 SE-ResNet blocks 128 filters
12 SE-ResNet blocks 128 filters

Loss

2 4 6 8 10 12 14
Epoch

150

200

250

300

350

(M
ea

n 
Ab

so
lu

te
 E

rro
r)

Training loss
3 SE-ResNet blocks 64 filters
4 SE-ResNet blocks 64 filters
5 SE-ResNet blocks 64 filters
6 SE-ResNet blocks 64 filters
7 SE-ResNet blocks 64 filters
8 SE-ResNet blocks 128 filters
9 SE-ResNet blocks 128 filters
10 SE-ResNet blocks 128 filters
11 SE-ResNet blocks 128 filters
12 SE-ResNet blocks 128 filters

2 4 6 8 10 12 14
Epoch

0.4

0.5

0.6

0.7

0.8

(R
2 )

Training score

3 SE-ResNet blocks 64 filters
4 SE-ResNet blocks 64 filters
5 SE-ResNet blocks 64 filters
6 SE-ResNet blocks 64 filters
7 SE-ResNet blocks 64 filters
8 SE-ResNet blocks 128 filters
9 SE-ResNet blocks 128 filters
10 SE-ResNet blocks 128 filters
11 SE-ResNet blocks 128 filters
12 SE-ResNet blocks 128 filters

Accuracy
Fig. 3. Loss and accuracy on train sets

Fig. 4. Score on validation sets

64
Conv2D
BN

ReLU

8 64
Conv2D
BN

ReLU

64
Conv2D
BN

64

SE

64
Add
ReLU

+

8 64
Conv2D
BN

ReLU

64
Conv2D
BN

64

SE

64
Add
ReLU

+

8 64
Conv2D
BN

ReLU

64
Conv2D
BN

64

SE

64
Add
ReLU

+

8 64
Conv2D
BN

ReLU

64
Conv2D
BN

64

SE

64
Add
ReLU

+

8 64
Conv2D
BN

ReLU

8

4096 1

Flatten

1 1

Fully con-
nected Linear

1 1

Evaluation

Fig. 5. GAiA’s neural network architecture



Regression, Chess as a Model System 3

Name GAiA’s network

Model type Squeeze-and-Excitation residual network

SE-ResNet blocks 4

Convolutional filters 64

Loss function Mean Absolute Error

Accuracy function Coefficient of determination

Batch size 1024

Epochs 30

Optimizer ADAM

Learning rate 0.001

Framework Pytorch 1.10.1

Table 1. SEResNet configuration

Results

The network is trained on 3 datasets of 1, 000k positions during

30 epochs each (Figure 6) and tested on 400k positions. As

we can see on the Figure 7, GAiA’s neural network has great

performance. However, some points are misplaced: these are

positions where one of the kings is in check. This is due to the

fact that Stockfish cannot statically evaluate position where a

king is in check and so I had to search at depth 1 (one move

ahead). The resulting evaluation takes into account the next

move and therefore is much more difficult to predict. However,

the evaluations of such positions produced by the network are

not meaningless, and are even quite close to a static evaluation

of the position (Figure 8).

0 20 40 60 80
Epoch

150

200

250

300

350

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Training loss

0 20 40 60 80
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
2

Training score

Loss

0 20 40 60 80
Epoch

150

200

250

300

350

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Training loss

0 20 40 60 80
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
2

Training score

Accuracy
Fig. 6. Loss and accuracy during training

Fig. 7. GAiA’s neural network results

Stockfish score: 863, GAiA score: 6120

Stockfish score: -55, GAiA score: -6097
Fig. 8. Examples of misplaced positions

Engine

Now that I have the evaluation function of GAiA, I still need the

program which will search in the game tree and use this function

in order to have a working chess engine. Moreover, a chess

engine is not just about the search algorithm and the evaluation

function (even if these are the most important parts) but also

the time management (how much time should the engine use to

play a move in a real game) and many other things. I chose to

use the Stockfish source code as a basis for GAiA because their

algorithms are efficient and the code is really well written. In

addition, I also needed a way to infer a score from a position



4 Gaëtan Serré

using GAiA’s neural network. Since, Stockfish (and therefore

GAiA) is written in C++, I chose to use ONNX[1], which

is an awesome library created in 2018 for inferring and even

training artificial intelligence model. ONNX is very optimized

and supports many backends such as CUDA or TensorRT.

However, even though ONNX is fast, GAiA can see much less

positions per second than ”classical” chess engine (inferring an

evaluation of a chessboard from such a complex neural network

is much more time consuming than use heuristics functions).

Still, GAiA has been able to defeat many engines around 2300

elo on Lichess.org.

Conclusion

Artificial intelligence is being used in more and more fields. It is

becoming very complex to design models capable of answering

very precise problems. We could see through this article that

it was possible (for some problems) to transform our data into

images in order to use a neural network specialized in image

recognition. It may not be the most efficient model but it allows

to have very good performances easily. In my chess example,

I was able to design a chess engine able to beat any non-

professional human player in only a few hours of training. It

would be interesting to find other problems that can be solved

in this way to corroborate these results.

References

1. ONNX Runtime developers. ONNX Runtime, 11 2018.

2. Thibault Duplessis. Lichess. https://lichess.org/, 2021.

[accessed 23-November-2021].

3. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition, 2015.

4. Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu.

Squeeze-and-excitation networks, 2019.

5. Reid McIlroy-Young, Siddhartha Sen, Jon Kleinberg, and

Ashton Anderson. Aligning superhuman ai with human

behavior, Jul 2020.

6. Adam Paszke, Sam Gross, Francisco Massa, Adam

Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,

Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban

Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,

Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. Pytorch: An imperative style, high-performance

deep learning library. In H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,

editors, Advances in Neural Information Processing

Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

7. Joona Kiiski Tord Romstad, Marco Costalba. Stockfish chess

engine. https://stockfishchess.org/, 2021. [accessed 23-

November-2021].

8. Wikipedia. Coefficient of determination — Wikipedia, the

free encyclopedia. http://en.wikipedia.org/w/index.php?

title=Coefficient%20of%20determination&oldid=1060800537,

2022. [Online; accessed 11-January-2022].

9. Wikipedia. Mean absolute error — Wikipedia, the free

encyclopedia. http://en.wikipedia.org/w/index.php?title=

Mean%20absolute%20error&oldid=1053388699, 2022. [Online;

accessed 11-January-2022].

https://lichess.org/
https://stockfishchess.org/
http://en.wikipedia.org/w/index.php?title=Coefficient%20of%20determination&oldid=1060800537
http://en.wikipedia.org/w/index.php?title=Coefficient%20of%20determination&oldid=1060800537
http://en.wikipedia.org/w/index.php?title=Mean%20absolute%20error&oldid=1053388699
http://en.wikipedia.org/w/index.php?title=Mean%20absolute%20error&oldid=1053388699

	Introduction
	Data
	Neural Network Structure
	Results
	Engine
	Conclusion

